
Book of Abstracts

36th European Workshop on Computational Geometry

Photo: Universität Würzburg

March 16–18, 2020 in Würzburg, Germany.

Preface

The 36th European Workshop on Computational Geometry (EuroCG 2020) was held at
Universität Würzburg, Würzburg, Germany, on March 16–18, 2020. EuroCG is an annual
workshop that combines a strong scientific tradition with a friendly and informal atmosphere.
The workshop is a forum where researchers can meet, discuss their work, present their
results, and establish scientific collaborations, in order to promote research in the field of
Computational Geometry, within Europe and beyond.

We received 94 submissions, which underwent a limited refereeing process by the program
committee in order to ensure some minimal standards and to check for plausibility. We
selected 85 submissions for presentation at the workshop. Three submissions were later
withdrawn (leading to gaps in the paper numbering at 2, 14, and 48). EuroCG does not
have formally published proceedings; therefore, we expect most of the results outlined here
to be also submitted to peer-reviewed conferences and/or journals. This book of abstracts,
available through the EuroCG 2020 web site, should be regarded as a collection of preprints.
In addition to the 82 contributed talks, this book also contains abstracts of the three invited
lectures, given by Erin Wolf Chambers, Otfried Cheong, and Monique Teillaud.

Many thanks to all authors, speakers, and invited speakers for their participation, and
to the members of the program committee and all external reviewers for their insightful
comments. We gratefully thank the German Research Foundation (DFG grant KI 2477/1-1)
for making this event possible and for helping us to keep the registration fees low. Special
thanks to Bella Grigoryan, the members of the organizing committee, and the administration
at Universität Würzburg, for their work that made EuroCG 2020 possible.

March 2020
Würzburg

Steven Chaplick
Philipp Kindermann
Alexander Wolff
(EuroCG 2020 co-chairs)

Organizing Committee (Universität Würzburg)

Steven Chaplick (co-chair)
Thomas van Dijk
Philipp Kindermann (co-chair)
Jonathan Klawitter
Myroslav Kryven
Andre Löffler
Alexander Wolff (co-chair)
Johannes Zink

German Research Foundation

Funded by

EuroCG’20

ii

Program Committee

Elena Arseneva St. Petersburg State University
Michael Bekos Universität Tübingen
Ahmad Biniaz University of Windsor
Nicolas Bonichon Université Bordeaux
Jean Cardinal Université Libre de Bruxelles
Steven Chaplick (co-chair) Universität Würzburg and Maastricht University
Olivier Devillers INRIA Nancy
Emilio Di Giacomo University of Perugia
Arthur van Goethem Eindhoven University of Technology
William Evans The University of British Columbia
Krzysztof Fleszar University of Warsaw
Philipp Kindermann (co-chair) Universität Würzburg
Linda Kleist TU Braunschweig
Saeed Mehrabi Carleton University
Arnaud de Mesmay Institut d’électronique et d’informatique Gaspard-Monge (IGM)
Katarzyna Paluch University of Wroclaw
Zuzana Patáková IST Austria
Paweł Rzążewski Warsaw University of Technology
Chan-Su Shin Hankuk University of Foreign Studies
Bettina Speckmann Eindhoven University of Technology
Joachim Spoerhase Aalto University
Miloš Stojaković University of Novi Sad
Sabine Storandt Universität Konstanz
Martin Tancer Charles University in Prague
Geza Tóth Hungarian Academy of Sciences
Torsten Ueckerdt Karlsruhe Institute of Technology
Ryuhei Uehara Japan Advanced Institute of Science and Technology
Alexander Wolff (co-chair) Universität Würzburg

EuroCG’20

iii

Table of Contents

(Invited Talk) Triangulations in CGAL: To Non-Euclidean Spaces... and Beyond! A
Monique Teillaud

(Invited Talk) The Saga of the Skyline Points . B
Otfried Cheong

(Invited Talk) Quantifying Shape Using the Medial Axis . C
Erin Wolf Chambers

Expected Complexity of Routing in Θ6 and Half-Θ6 Graphs. 1
Prosenjit Bose, Jean-Lou De Carufel and Olivier Devillers

Fréchet Distance Between Uncertain Trajectories: Computing Expected Value and Upper Bound . . . 3
Kevin Buchin, Maarten Löffler, Aleksandr Popov and Marcel Roeloffzen

Packing Squares into a Disk with Optimal Worst-Case Density . 4
Sándor Fekete, Vijaykrishna Gurunathan, Kushagra Juneja, Phillip Keldenich, Linda Kleist
and Christian Scheffer

Worst-Case Optimal Covering of Rectangles by Disks . 5
Sándor Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer and Sahil Shah

Connected Coordinated Motion Planning with Bounded Stretch . 6
Sándor Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck and Christian Scheffer

Recognition and Reconfiguration of Lattice-Based Cellular Structures by Simple Robots 7
Amira Abdel-Rahman, Aaron Becker, Daniel E. Biediger, Kenneth Cheung, Sándor Fekete,
Benjamin Jenett, Eike Niehs, Christian Scheffer, Arne Schmidt and Mike Yanuzzi

Targeted Drug Delivery: Algorithmic Methods for Collecting a Swarm of Particles with Uniform,
External Forces . 8
Aaron Becker, Sándor Fekete, Li Huang, Phillip Keldenich, Linda Kleist, Dominik Krupke,
Christian Rieck and Arne Schmidt

Coordinated Particle Relocation Using Finite Static Friction with Boundary Walls 9
Victor Baez, Aaron Becker, Sándor Fekete and Arne Schmidt

Probing a Set of Trajectories to Maximize Captured Movement . 10
Sándor Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph Mitchell, Ojas Parekh
and Cynthia Phillips

On the Average Complexity of the k-Level . 11
Man Kwun Chiu, Stefan Felsner, Manfred Scheucher, Patrick Schnider, Raphael Steiner and
Pavel Valtr

Topological Drawings meet Classical Theorems from Convex Geometry. 12
Helena Bergold, Stefan Felsner, Manfred Scheucher, Felix Schröder and Raphael Steiner

On the width of the monotone-visibility kernel of a simple polygon . 13
David Orden, Leonidas Palios, Carlos Seara, Jorge Urrutia and Paweł Żyliński

On Implementing Multiplicatively Weighted Voronoi Diagrams . 15
Martin Held and Stefan de Lorenzo

Sometimes Reliable Spanners of Almost Linear Size . 16
Kevin Buchin, Sariel Har-Peled and Dániel Oláh

A polynomial-time partitioning algorithm for weighted cactus graphs . 17
Maike Buchin and Leonie Selbach

iv

Topologically correct PL-approximations of isomanifolds . 18
Jean-Daniel Boissonnat and Mathijs Wintraecken

Holes and islands in random point sets . 19
Martin Balko, Manfred Scheucher and Pavel Valtr

Computing Area-Optimal Simple Polygonalizations . 20
Sándor Fekete, Andreas Haas, Phillip Keldenich, Michael Perk and Arne Schmidt

Weighted Epsilon-Nets . 21
Daniel Bertschinger and Patrick Schnider

Homotopic Curve Shortening and the Affine Curve-Shortening Flow . 22
Sergey Avvakumov and Gabriel Nivasch

Applications of Concatenation Arguments to Polyominoes and Polycubes. 23
Gill Barequet, Gil Ben-Shachar and Martha Osegueda

Scheduling drones to cover outdoor events. 24
Oswin Aichholzer, Luis Evaristo Caraballo de La Cruz, José-Miguel Díaz-Báñez, Ruy
Fabila-Monroy, Irene Parada, Inmaculada Ventura and Birgit Vogtenhuber

Edge Guarding Plane Graphs . 25
Paul Jungeblut and Torsten Ueckerdt

Geometric bistellar moves relate triangulations of Euclidean, hyperbolic and spherical manifolds 26
Tejas Kalelkar and Advait Phanse

Efficiently stabbing convex polygons and variants of the Hadwiger-Debrunner (p, q)-theorem. 27
Justin Dallant and Patrick Schnider

Weak Unit Disk Contact Representations for Graphs without Embedding . 28
Jonas Cleve

On Hard Instances of the Minimum-Weight Triangulation Problem . 29
Sándor Fekete, Andreas Haas, Yannic Lieder, Eike Niehs, Michael Perk, Victoria Sack and
Christian Scheffer

Flips in higher order Delaunay triangulations . 30
Elena Arseneva, Prosenjit Bose, Pilar Cano and Rodrigo I Silveira

Distance Measures for Embedded Graphs – Optimal Graph Mappings . 31
Maike Buchin and Bernhard Kilgus

Reconfiguring sliding squares in-place by flooding . 32
Joel Moreno and Vera Sacristán

Complexity of the Generalized Ham-Sandwich Problem . 33
Man Kwun Chiu, Aruni Choudhary and Wolfgang Mulzer

Graph Planarity Testing with Hierarchical Embedding Constraints . 34
Giuseppe Liotta, Ignaz Rutter and Alessandra Tappini

On the edge-length ratio of 2-trees . 35
Václav Blažej, Jiří Fiala and Giuseppe Liotta

Simple Drawings of Km,n Contain Shooting Stars . 36
Oswin Aichholzer, Alfredo García, Irene Parada, Birgit Vogtenhuber and Alexandra Weinberger

On the Number of Delaunay Triangles occurring in all Contiguous Subsequences 37
Stefan Funke and Felix Weitbrecht

Empty Rainbow Triangles in k-colored Point Sets . 38
Ruy Fabila-Monroy, Daniel Perz and Ana Laura Trujillo

v

Bitonicity of Euclidean TSP in Narrow Strips . 39
Henk Alkema, Mark de Berg and Sándor Kisfaludi-Bak

Experimental Evaluation of Straight Skeleton Implementations Based on Exact Arithmetic 40
Günther Eder, Martin Held and Peter Palfrader

Finding an Induced Subtree in an Intersection Graph is often hard . 41
Hidefumi Hiraishi, Dejun Mao and Patrick Schnider

Scaling and compressing melodies using geometric similarity measures . 42
Luis Evaristo Caraballo de La Cruz, José-Miguel Díaz-Báñez, Fabio Rodríguez, Vanesa
Sánchez-Canales and Inmaculada Ventura

Rotational symmetric flexible placements of graphs. 43
Sean Dewar, Georg Grasegger and Jan Legerský

Augmenting Polygons with Matchings. 44
Alexander Pilz, Jonathan Rollin, Lena Schlipf and André Schulz

Covering a set of line segments with a few squares . 45
Joachim Gudmundsson, Mees van de Kerkhof, Andre van Renssen, Frank Staals, Lionov
Wiratma and Sampson Wong

Monotone Arc Diagrams with few Biarcs . 46
Steven Chaplick, Henry Förster, Michael Hoffmann and Michael Kaufmann

Colouring bottomless rectangles and arborescences . 47
Dömötör Pálvölgyi and Narmada Varadarajan

On Minimal-Perimeter Lattice Animals . 49
Gill Barequet and Gil Ben-Shachar

Shape Formation in a Three-dimensional Model for Hybrid Programmable Matter 50
Kristian Hinnenthal, Dorian Rudolph and Christian Scheideler

Smallest Universal Covers for Families of Triangles . 51
Ji-won Park and Otfried Cheong

Between Two Shapes, Using the Hausdorff Distance . 52
Marc van Kreveld, Till Miltzow, Tim Ophelders, Willem Sonke and Jordi Vermeulen

Representing Graphs by Polygons with Edge Contacts in 3D . 53
Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber
and Alexander Wolff

Headerless Routing in Unit Disk Graphs . 54
Wolfgang Mulzer and Max Willert

A (1 + ε)-approximation for the minimum enclosing ball problem in Rd . 55
Sang-Sub Kim and Barbara Schwarzwald

Disjoint tree-compatible plane perfect matchings . 56
Oswin Aichholzer, Julia Obmann, Pavel Paták, Daniel Perz and Josef Tkadlec

Minimum Convex Partition of Degenerate Point Sets is NP-Hard . 57
Nicolas Grelier

Computing the Frechet distance of trees and graphs of bounded treewidth. 58
Maike Buchin, Amer Krivosija and Alexander Neuhaus

On the complexity of the middle curve problem . 59
Maike Buchin, Nicole Funk and Amer Krivosija

vi

Spanners for Transmission Graphs Using the Path-Greedy. 60
Stav Ashur and Paz Carmi

Diverse Voronoi Partitions of 1D Colored Points . 61
Marc van Kreveld, Bettina Speckmann and Jérôme Urhausen

Smoothed Analysis of Resource Augmentation . 62
Jeff Erickson, Ivor van der Hoog and Till Miltzow

The Multivariate Schwartz-Zippel Lemma . 63
Mahmut Levent Doğan, Alperen Ergur, Elias Tsigaridas and Jake D. Mundo

Orthogonal Schematization with Minimum Homotopy Area . 64
Bram Custers, Jeff Erickson, Irina Kostitsyna, Wouter Meulemans, Bettina Speckmann and
Kevin Verbeek

Improved space bounds for Fréchet distance queries . 65
Maike Buchin, Ivor van der Hoog, Tim Ophelders, Rodrigo Silveira, Lena Schlipf and Frank Staals

Balanced Independent and Dominating Sets on Colored Interval Graphs. 66
Sujoy Bhore, Jan-Henrik Haunert, Fabian Klute, Guangping Li and Martin Nöllenburg

The Complexity of Finding Tangles . 67
Oksana Firman, Stefan Felsner, Philipp Kindermann, Alexander Ravsky, Alexander Wolff and
Johannes Zink

Sparse Regression via Range Counting . 68
Jean Cardinal and Aurélien Ooms

The Very Best of Perfect Non-crossing Matchings . 69
Ioannis Mantas, Marko Savić and Hendrik Schrezenmaier

One-Bend Drawings of Outerplanar Graphs Inside Simple Polygons . 70
Patrizio Angelini, Philipp Kindermann, Andre Löffler, Lena Schlipf and Antonios Symvonis

Labeling Nonograms . 71
Maarten Löffler and Martin Nöllenburg

Certified approximation algorithms for the Fermat point and k-ellipses . 72
Kolja Junginger, Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland and Chee Yap

Repulsion Region in a Simple Polygon . 73
Arthur van Goethem, Irina Kostitsyna, Kevin Verbeek and Jules Wulms

The angular blowing-a-kiss problem . 74
Kevin Buchin, Irina Kostitsyna, Roel Lambers and Martijn Struijs

On Generating Polygons: Introducing the Salzburg Database. 75
Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer and Peter Palfrader

Local Routing in a Tree Metric 1-Spanner . 76
Milutin Brankovic, Joachim Gudmundsson and André van Renssen

A better approximation for longest noncrossing spanning trees . 77
Sergio Cabello, Aruni Choudhary, Michael Hoffmann, Katharina Klost, Meghana M. Reddy,
Wolfgang Mulzer, Felix Schröder and Josef Tkadlec

The Tree Stabbing Number is not Monotone . 78
Johannes Obenaus and Wolfgang Mulzer

On the maximum number of crossings in star-simple drawings of Kn with no empty lens 79
Stefan Felsner, Michael Hoffmann, Kristin Knorr and Irene Parada

vii

Simple Topological Drawings of k-Planar Graphs . 80
Chih-Hung Liu, Csaba D. Tóth and Meghana M. Reddy

Enumerating isotopy classes of tilings of triply-periodic minimal surfaces . 81
Benedikt Kolbe and Myfanwy Evans

Computing the cut distance of two curves . 82
Maike Buchin, Leonie Ryvkin and Jérôme Urhausen

Tight Rectilinear Hulls of Simple Polygons . 83
Annika Bonerath, Jan-Henrik Haunert and Benjamin Niedermann

Approximating the Packing of Unit Disks into Simple Containers. 84
Helmut Alt and Nadja Seiferth

Improved constant factor for the unit distance problem. 85
Péter Ágoston and Dömötör Pálvölgyi

viii

(Invited Talk) The Saga of the Skyline Points
Otfried Cheong1

1 SCALGO, Denmark, and KAIST, South Korea
otfried@kaist.airpost.net

Abstract

Skyline points or non-dominated points in a database are those points that are “best” in
at least one of their attributes. In spatial databases, interesting implicit attributes are the
distances to a given set of sites of interest. We present some history of the problem, and
then show how computational geometry helps to transform it into a question about certain
Voronoi diagrams with additive weights and a convex-distance function. Finally, we show how
to solve the problem for n data points and m sites of interest in time O((n + m) log(n + m)),
improving on all previous results that require time proportial to nm.

Biography

Otfried Cheong received his Ph.D. at FU Berlin in 1992. After holding positions at Utrecht
University, Postech, Hong Kong University of Science Technology, and TU Eindhoven, he
has been at KAIST since 2005. He is on the editorial board of ’Discrete Computational
Geometry’ and ’Computational Geometry: Theory Applications’, and was elected an ACM
Distinguished Scientist in 2016. He is currently on leave from KAIST to work with Scalgo
on water flow simulations.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.

A

(Invited Talk) Triangulations in CGAL: To
Non-Euclidean Spaces... and Beyond!
Monique Teillaud1

1 INRIA Nancy - Grand Est, LORIA, France
monique.teillaud@inria.fr

Abstract

The talk will review some of the basic ideas underlying the design of the classic triangulation
packages in CGAL. Then it will present more recent work on the computation of Delaunay
triangulations of some flat tori and of the Bolza surface, and show how the CGAL basic
ideas could be extended. Triangulations are known to have many applications. The talk will
exhibit concrete uses of the various CGAL triangulation packages. Finally, future work and
its motivation will be mentioned.

Biography

Former student of the École Normale Supérieure in Paris, holder of an Agrégation in
Mathematics and a PhD in Computer Science (“Towards dynamic randomized algorithms
in computational geometry”). Managing Editor of JoCG (the free and gratis Journal of
Computational Geometry), PC Chair of SoCG’08, Chair of the Computational Geometry
Steering Committee since 2016. Monique Teillaud has been involved in the CGAL project
since the end of the 90’s. She has co-authored several packages in the library. Her research
has focused on computing triangulations in non-Euclidean spaces for more than ten years.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.

B

(Invited Talk) Quantifying Shape Using the
Medial Axis
Erin Wolf Chambers1

1 Saint Louis University, USA
erin.chambers@slu.edu

Abstract

The medial axis plays a fundamental role in shape matching and analysis, but is widely known
to be unstable to even small boundary perturbations. Methods for pruning the medial axis are
usually guided by some measure of significance, with considerable work done for both 2- and
3-dimensional shapes. Such significance measures can be used for identifying salient features,
and hence are useful for simplification, comparison, and alignment. In this talk, we will
present theoretical insights and properties of commonly used significance measures, focusing
on those in 2D and 3D that are both shape-revealing and topology-preserving, as well as being
robust to noise on the boundary. We’ll also discuss more recent work in progress on using
such measures to de-noise a shape and identify topologically and geometrically prominent
features. Finally, we will cover several applications of these measures and techniques to
real-world data sets.

Biography

Dr. Erin Wolf Chambers is a Professor at Saint Louis University in the Department of
Computer Science, with a secondary appointment in the Department of Mathematics. Her
research focus is on computational topology and geometry, with a more general interest in
combinatorics and combinatorial algorithms. Complementing this work, she is also active
in research projects to support and improve the culture and climate in computer science
and mathematics, as well as to try to improve broader STEM educational experiences at
all levels. She serves on the Computational Geometry Steering Committee and the Women
in Computational Topology Steering Committee, as well as being an editor for Journal of
Computational Geometry and for the Journal of Applied and Computational Topology. She
received her PhD in Computer Science from the University of Illinois at Urbana-Champaign
in 2008, and was a Visiting Research Professor at Saarland University in summer 2011.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.

C

Expected Complexity of Routing in Θ6 and
Half-Θ6 Graphs∗

Prosenjit Bose1, Jean-Lou De Carufel2, and Olivier Devillers3

1 Carleton University, Ottawa, Canada jit@scs.carleton.ca
2 University of Ottawa, Ottawa, Canada jdecaruf@uottawa.ca
3 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Olivier.Devillers@inria.fr

Abstract
We study online routing algorithms on the Θ6-graph and the half-Θ6-graph (which is equivalent
to a variant of the Delaunay triangulation). Given a source vertex s and a target vertex t in the
Θ6-graph (resp. half-Θ6-graph), there exists a deterministic online routing algorithm that finds
a path from s to t whose length is at most 2‖st‖ (resp. 2.89‖st‖) which is optimal in the worst
case [Bose et al., siam J. on Computing, 44(6)]. We propose alternative, slightly simpler routing
algorithms that are optimal in the worst case and for which we provide an analysis of the average
routing ratio for the Θ6-graph and half-Θ6-graph defined on a Poisson point process.

1 Introduction

The half-Θ6-graph or TD-Delaunay (Triangular-Distance Delaunay [1]) is the Delaunay
triangulation for the convex metric whose disk has the shape of an equilateral triangle.
The Θ6-graph gathers the two half-Θ6-graphs corresponding to two symmetric equilateral
triangles. Given such a graph, one may be interested in its spanning ratio, that is the worse
ratio between the length of a shortest path in the graph and the Euclidean length [6, 12],
algorithms to compute paths [11, 10, 9, 8] knowing the whole graph, or routing algorithms
that uses only local knowledge of the graph [5].

This paper has two main contributions. The first contribution consists of the design of
two new algorithms for routing in the half-Θ6-graph in the so called negative-routing case.
Our new routing algorithms come in two flavors: one is memoryless and the other uses
a constant amount of memory. These new negative-routing algorithms have a worst-case
optimal routing ratio but are simpler and more amenable to probabilistic analysis than the
known optimal routing algorithm [4]. We also provide a new point of view on routing [4] in
the half-Θ6-graph in the positive-routing case.

The second contribution is the analysis of the two new negative-routing algorithms and
of the positive-routing algorithm in a random setting, namely when the vertex set of the
Θ6-graph and half-Θ6-graph is a point set that comes from an infinite Poisson point process
X of intensity λ. The analysis is asymptotic with λ going to infinity, and gives the expected
length of the shortest path between two fixed points s and t at distance one. Our results
depend on the position of t with respect to s. We express our results both by taking the
worst position for t and by averaging over all possible positions for t.

∗ This work has been supported by INRIA Associated team TRIP, NSERC and ANR Aspag (ANR-17-
CE40-0017).Full version: [3]

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

1:2 Expected Complexity of Routing in Θ6 and Half-Θ6 Graphs

s

t

successor of s will
be in a smaller
hexagon centered
in t

Path can be
longs

t

Figure 1 Naive Θ6-routing terminates but its stretch is unbounded

2 Routing in Θ6-graph and Half-Θ6-graph

Let a cone be the region in the plane between two rays originating from the same point,
referred to as the apex of the cone. The Θ6-graph is formally defined as follows. For each
point p, we split the plane around p into six cones defined by rays emanating from p making
an angle of 0, π

3 ,
2π
3 , π, 4π

3 , and 5π
3 with the horizontal axis. The cone whose bisector

is an upward vertical ray emanating from p is labeled Cp0 , and Cp1 . . . C
p
5 are labeled in

counterclockwise order. Given two vertices p and q with q in Cpi , define the canonical triangle
Tpq to be the equilateral triangle formed by the intersection of Cpi and the half-plane that
contains p, has q on its boundary, and whose boundary is a line perpendicular to the bisector
of Cpi . We call a canonical triangle Tpq even if q is in Cpi for even i and odd otherwise. An
edge exists in the Θ6-graph between two vertices p and q if Tpq is empty. The half-Θ6-graph
uses the same rays to define the cone boundaries except only half the cones are used to define
edges, namely only the even cones or only the odd cones. The even half-Θ6-graph is defined
using the neighbors of p in cones Cp0 , C

p
2 , and C

p
4 (Fig. 2 illustrates an even half-Θ6-graph).

The even (resp. odd) cones in the even half-Θ6-graph are called positive (resp. negative)
and symmetrically for the odd half-Θ6-graph.

To route from a vertex s to a vertex t, a simple naive routing algorithm in Θ6-graph
consists of choosing as successor for s the one in the cone Csi containing t and then to iterate.
This procedure always terminates but may have an unbounded routing-ratio (Fig. 1).

For the even half-Θ6-graph Chew [7] provides a routing algorithm with a routing ratio of
2 when t is in a cone Csi with i even. As a consequence, the stretch ratio of the half-Θ6-graph
is 2 using the routing from t to s when i is odd. Bose et al. [4] address the routing problem
with i odd and provide an algorithm with routing ratio 5√

3 ' 2.89 which is optimal for any
constant-memory online routing algorithm [4]. Bonichon and Marckert [2] analyze the naive
Θ6-routing for Poisson distributed point sets.

3 Two Basic Routing Building Blocks on the Half-Θ6-graph

We introduce forward routing and side routing two routing modes on the half-Θ6-graph which
serve as building blocks for our routing algorithms that have optimal worst-case behaviour.
We consider the even half-Θ6-graph and for ease of reference, we color the cones C0, C2 and
C4 blue, red, and green respectively.

P. Bose, J.-L. De Carufel, & O. Devillers 1:3

s

upper bound on the
length of forward routing

path with blue edges

+

++

--

-

blue forward path
from s (highlighted
in violet).

empty equilateral
triangle circumscribing
a triangle of
the triangulation

Figure 2 A TD-Delaunay triangulation (half-Θ6-graph).

3.1 Forward-Routing Phase
Forward-routing consists of only following edges defined by a specific type of cone (i.e., a cone
with the same color) until some specified stopping condition is met. For example, suppose
the specific cone selected for forward routing is the blue cone. Thus, when forward-routing is
invoked at a vertex x, the edge followed is xy where y is the vertex adjacent to x in x’s blue
cone. If the stopping condition is not met at y, then the next edge followed is yz where z is
the vertex adjacent to y in y’s blue cone. This process continues until a specified stopping
condition is met. A path produced by forward routing consists of edges of the same color
since edges are selected from one specific cone as illustrated in Fig. 2.

I Lemma 3.1. Suppose that forward-routing is invoked at a vertex s and ends at a vertex t.
The length of the path from s to t produced by forward-routing is at most the length of one
side of the canonical triangle Tst which is 2√

3 times the length of the orthogonal projection of
st onto the bisector of Cs0 .

Proof. This result follows from the fact that each edge along the path makes a maximum
angle of π6 with the cone bisector and the path is monotone in the direction of this bisector. J

3.2 Side-Routing Phase in the Half-Θ6-graph
The side-routing phase is defined on the half-Θ6-graph by using the fact that it is the
TD-Delaunay triangulation, and thus planar. Consider a line ` parallel to one of the cone
sides. W.l.o.g., we will assume ` is horizontal. We call the side of the line that bounds even
cones the positive side of `. (For a horizontal line, the positive side is below `, for the lines
with slopes −

√
3 and

√
3, respectively, the positive side is above the line.) Let s and t be two

EuroCG’20

1:4 Expected Complexity of Routing in Θ6 and Half-Θ6 Graphs

vertices below ` and ∆1, ∆2, . . .∆j be an ordered sequence of consecutive triangles of the
TD-Delaunay triangulation intersecting ` such that s is the bottom-left vertex of ∆1, and t
is the bottom-right vertex of ∆j . Note that B is a path in the half-Θ6-graph. Side-routing
invoked at vertex s along ` stopping at t consists of walking from s to t along B (Fig. 3 for
an example).

I Lemma 3.2. Side-routing on the positive side of a line ` parallel to a cone boundary
invoked at a vertex s and stopped at a vertex t in the half-Θ6-graph results in a path whose
length is bounded by twice the length of the orthogonal projection of st on `. This path only
uses edges of two colors and all vertices of the path have their successor of the third color on
the other side of `.

Proof. W.l.o.g., assume ` is horizontal and the positive side is below `. Consider the triangles
∆i, 1 ≤ i ≤ j as defined above. The empty equilateral triangle ∇i circumbscribing ∆i has a
vertex of ∆i on each of its side by construction (∇i are shown in grey in Fig. 3). If ∆i has
an edge of the path (i.e., below `) then the vertex on the horizontal side of ∇i is above the
line while the two others are below. Thus, such an edge of the path goes from the left to the
right side of ∇i. Based on the slopes of the edges of ∇i, we have the following:
–a– Each edge on the path has a length smaller than twice its horizontal projection. Therefore,
summing the lengths of all the projections of the edges gives the claimed bound on the length.
–b– If the slope is negative (resp. positive), the path edge is green (resp. red).
–c– The blue successor of a vertex u on the lower sides of ∇i is above ` since the part of Cuo
below ` is inside ∇i and thus contains no other points. Blue edges are not on the path. J

3.3 Positive routing in the Half-Θ6-graph (and the Θ6-graph)
If t is in a positive cone of s, Bose et al. [4] (similar to Chew’s algorithm) proposed a
routing algorithm in the half-Θ6-graph which they called positive routing. This algorithm
can be rephrased in two phases: a forward-routing phase and a side-routing phase. The
forward-routing phase is invoked with source s and destination t. It produces a path from s

to the first vertex u outside the negative cone of t that contains s. The side-routing phase is
invoked with source u and destination t and finds a path along the boundary of this negative
cone. (Fig. 4-left). The stretch of such a path is proven to smaller than 2 [4]

4 Alternative Negative Routing Algorithms in the Half-Θ6-graph

In this section, we outline two alternatives to the negative routing algorithm described by
Bose et al. [4]. Our algorithms are a little simpler to describe, have the same worst-case
routing ratio, and are easier to analyze in the random setting. The lower bound of 5√

3 ' 2.89
[4] applies to our alternative negative routing algorithms.

4.1 Memoryless Routing
Case 1. If t is in the positive cone Csi , take one step of forward-routing towards t
Case 2. If t is in the negative cone Csi and the successor u of s in Csi−1 is outside Tts (red triangle

empty in Fig. 4-right), take one step of side-routing along the side of Tts crossed by su.
Case 3. If t is in the negative cone Csi and the successor u of s in Csi+1 is outside Tts (green

triangle empty in Fig. 4-right), take one step of side-routing along the side of Tts crossed
by su.

P. Bose, J.-L. De Carufel, & O. Devillers 1:5

s t

+

++

--

-
Tts

s′

side path B
(highlighted violet)

t′ `

∇8

∆8

The zigzag boundary of the grey empty triangles bound the length of the path,

and has the same size as lower boundary of the big yellow triangle between s and t.

This size is twice ‖s′t′‖.

∇5

∆10 ∆j

∆1

Figure 3 A side path below the horizontal line `.

Case 4. If t is in the negative cone Csi and both successors of s in Csi−1 and Csi+1 are inside Tts
(green and red triangle non empty in Fig. 4-right), take one step of forward-routing in
the direction of the side of Tts incident to t closest to s (go to the green successor of s in
Fig. 4-right).

Beyond the presentation, our strategy differs from the one of Bose et al. in Case 4 where
Bose et al. follows a blue edge if one exists. We remark that, when we reach Case 3, we enter
a side-routing phase that will continue until t is reached since a side-routing step ensures that
at the next iteration side-routing will also be applicable. The same argument holds in Case 2,
unless we reach a point s with both successors outside Tts in which case we follow the other
side of Tts. To summarize, if t is in a positive cone of s, this routing algorithm will produce
the path described at Section 3.3. If t is in a negative cone of s we use a forward phase in
the green triangle, until we reach a vertex u whose edge in the green triangle intersects Tts
(recall that we assume that the green triangle is the smaller one). At this point, we invoke
side-routing from u to t along the boundary of Tts.

I Lemma 4.1. Memoryless negative routing has a worst-case routing ratio of 5√
3 ' 2.89.

Proof. Assume w.l.o.g. s ∈ Ct0. Referring to Fig. 5-left, let w be the upper right vertex of
Tts, v be the orthogonal projection of u on tw and x its projection parallel to tw on sw.
By Lemma 3.1, the path from s to u has length bounded by ‖sx‖ and by Lemma 3.2, the
path from u to t has length bounded by 2‖vt‖. Combining the two paths, the length is
bounded by ‖sx‖ + 2‖vt‖ ≤ ‖sw‖ + 2‖wt‖. Thus the stretch is smaller than ‖sw‖+2‖wt‖

‖st‖ .

EuroCG’20

1:6 Expected Complexity of Routing in Θ6 and Half-Θ6 Graphs

t

sne
ga

ti
ve

co
ne

fr
om

t

p
ositive

cone
from

s

side
routing

w

fo
rw

ar
d

ro
ut

in
g

u
v

y

x

y′y′′
β

t

s
+

++

--

-

Figure 4 Positive and negative routing schemes [4].

Defining ξ = ‖wt‖
‖sw‖ the stretch can be expressed as a function ξ 2+ξ√

3
4 +(ξ− 1

2)2 . It attains its

maximum value of 5√
3 when ξ = 1

2 coresponding to s and t lie on a vertical line. J

4.2 Constant-Memory Negative Routing
We propose a second negative routing algorithm that has the same worst-case routing ratio,
but we will prove that it has a better average routing ratio. However, it is no longer
memoryless since it needs to remember the coordinates of one vertex, namely the source
of the path. Let x′′ be the intersection between Tts and Tst closest to s. (Fig. 5-right).
The idea is to use side-routing from s along sx′′ and, just before exiting the green triangle,
apply side-routing along x′′t. This routing algorithm is identical to the one in the previous
subsection, except that we replace Case 4 with the following, where u is the current vertex
and s is the origin of the path whose coordinares are kept in memory:

Case 4’ If t is in the negative cone Cui and both successors of u in Cui−1 and Cui+1 are inside Ttu
(green and red triangle non empty): take one step of side-routing along the line sx′′.

side
pha

se

w
u

v

t

s

forward phase

x

w

t

s

sid
e p
ha
se

side
phase

u

u

x v
v′x′

x′′

x′′

Figure 5 For Lemmas 4.1 and 4.2

P. Bose, J.-L. De Carufel, & O. Devillers 1:7

I Lemma 4.2. Constant-memory negative routing has a worst-case routing ratio of 5√
3 '

2.89.

Proof. Assume w.l.o.g. s ∈ Ct0. Referring to the Fig. 5-right, let x′ and x be the horizontal
and orthogonal projections of u on Tst, respectively, and v′ and v be the horizontal and
orthogonal projections of u on Tts, respectively. By Lemma 3.2, the path from s to u

has length bounded by 2‖sx‖ and by Lemma 3.2 again, the path from u to t has length
bounded by 2‖vt‖. Combining the two paths the length is bounded by 2‖sx‖ + 2‖vt‖ ≤
2‖sx′‖+2‖x′x‖+2‖v′t‖ = 2‖wt‖+2‖xx′‖. Since x is the orthogonal projection of u on the side
x′x′′ of the equilateral triangle x′x′′v′, ‖xx′‖ is smaller than the half side of the triangle x′x′′v′
and we get a bound on the length of 2‖wt‖+2‖xx′‖ ≤ 2‖wt‖+2 1

2‖x′v′‖ ≤ 2‖wt‖+‖sw‖. J

5 Probabilistic Analysis

I Theorem 5.1. Let X be a Poisson point process of intensity λ, s and t two points at unit
distance and φ the angle of st with the horizontal axis. The the limits of the expected routing
ratios of the different routing algorithms on the half-Θ6-graph defined on X ∪ {s, t}, as λ
tends to ∞ are given in the following table and graph (with τ1 := 1

4
√

3 (3 ln 3 + 4)):

Routing E [routing ratio] (φ) maxs,t E [routing ratio] Es,t[E [routing ratio]]
Positive routing τ1

(
sinφ+ 1√

3 cosφ
)

2√
3τ1 ' 1.2160 2

√
3

π τ1 ' 1.1612
Constant-memory 4

3τ1 sinφ 4
3τ1 ' 1.4041 4

π τ1 ' 1.3408
Memoryless τ1

(
3
2 sinφ−

√
3

6 cosφ
)

3
2τ1 ' 1.5800 6−

√
3

π τ1 ' 1.4306

φ

Mem
oryles

s negativ
e routin

g

Constant-memory negative routing

π
2

π
3

Positive routing

stretch

Proof. See full paper [3] J

EuroCG’20

1:8 Expected Complexity of Routing in Θ6 and Half-Θ6 Graphs

References
1 Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. Connections be-

tween Theta-graphs, Delaunay triangulations, and orthogonal surfaces. In Proceedings of
the 36th International Conference on Graph Theoretic Concepts in Computer Science (WG
2010), pages 266–278, 2010.

2 Nicolas Bonichon and Jean-François Marckert. Asymptotics of geometrical navigation on
a random set of points in the plane. Advances in Applied Probability, 43(4):899–942, 2011.
doi:10.1239/aap/1324045692.

3 Prosenjit Bose, Jean-Lou De Carufel, and Olivier Devillers. Expected Complexity of
Routing in Θ6 and Half-Θ6 Graphs. Research report, INRIA, 2019. URL: https:
//hal.inria.fr/hal-02338733.

4 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal
local routing on Delaunay triangulations defined by empty equilateral triangles. SIAM
Journal on Computing, 44(6):1626–1649, 2015. doi:10.1137/140988103.

5 Prosenjit Bose and Pat Morin. Online routing in triangulations. SIAM Journal on Com-
puting, 33(4):937–951, 2004.

6 Prosenjit Bose and Michiel Smid. On plane geometric spanners: A survey and open prob-
lems. Computational Geometry: Theory and Applications, 46(7):818–830, 2013.

7 Paul Chew. There are planar graphs almost as good as the complete graph. Journal of
Computer and System Sciences, 39(2):205–219, 1989.

8 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

9 J. E. Hopcroft and R. E. Tarjan. Algorithm 447: Efficient algorithms for graph manipula-
tion. Communications of the ACM, 16(6):372–378, 1973.

10 C. Y. Lee. An algorithm for path connection and its applications. IRE Transaction on
Electronic Computers, EC-10(3):346–365, 1961.

11 E. F. Moore. The shortest path through a maze. In Proceedings of the International
Symposium on the Theory of Switching, pages 285–292, 1959.

12 G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press,
2007.

Fréchet Distance Between Uncertain Trajectories:
Computing Expected Value and Upper Bound∗

Kevin Buchin1, Maarten Löffler2, Aleksandr Popov†1, and Marcel
Roeloffzen‡1

1 Department of Mathematics and Computer Science, TU Eindhoven,
Netherlands
{k.a.buchin, a.popov, m.j.m.roeloffzen}@tue.nl

2 Department of Information and Computing Sciences, Utrecht University,
Netherlands
m.loffler@uu.nl

Abstract
A trajectory is a sequence of time-stamped locations. Measurement uncertainty is an important
factor to consider when analysing trajectory data. We define an uncertain trajectory as a traject-
ory where at each time stamp the true location lies within an uncertainty region—a disk, a line
segment, or a set of points. In this paper we consider discrete and continuous Fréchet distance
between uncertain trajectories.

We show that finding the largest possible discrete or continuous Fréchet distance among all
possible realisations of two uncertain trajectories is NP-hard under all the uncertainty models
we consider. Furthermore, computing the expected discrete or continuous Fréchet distance is
#P-hard when the uncertainty regions are modelled as point sets or line segments. We also
study the setting with time bands, where we restrict temporal alignment of the two trajectories,
and give polynomial-time algorithms for largest possible and expected discrete and continuous
Fréchet distance for uncertainty regions modelled as point sets.

1 Introduction

Trajectory data is ubiquitous. Whether tracking animals or dissecting a football game, we need
to deal with automated analysis of measured trajectories. However, most existing approaches
do not take into account the inherent uncertainty that arises due to the measurement
procedure. In some settings this uncertainty is small on the scale of the analysis; in other
settings, however, meaningful results can only be obtained when dealing with such uncertainty
explicitly. In this paper, we aim to do that for a variety of uncertainty models when computing
Fréchet distance and discrete Fréchet distance.

There are many results on trajectory analysis: on simplification of trajectories [1, 14,
21, 22, 29]; on trajectory segmentation [3, 4, 6]; on clustering trajectories [8, 17]. There
are also many approaches to trajectory similarity [13, 25, 31], including (discrete) Fréchet
distance [5, 16, 20] and variants [15]. There is some work tackling uncertainty in computational
geometry [12, 24, 26, 27], including problems on moving points [10, 18].

Some authors suggest computing restricted versions of Fréchet distance and other distance
metrics using time bands [7, 23, 30], restricting the alignment of trajectories. This is mostly
useful when the trajectories are regularly sampled and are expected to be aligned in time, so
we can use some fixed-size band on indices of the trajectory points as proxy for timestamps.

∗ This abstract presents partial results from joint work with Chenglin Fan and Benjamin Raichel [9].
† Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.001.801.
‡ Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 628.011.005.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

3:2 Fréchet Distance Between Uncertain Trajectories

Table 1 Summary of hardness results for the decision problems in this paper.

indecisive imprecise
disks line segments

discrete FD UB NP-complete NP-complete NP-complete
Exp #P-hard — #P-hard

FD UB NP-complete NP-complete NP-complete
Exp #P-hard — —

There is some work on similarity of uncertain trajectories. Buchin and Sijben [11]
study computing discrete Fréchet distance on uncertain trajectories with points defined by
probability distributions. Ahn et al. [2] model each uncertain point by a disk, and the real
location of a point may be any point in the disk. They compute the lowest possible discrete
Fréchet distance using a dynamic programming approach. They also stipulate that finding
largest possible Fréchet distance is hard; it is confirmed by Fan and Zhu [19] for the case of
thin rectangles as imprecision model and is further explored in this paper.

We focus on Fréchet distance and discrete Fréchet distance. We make a distinction
between indecisive points and imprecise points for location uncertainty, as explained in
Section 1.1. We only model measurement uncertainty, so we assume linear motion on a
straight line segment between two consecutive measurements. We consider upper bound
Fréchet distance and expected Fréchet distance between trajectories, which correspond to
the largest possible and expected Fréchet distance over every possible combination of real
locations of the trajectory. Our contributions are:
1. NP-hardness and #P-hardness results.1 We show NP-hardness for the upper bound on

(discrete) Fréchet distance using simpler uncertainty regions and a simpler construction
than Fan and Zhu [19]. We show #P-hardness for the expected value of (discrete) Fréchet
distance in several settings. See Table 1 for details.

2. Algorithms for discrete and continuous Fréchet distance with Sakoe–Chiba time bands.
Previous results suggest that there is little room for positive algorithmic results. If the
trajectories are regularly sampled, or can be resampled appropriately at will, and are
expected to align in time, we can restrict the computation to a fixed-width time window
on indices of trajectory points, as explained in Section 3. We give algorithms to find,
given indecisive trajectories, the upper bound and expected (discrete) Fréchet distance
when constrained to Sakoe–Chiba bands of fixed width [30].

The results of this abstract are discussed further in the master thesis of A. Popov [28] and in
joint work with C. Fan and B. Raichel [9]. In the latter paper, we additionally investigate
the lower bound (continuous) Fréchet distance.

1.1 Notation
We denote a polygonal curve of length n on n points in d dimensions as P = 〈p1, p2, . . . , pn〉.
A trajectory is a polygonal curve with timestamps associated to each point of the curve.
Whenever timestamps are not relevant, we use the terms interchangeably. We denote a
subtrajectory from point i to j of curve P as P [i : j].

1 Hardness class #P is a class of counting problems related to NP. For example, SAT (‘Is there a satisfying
assignment to a boolean formula?’) is an NP-complete problem, whereas #SAT (‘How many satisfying
assignments to a boolean formula are there?’) is a #P-complete problem.

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen 3:3

(0, 0) at 10:01

(1, 1) at 10:05

(0, 2) at 10:07

(2, 4) at 10:12

Figure 1 Left: Trajectory data. Centre: Polygonal curve on the data. Right: Imprecise trajectory
with disks as imprecision regions and the real trajectory.

An uncertain point is commonly represented as a compact region H ⊂ Rd. A realisation
of such a point h is one of the points from the region H. An indecisive point is a special
case of an uncertain point: it is a set of points H = {h1, . . . , hk}. Similarly, an imprecise
point is a compact connected region H ⊂ Rd. We use disks or line segments as such regions.
Note that a precise point is a special case of an indecisive point and an imprecise point.

Consider a sequence of uncertain points H = 〈H1, . . . , Hn〉, referred to as an uncertain
trajectory. A realisation P b H of an uncertain trajectory is a polygonal curve P =
〈p1, . . . , pn〉, where each pi is a realisation of the corresponding uncertain point Hi. The
concept of uncertain trajectories is illustrated in Figure 1.

Extending the notation to uncertain trajectories H and V , we define the upper bound on
the (discrete) Fréchet distance under different possible realisations:

d max
dF (H,V) = max

AbH,BbV
ddF(A, B) , d max

F (H,V) = max
AbH,BbV

dF(A, B) .

We define expected Fréchet distance dE
dF and dE

F as the expected value of the Fréchet distance
if the realisations are picked uniformly at random, independently for each trajectory point.

2 Hardness Results

We do not discuss the construction; see the master thesis for full proofs [28]. It is possible to
provide a reduction from CNF-SAT to the decision problem for finding d max

dF and d max
F under

different uncertainty models, establishing their NP-hardness. Furthermore, it is possible
to provide reductions from the counting version of CNF-SAT to the decision problem for
finding dE

dF and dE
F in some settings, establishing their #P-hardness. The construction has

two trajectories, one precise and one uncertain; every realisation of the uncertain trajectory
corresponds to a variable assignment in the CNF-SAT formula. We get two possible values of
Fréchet distance for each realisation and can distinguish satisfying assignments. Then d max

dF
tells us if the formula is satisfiable, and dE

dF gives us the count of satisfying assignments.
The proofs using our construction extend to other compact uncertainty regions of the

same shape and size for the discrete Fréchet distance; the extension for the continuous Fréchet
distance seems possible, but is less obvious. The expected case is a lot more difficult due to
the complicated integral evaluations, so even for disks the results seem difficult to obtain.
The list of settings we consider is shown in Table 1.

EuroCG’20

3:4 Fréchet Distance Between Uncertain Trajectories

1

2
1a

1b

2a

2b

3a

3b

F F F T T T
T T T F F F

F
T
→ F T

T F
→ T

F

Figure 2 Left: An indecisive and a precise trajectory. Middle: Distance matrix. ‘T T’ in the
bottom left cell means ‖1−1a‖ ≤ ε and ‖1−1b‖ ≤ ε. Right: Computing reachability matrix, column
by column. Note the two reachability vectors for the second column.

3 Algorithms with Time Bands

Here we use the Sakoe–Chiba band, which restricts aligning point k on one trajectory to
points k ± w on the other trajectory, for all k and some fixed w [30]. In some settings the
point indices act as proxy for timestamps, and the trajectories are expected to be aligned
in time, so this restriction is reasonable. We develop polynomial-time algorithms for the
restricted hard problems of the previous section on indecisive points.

3.1 Upper Bound Discrete Fréchet Distance
First of all, let us discuss a simple setting. Suppose we are given a trajectory V = 〈q1, . . . , qn〉
of n precise points and H = 〈P1, . . . , Pn〉 of n indecisive points, each of them having ` options,
so for all i ∈ {1, . . . , n} we have Pi = {p1

i , . . . , p`
i}. We would like to answer the following

decision problem: ‘If we restrict the couplings to a Sakoe–Chiba band of width w, is it true
that d max

dF (H, V) ≤ ε for some given threshold ε > 0?’ We want to solve the decision problem
for the upper bound discrete Fréchet distance between a precise and an indecisive trajectory.

In a fully precise setting the discrete Fréchet distance can be computed using dynamic
programming [16]. We create a table where the rows correspond to the vertices of one
trajectory, say V , and columns correspond to the vertices of the other trajectory, say H.
Each table entry (i, j) then contains a True or False value indicating if there is a coupling
between V [1 : j] and H[1 : i] with maximum distance at most ε. We use a similar approach.

Suppose we position H to go horizontally along the table, and V to go vertically. Consider
an arbitrary column in the table and suppose that we fix the realisation of a part of H up to
the previous column. Then we can simply consider the new column ` times, each time picking
a different realisation for the new point on H, and compute the resulting reachability. As we
do this for the entire column at once, we can ensure consistency of our choice of realisation of
H. This procedure will give us a set of binary reachability vectors for the new column, each
vector corresponding to a realisation of a prefix of H. The reachability vector is a boolean
vector that, for the cell (i, j) of the table, states whether for a particular realisation A of
H[1 : i] the discrete Fréchet distance between A and V [1 : j] is below some threshold ε.

An important observation is that we do not need to distinguish between the realisations
of trajectory prefixes that give the same reachability vector: once we start filling out the
next column, all we care about is the existence of some realisation leading to that particular
reachability vector. So, we can keep a set of binary vectors of reachability in the column.

This procedure was suggested for a specific realisation of a prefix of H. However, we can
also repeat this for each previous reachability vector, only keeping the unique results. As all
the realisation choices happen along H, by treating the table column-by-column we ensure
that we do not have issues with inconsistent choices. Therefore, repeating this procedure n

times, we will fill out the last column of the table. At that point, if any vector has False in

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen 3:5

the top right cell, then there is some realisation A b H such that ddF(A, V) > ε, and hence
d max

dF (H, V) > ε; otherwise, d max
dF (H, V) ≤ ε, as there are no ‘bad’ realisations.

In more detail, we use two tables, distance matrix D and reachability matrix R. First
of all, we initialise the distance matrix D and the reachability of the first column for all
possible locations of H1. Then we fill out R column-by-column. We take the reachability of
the previous column and note that any cell can be reached either with the horizontal step
or with the diagonal step. We need to consider various extensions of the trajectory H with
one of the ` realisations of the current point: the distance matrix should allow the specific
coupling. Furthermore, assume we find that a certain cell is reachable; if allowed by the
distance matrix, we can then go upwards, marking cells above the current cell reachable,
even if they are not directly reachable with a horizontal or diagonal step. Then we just
remember the newly computed vector; we make sure to only remember distinct vectors.

We check if there is a realisation that yields False in the last cell; then this realisation is
chosen by the upper bound, yielding False. The computation is illustrated in Figure 2.

We can extend this approach to the setting where both trajectories are indecisive, so
instead of V we have V = 〈V1, . . . , Vn〉, with, for each j ∈ {1, . . . , n}, Vj = {q1

j , . . . , q`
j}.

Suppose we pick a realisation for trajectory V . Then we can apply the algorithm we just
described. We cannot run it separately for every realisation of V; instead, note that the
part of the realisation that matters for column i is the points from i− w to i + w, since any
previous or further points are outside the time band. We can fix these 2w + 1 points and
compute the column as before; we do so for each possible combination on these 2w + 1 points.

I Theorem 1. Suppose we are given two indecisive trajectories of length n with ` options per
indecisive point. Then we can compute the upper bound discrete Fréchet distance restricted
to a Sakoe–Chiba band of width w in time Θ(4wn

√
w`2w).

3.2 Expected Discrete Fréchet Distance
To compute the expected discrete Fréchet distance with time bands, we need two observations:
1. For any two precise trajectories, there is a single threshold ε where the answer to

the decision problem changes from True to False—a critical value. That threshold
corresponds to the distance between some two points on the trajectories.

2. We can modify our algorithm to store associated counts with each reachability vector,
obtaining the fraction of realisations that yield the answer True for a given threshold ε.

So, we can execute our algorithm for each of the critical values and obtain the cumulative
distribution function P(ddF(A, B) > ε) for A, B b H,V following the uniform distribution.
Since the cumulative distribution function is a step function, we can compute dE

dF.

I Theorem 2. Suppose we are given two indecisive trajectories H and V of length n with
` options per indecisive point. Then we can compute the expected discrete Fréchet distance
when constrained to a Sakoe–Chiba band of width w in time Θ(4wn2w2`2w) in the worst case.

3.3 Continuous Fréchet Distance
We can adapt our time band algorithms to handle the continuous Fréchet distance. Instead
of the boolean reachability vectors, we use columns of free space cells, introduced by Alt and
Godau [5, 20], as illustrated in Figure 3. We store the reachability intervals on cell borders.

The specifics of handling intervals are very technical and can be found in the master
thesis [28]. The number of possible intervals is bounded; this way we get an algorithm that
runs in time polynomial in n. An extension to find the expected value is also possible.

EuroCG’20

3:6 Fréchet Distance Between Uncertain Trajectories

(0, 0)

(0, 1)

(0, 2)

(2, 4)

(2, 0)

(1, 1)

(3, 2)

(4, 4)

Figure 3 Left: Visualisation of Fréchet distance on precise trajectories. Right: Corresponding
free-space diagram. The highlighted intervals are propagated per column in the uncertain case. The
monotone path corresponds to the alignment depicted on the left.

I Theorem 3. Suppose we are given two indecisive trajectories of length n with ` options
per indecisive point. Then we can compute the upper bound Fréchet distance and the expected
Fréchet distance restricted to a Sakoe–Chiba band of fixed width w in time polynomial in n.

References

1 Pankaj K. Agarwal, Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. Near-linear time
approximation algorithms for curve simplification. Algorithmica, 42(3):203–219, July 2005.
doi:10.1007/s00453-005-1165-y.

2 Hee-Kap Ahn, Christian Knauer, Marc Scherfenberg, Lena Schlipf, and Antoine Vign-
eron. Computing the discrete Fréchet distance with imprecise input. International
Journal of Computational Geometry & Applications, 22(01):27–44, 2012. doi:10.1142/
S0218195912600023.

3 Sander P. A. Alewijnse, Kevin Buchin, Maike Buchin, Andrea Kölzsch, Helmut Krucken-
berg, and Michel A. Westenberg. A framework for trajectory segmentation by stable criteria.
In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, SIGSPATIAL ’14, pages 351–360, New York, NY, USA,
2014. ACM. doi:10.1145/2666310.2666415.

4 Sander P. A. Alewijnse, Kevin Buchin, Maike Buchin, Stef Sijben, and Michel A. Westen-
berg. Model-based segmentation and classification of trajectories. Algorithmica, 80(8):2422–
2452, August 2018. doi:10.1007/s00453-017-0329-x.

5 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry and Applications, 5(1):75–91,
1995. doi:10.1142/S0218195995000064.

6 Boris Aronov, Anne Driemel, Marc van Kreveld, Maarten Löffler, and Frank Staals. Seg-
mentation of trajectories on non-monotone criteria. ACM Transactions on Algorithms,
12(2):26:1–26:28, December 2015. doi:10.1145/2660772.

7 Kevin Buchin, Maike Buchin, and Joachim Gudmundsson. Constrained free space diagrams:
A tool for trajectory analysis. International Journal of Geographical Information Science,
24(7):1101–1125, July 2010. doi:10.1080/13658810903569598.

8 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k, `)-center clustering for curves. In
Proceedings of the Thirtieth Annual ACM–SIAM Symposium on Discrete Algorithms, pages
2922–2938, Philadelphia, PA, USA, 2019. SIAM. doi:10.1137/1.9781611975482.181.

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen 3:7

9 Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel, and
Marcel Roeloffzen. Fréchet distance for uncertain curves. Unpublished manuscript, 2020.

10 Kevin Buchin, Stef Sijben, T. Jean Marie Arseneau, and Erik P. Willems. Detecting move-
ment patterns using Brownian bridges. In Proceedings of the 20th International Conference
on Advances in Geographic Information Systems, SIGSPATIAL ’12, pages 119–128, New
York, NY, USA, 2012. ACM. doi:10.1145/2424321.2424338.

11 Maike Buchin and Stef Sijben. Discrete Fréchet distance for uncertain points, 2016.
Presented at EuroCG 2016, Lugano, Switzerland. URL: http://www.eurocg2016.usi.
ch/sites/default/files/paper_72.pdf [cited 2019-07-10].

12 Leizhen Cai and Mark Keil. Computing visibility information in an inaccurate simple
polygon. International Journal of Computational Geometry & Applications, 7:515–538,
December 1997. doi:10.1142/S0218195997000326.

13 Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity search for moving
object trajectories. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’05, pages 491–502, New York, NY, USA, 2005. ACM.
doi:10.1145/1066157.1066213.

14 David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartographica: The In-
ternational Journal for Geographic Information and Geovisualization, 10(2):112–122, 1973.
doi:10.3138/FM57-6770-U75U-7727.

15 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, October 2018. arXiv:
1107.1720v4, doi:10.1137/120865112.

16 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Technishe Universität Wien, April 1994. URL: http://www.kr.tuwien.ac.
at/staff/eiter/et-archive/cdtr9464.pdf [cited 2019-04-23].

17 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96), pages 226–
231, Menlo Park, CA, USA, 1996. AAAI Press. URL: https://www.aaai.org/Papers/
KDD/1996/KDD96-037.pdf [cited 2019-09-10].

18 William Evans, David Kirkpatrick, Maarten Löffler, and Frank Staals. Competitive query
strategies for minimising the ply of the potential locations of moving points. In Proceedings
of the Twenty-Ninth Annual Symposium on Computational Geometry, SoCG ’13, pages
155–164, New York, NY, USA, 2013. ACM. doi:10.1145/2462356.2462395.

19 Chenglin Fan and Binhai Zhu. Complexity and algorithms for the discrete Fréchet distance
upper bound with imprecise input, February 2018. arXiv:1509.02576v2.

20 Michael Godau. A natural metric for curves: Computing the distance for polygonal chains
and approximation algorithms. In STACS 91: Proceedings of 8th Annual Symposium on
Theoretical Aspects of Computer Science, number 480 in LNCS, pages 127–136, Berlin,
Germany, 1991. Springer Berlin Heidelberg. doi:10.1007/BFb0020793.

21 Joachim Gudmundsson, Jyrki Katajainen, Damian Merrick, Cahya Ong, and Thomas
Wolle. Compressing spatio-temporal trajectories. Computational Geometry, 42(9):825–841,
November 2009. doi:10.1016/j.comgeo.2009.02.002.

22 Hiroshi Imai and Masao Iri. Computational-geometric methods for polygonal approxim-
ations of a curve. Computer Vision, Graphics, and Image Processing, 36(1):31–41, 1986.
doi:10.1016/S0734-189X(86)80027-5.

23 Fumitada Itakura. Minimum prediction residual principle applied to speech recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1):67–72, February
1975. doi:10.1109/TASSP.1975.1162641.

EuroCG’20

3:8 Fréchet Distance Between Uncertain Trajectories

24 Christian Knauer, Maarten Löffler, Marc Scherfenberg, and Thomas Wolle. The dir-
ected Hausdorff distance between imprecise point sets. Theoretical Computer Science,
412(32):4173–4186, 2011. doi:10.1016/j.tcs.2011.01.039.

25 Joseph B. Kruskal and Mark Liberman. The symmetric time-warping problem: From con-
tinuous to discrete. In David Sankoff and Joseph B. Kruskal, editors, Time Warps, String
Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, chapter 4,
pages 125–161. Addison–Wesley, Reading, MA, USA, 1983.

26 Maarten Löffler. Data Imprecision in Computational Geometry. PhD thesis, Uni-
versiteit Utrecht, October 2009. URL: https://dspace.library.uu.nl/bitstream/
handle/1874/36022/loffler.pdf [cited 2019-06-15].

27 Maarten Löffler and Jeff M. Phillips. Shape fitting on point sets with probability dis-
tributions: ESA 2009. In Algorithms, number 5757 in LNCS, pages 313–324, Ber-
lin, Germany, 2009. Springer Berlin Heidelberg. arXiv:0812.2967v1, doi:10.1007/
978-3-642-04128-0_29.

28 Aleksandr Popov. Similarity of uncertain trajectories. Master’s thesis, Eindhoven Univer-
sity of Technology, November 2019. URL: https://research.tue.nl/en/studentTheses/
similarity-of-uncertain-trajectories [cited 2019-12-18].

29 Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Com-
puter Graphics and Image Processing, 1(3):244–256, 1972. doi:10.1016/S0146-664X(72)
80017-0.

30 Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–
49, February 1978. doi:10.1109/TASSP.1978.1163055.

31 Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering similar multidi-
mensional trajectories. In Proceedings 18th International Conference on Data Engineering,
pages 673–684, Piscataway, NJ, USA, 2002. IEEE. doi:10.1109/ICDE.2002.994784.

Packing Squares into a Disk with Optimal
Worst-Case Density
Sándor P. Fekete1, Vijaykrishna Gurunathan2, Kushagra Juneja2,
Phillip Keldenich1, Linda Kleist1, and Christian Scheffer1

1 Department of Computer Science, TU Braunschweig, Germany
{s.fektete, p.keldenich, l.kleist, c.scheffer}@tu-bs.de

2 Department of Computer Science & Engineering, IIT Bombay, India
krishnavijay1999@gmail.com, kuku12320@gmail.com

Abstract
We provide a tight result for a fundamental problem arising from packing squares into a circular
container: The critical density of packing squares in a disk is δ = 8/5π ≈ 0.509. This implies that
any set of (not necessarily equal) squares of total area A ≤ 8/5 can always be packed into a unit
disk; in contrast, for any ε > 0 there are sets of squares of area 8/5 + ε that cannot be packed.
This settles the last case of packing circular or square objects into a circular or square container,
as the critical densities for squares in a square (1/2), circles in a square (π/3+

√
2 ≈ 0.539) and

circles in a circle (1/2) have already been established. The proof uses a careful manual analysis,
complemented by a minor automatic part that is based on interval arithmetic. Beyond the
basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of
recursive packing algorithms.

1 Introduction

Problems of geometric packing and covering arise in a wide range of natural applications.
They also have a long history of spawning many extremely demanding (and often still
unsolved) mathematical challenges. These difficulties are also notable from an algorithmic
perspective, as relatively straightforward one-dimensional variants of packing and covering
are already NP-hard; however, deciding whether a given set of one-dimensional segments can
be packed into a given interval can be checked by computing their total length. This simple
criterion is no longer available for two-dimensional, geometric packing or covering problems,
for which the total volume often does not suffice to decide feasibility of a set, making it
necessary to provide an explicit packing or covering.

We provide a provably optimal answer for a natural and previously unsolved case of tight
worst-case area bounds, based on the notion of critical packing density: What is the largest
number δp ≤ 1, such that any set S of squares with a total volume of at most δp can always
be packed into a disk C of area 1, regardless of the individual sizes of the elements in S? We
show that the correct answer is δp = 8/5π: Any set of squares of total area at most 8/5 can be
packed into a unit disk (with radius 1), and for any value A > 8/5, there are sets that cannot
be packed. This quantity is of mathematical importance, as it settles an open problem, as
well as of algorithmic interest, because it provides a simple criterion for feasibility. It also
settles the last remaining case of packing circular or square objects into a circular or square
container, see Figure 1 for an overview.

1.1 Related Work
Problems of square packing have been studied for a long time. The decision problem whether
it is possible to pack a given set of squares into the unit square was shown to be strongly
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

4:2 Worst-Case Optimal Squares Packing into Disks

(a) (c) (d)(b)

1
2+

√
2

1
2

2√
5

1
1
2

Figure 1 Illustration of the worst-case optimal approaches and worst case instances for packing
(a) squares into a square with Shelf Packing by Moon and Moser [7]. (b) disks into a square by
Fekete et al. [5]. (c) disks into a disk by Fekete et al. [4] (d) squares into a disk [this paper].

NP-complete by Leung et al. [6]. Already in 1967, Moon and Moser [7] proved that the
critical packing density for squares into a square is 1/2. As illustrated in Figure 1(a), this is
best possible. Demaine, Fekete, and Lang [1] showed in 2010 that deciding whether a given
set of disks can be packed into a unit square is NP-hard. Consequently, there is (most likely)
no deterministic polynomial-time algorithm to decide whether a given set of disks can be
packed into a given container. The problem of establishing the critical packing density for
disks in a square was posed by Demaine, Fekete, and Lang [1] and resolved by Morr, Fekete
and Scheffer [5, 8]. Using a recursive procedure for partitioning the container into triangular
pieces, they proved that the critical packing density of disks in a square is π/(3+2

√
2). More

recently, Fekete et al. [4] established the critical packing density of 1/2 for packing disks into a
disk by employing a number of algorithmic techniques in combination with interval arithmetic.
Note that the main objective of this line of research is to compute tight worst-case bounds.
For specific instances, a packing may still be possible, even if the density is higher; this also
implies that proofs of infeasibility for specific instances may be trickier. However, the idea of
using the total item volume for computing packing bounds can still be applied. See the work
by Fekete and Schepers [2, 3], which shows how a modified volume for geometric objects can
be computed, yielding good lower bounds for one- or higher-dimensional scenarios.

2 A Worst-Case Optimal Algorithm

The main result is a worst-case optimal algorithm for packing squares into a unit disk.

I Theorem 2.1. Every set of squares with a total area of at most 8/5 can be packed into a
disk with radius 1. This is worst-case optimal, i.e., for every λ > 8/5 there exists a set of
squares with a total area of λ that cannot be packed into the unit disk.

A proof of Theorem 2.1 consists of (i) a class of instances that provide the upper bound
of 8/5 and (ii) an algorithm that achieves the lower bound by packing any set of squares with
a total area of at most 8/5 into the unit disk.

S. P. Fekete, K. Juneja, P. Keldenich, L. Kleist, V. Krishna, and C. Scheffer 4:3

The upper bound is implied by any two squares with a side length of
√

4/5 + ε, for
arbitrary ε > 0, see Figure 1(d): When placed in the unit disk, either of them must contain
the disk center in its interior, so both cannot be packed simultaneously.

In the following, we sketch a constructive proof for the lower bound by describing an
algorithm that can pack any instance with total area 8/5. Because our proof is constructive,
it yields a constant-factor approximation algorithm for the smallest disk in which a given set
of squares can be packed.

2.1 Description of the Algorithm
In the following, we consider a set of given squares with side lengths s1, . . . , sn. We pack
them in sequential order by decreasing size into the unit disk D, and assume without loss of
generality that s1 ≥ · · · ≥ sn. Our algorithm distinguishes three types of instances:

1. All squares are small, i.e., s1 ≤ 0.295.
2. The first four squares are fairly large, i.e., s1 ≤ 1√

2 and s2
1 + s2

2 + s2
3 + s2

4 ≥ 8
5 − 1

25 .
3. All other cases.

X

s5

s2

s1

s4

(a) (b)
s5

s1s2

s3 s4

(c)

s3

to
p

b
o
ttom

s1
X

. . .

..
.

Figure 2 (a) Packing in case 1. (b) Packing in case 2. (c) The packing in the remaining cases is
a combination of Top Packing (top) and Bottom Packing (bottom).

In the first case, we pack all but the first four squares into a large square container
by Shelf Packing and each of the first four squares adjacent to one of the four sides as
illustrated in Figure 2(a). In the second case, we pack the first four squares into a central
square container, achieving high enough packed area that it suffices to pack the remaining
squares into a smaller subsquare with the worst-case packing density of squares into a square.
In the third case, we make extensive use of a refined shelf packing. Specifically, the largest
square in the third case is packed into D as high as possible, see Figure 2(c) and Figure 3 for
an illustration. The bottom of this square induces a horizontal split of disk into a top and a
bottom part, which are then packed by two subroutines called Top Packing and Bottom
Packing as described in Section 2.2. This yields the following description.

1. If s1 ≤ 0.295, place a square of side length X = 1.388 concentric into D and place one
square of side length Xi = 0.295 to each side of X , see Figure 2(a).

For i = 1, 2, 3, 4, pack each si into one of the squares of side length Xi = 0.295.
For i ≥ 5, use Shelf Packing for packing si into X .

2. If s1 ≤ 1√
2 and s2

1 + s2
2 + s2

3 + s2
4 ≥ 39

25 , let X1, . . . ,X4 be the four equally sized maximal
squares that fit into D and let be X the largest square that can be additionally packed
into D, see Figure 2(b).

For i = 1, 2, 3, 4, pack each si into one of the squares of side length Xi.
For i ≥ 5, use Shelf Packing for packing si into X .

EuroCG’20

4:4 Worst-Case Optimal Squares Packing into Disks

3. Otherwise
Pack s1 as far as possible to the top into D.
For i ≥ 2,
(3.1) if possible, use Top Packing for packing si,
(3.2) otherwise, use Bottom Packing for packing si.

to
p

b
o
tto

m

Top Packing

Bottom Packing

Figure 3 Our algorithm packs squares in decreasing order. The largest (hatched) square is packed
as far as possible to the top, inducing a top and a bottom part, with the empty top space consisting
of two congruent pockets. Subsequent (white) squares are packed into these top pockets with Top
Packing (which uses shelf packing as a subroutine) if they fit; if they do not fit, they are shown in
gray and packed into the bottom part with Bottom Packing, which uses horizontal subcontainer
slicing, and vertical shelf packing within each slice.

2.2 Subroutines of Our Algorithm
In the following, we briefly describe the subroutines of our algorithm.

Refined Shelf Packing. In the classic shelf packing procedure by Moon and Moser [7],
the objects are packed in the greedy manner by decreasing size in rectangular subcontainers
called shelves; see top of Figure 1 (a). When an object does not fit in the current shelf, a new
shelf is opened; the height of a shelf is determined by the first object that it accommodates.
We use two modifications: (1) Parts of the shelf boundaries may be circular arcs; however,
we still have a supporting straight axis-parallel boundary and a second, orthogonal straight
boundary. (2) Our refined shelf packing uses the axis-parallel boundary line of a shelf as a
support line for packing squares; in case of a collision with the circular boundary, we may
move a square towards the middle of a shelf if this allows packing it.

Top Packing. The first square s1 is packed as high as possible into the disk D, see
Figure 4 (a). Then the horizontal line `1 through the bottom of s1 cuts the container into
a top part that contains s1, with two congruent empty pockets C` and Cr left and right
of s1; each such pocket has two straight axis-parallel boundaries, bx and by. We use refined
shelf packing with shelves parallel to the shorter straight boundary, as shown in Figure 4 (c)
and (d). If a square si does not fit into either pocket, it is packed into the part below `1.

Bottom Packing. For packing a squares in the bottom part of D, SubContainer
Slicing subdivides the unused portion of the container disk into smaller pieces, by using
straight horizontal cuts analougous to shelf packing; see Figure 5 (Left). The height of a
subcontainer is determined by the first packed square. Within each subcontainer, (vertical)
Refined Shelf Packing is used; see Figure 3 for the overall picture. These shelves are

S. P. Fekete, K. Juneja, P. Keldenich, L. Kleist, V. Krishna, and C. Scheffer 4:5

Cr

(b)

C`
s1 σ

(c) (d)(a) s1

to
p

b
o
tto

m

Figure 4 (a) Packing s1 topmost into D. (b) The top part of D with the pockets C` and Cr, and
the size σ of the largest inscribed square. (c) A pocket C` where bx ≤ by, resulting in horizontal
shelf packing. (d) A pocket C` where bx > by, resulting in vertical shelf packing.

packed from the longer of the two horizontal cuts, i.e., away from the boundary that is closer
to the disk center; see Figure 5 (Right) for packing the subcontainer.

to
p

b
o
tto

m

Cl Cr

C1

Ci

s1

Figure 5 (Left) SubContainer Slicing partitions the lower part of D into subcontainers Ci,
with the height corresponding to the first packed square. (Right) Within each subcontainer,
SubContainer Packing places squares into Ci along vertical shelves, starting from the longer
straight cut of the subcontainer.

2.3 Correctness of the Algorithm
Similar to the argument by Moon and Moser for squares packed into a square container,
we use careful bookkeeping to prove that this algorithm only fails to pack a square in the
decreasing if the total area of all squares exceeds the critical bound. The analysis uses
an intricate combination of manual analysis and an automated analysis based on interval
arithmetic. Details are omitted due to lack of space.

3 Complexity

We present the idea of an hardness proof for packing squares into a disk.

I Theorem 3.1. It is NP-hard to decide whether a given set of squares fits into a disk.

The proof uses a reduction from 3-Partition; it is somewhat similar to the one by Leung
et al. [6] for deciding whether a given set of squares fits into a given square container, and
the one by Demaine, Fekete, and Lang in 2010 [1] for deciding whether a give set of disks fits
into a given square container; see Figure 6 for an illustration.

Eight (gray) framing squares can only be packed by leaving a central rectangular pocket P
and some outside gaps. The numbers of the 3-Partition instance are mapped to a set of
(red) number squares of almost equal size, with small modifications of size εi, such that a
triple (i, j, k) of (red) number squares fits into P if and only if εi + εj + εk ≤ 0, i.e., if there is
a feasible 3-Partition. For filling the gaps outside the framing squares, a set of (yellow and

EuroCG’20

4:6 Worst-Case Optimal Squares Packing into Disks

Figure 6 Illustration of the 3-Partition reduction.

blue) filler squares are constructed, so that no (red) number square can be packed outside P
if all filler squares are packed outside P . A detailed proof establishes the following claims.
1. Up to symmetries, the framing squares can only be packed in one canonical way, leaving

a central pocket P .
2. The filler squares fight tightly when packed in the canonical manner outside P .
3. When all filler squares are packed outside P , the number squares can only be packed

into P . This is possible if and only if there is a feasible 3-partition.
4. Packing a filler square inside P forces an unpackable gap preventing a feasible packing.
5. The overall construction can be realized with squares of sufficiently approximated edge

lengths of polynomial description size.
We omit details due to limited space, and the fact that the hardness proof is neither surprising
nor central to this paper.

4 Conclusions

We have established the critical density for packing squares into a disk, based on a number of
advanced techniques that are more involved than the ones used for packing squares or disks
into a square. Numerous questions remain open, in particular the critical density for packing
squares of bounded size into a disk. We are optimistic that our techniques will be useful.

S. P. Fekete, K. Juneja, P. Keldenich, L. Kleist, V. Krishna, and C. Scheffer 4:7

References
1 E. D. Demaine, S.P. Fekete, and R. J. Lang. Circle packing for origami design is hard. In

Origami5: 5th International Conference on Origami in Science, Mathematics and Educa-
tion, AK Peters/CRC Press, pages 609–626, 2011.

2 S. P. Fekete and J. Schepers. New classes of fast lower bounds for bin packing problems.
Mathematical Programming, 91(1):11–31, 2001.

3 S. P. Fekete and J. Schepers. A general framework for bounds for higher-dimensional
orthogonal packing problems. Mathematical Methods of Operations Research, 60:311–329,
2004.

4 Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Packing Disks into Disks with
Optimal Worst-Case Density. In Proceedings 35th International Symposium on Computa-
tional Geometry (SoCG 2019), pages 35:1–35:19, 2019. doi:10.4230/LIPIcs.SoCG.2019.
35.

5 Sándor P. Fekete, Sebastian Morr, and Christian Scheffer. Split packing: Algorithms
for packing circles with optimal worst-case density. Discrete & Computational Geometry,
61(3):562–594, 2019.

6 J. Y. T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin. Packing squares
into a square. Journal of Parallel and Distributed Computing, 10(3):271–275, 1990.

7 J. W. Moon and L. Moser. Some packing and covering theorems. In Colloquium Mathe-
maticae, volume 17, pages 103–110. Institute of Mathematics, Polish Academy of Sciences,
1967.

8 S. Morr. Split packing: An algorithm for packing circles with optimal worst-case density. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 99–109, 2017.

EuroCG’20

Worst-Case Optimal Covering of Rectangles
by Disks∗

Sándor P. Fekete1, Utkarsh Gupta2, Phillip Keldenich1, Christian
Scheffer1, and Sahil Shah2

1 Department of Computer Science, TU Braunschweig, Germany
{s.fekete,p.keldenich,c.scheffer}@tu-bs.de

2 Department of Computer Science & Engineering, IIT Bombay, India
{utkarshgupta149,sahilshah00199}@gmail.com

Abstract
We provide the solution for a fundamental problem of geometric optimization by giving a complete
characterization of worst-case optimal disk coverings of rectangles: For any λ ≥ 1, the critical
covering area A∗(λ) is the minimum value for which any set of disks with total area at least
A∗(λ) can cover a rectangle of dimensions λ × 1. We show that there is a threshold value
λ2 =

√√
7/2− 1/4 ≈ 1.035797 . . ., such that for λ < λ2 the critical covering area A∗(λ) is

A∗(λ) = 3π
(
λ2

16 + 5
32 + 9

256λ2

)
, and for λ ≥ λ2, the critical area is A∗(λ) = π(λ2 + 2)/4; these

values are tight. For the special case λ = 1, i.e., for covering a unit square, the critical covering
area is 195π

256 ≈ 2.39301 The proof uses a careful combination of manual and automatic
analysis, demonstrating the power of the employed interval arithmetic technique.

1 Introduction

Given a collection of (not necessarily equal) disks, is it possible to arrange them so that
they completely cover a given region, such as a square or a rectangle? Covering problems
of this type are of fundamental theoretical interest, but also have a variety of different
applications, most notably in sensor networks, communication networks and wireless commu-
nication [22], surveillance, robotics, and even gardening and sports facility management, as
shown in Figure 1.

If the total area of the disks is small, it is clear that completely covering the region is
impossible. On the other hand, if the total disk area is sufficiently large, finding a covering

∗ This is an extended abstract of our paper Worst-Case Optimal Covering of Rectangles by Disks [15].
A video presenting the main result can be found at https://www.ibr.cs.tu-bs.de/users/fekete/
Videos/Cover_full.mp4 .

Figure 1 An incomplete covering of a rectangle by disks: Sprinklers on a soccer field during a
drought. (Source: dpa [13].)

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

5:2 Worst-Case Optimal Covering of Rectangles by Disks

seems easy; however, for rectangles with large aspect ratio, a major fraction of the covering
disks may be useless, so a relatively large total disk area may be required. The same issue is
of clear importance for applications: What fraction of the total cost of disks can be put to
efficient use for covering? This motivates the question of characterizing a critical threshold:
For any given λ, find the minimum value A∗(λ) for which any collection of disks with total
area at least A∗(λ) can cover a rectangle of dimensions λ× 1. What is the critical covering
area of λ× 1 rectangles? In this paper we establish a complete and tight characterization
that generalizes to arbitrary rectangles by scaling and rotating.

1.1 Related Work
Like many other packing and covering problems, disk covering is typically quite difficult,
compounded by the geometric complications of dealing with irrational coordinates that arise
when arranging circular objects. This is reflected by the limitations of provably optimal
results for the largest disk, square or triangle that can be covered by n unit disks, and hence,
the “thinnest” disk covering, i.e., a covering of optimal density. As early as 1915, Neville [27]
computed the optimal arrangement for covering a disk by five unit disks, but reported a
wrong optimal value; much later, Bezdek [6, 7] gave the correct value for n = 5, 6. As recently
as 2005, Fejes Tóth [33] established optimal values for n = 8, 9, 10. Szalkai [32] gave an
optimal solution for a small special case (n = 3) of a general problem posed by Connelly in
2008, who asked how one should place n small disks of radius r to cover the largest possible
area of a disk of radius R > r. For covering arbitrary rectangles by n unit disks, Heppes and
Mellissen [20] gave optimal solutions for n ≤ 5; Melissen and Schuur [24] extended this for
n = 6, 7. See Friedman [19] for the best known solutions for n ≤ 12. Covering equilateral
triangles by n unit disks has also been studied. Melissen [23] gave optimal results for n ≤ 10,
and conjectures for n ≤ 18; the difficulty of these seemingly small problems is illustrated
by the fact that Nurmela [28] gave conjectured optimal solutions for n ≤ 36, improving
the conjectured optimal covering for n = 13 of Melissen. Carmi, Katz and Lev-Tov [11]
considered algorithms for covering point sets by unit disks at fixed locations. There are
numerous other related problems and results; for relevant surveys, see Fejes Tóth [14] (Section
8), Fejes Tóth [34] (Chapter 2), Brass, Moser and Pach [10] (Chapter 2) and the book by
Böröczky [9].

Even less is known for covering by non-uniform disks, with most previous research focusing
on algorithmic aspects. Alt et al. [3] gave algorithmic results for minimum-cost covering of
point sets by disks, where the cost function is

∑
j r

α
j for some α > 1, which includes the

case of total disk area for α = 2. Agnetis et al. [2] discussed covering a line segment with
variable radius disks. Abu-Affash et al. [1] studied covering a polygon minimizing the sum of
areas; for recent improvements, see Bhowmick,Varadarajan and Xue [8]. Bánhelyi, Palatinus
and Lévai [4] gave algorithmic results for the covering of polygons by variable disks with
prescribed centers.

The dual question of packing unit disks into a square has also attracted attention. For
n = 13, the optimal value for the densest square covering was only established in 2003 [18],
while the optimal value for 14 unit disks is still unproven; densest packings of n disks
in equilateral triangles are subject to a long-standing conjecture by Erdős and Oler from
1961 [29] that is still open for n = 15. Many authors have considered heuristics for circle
packing problems, see [31, 21] for overviews of numerous heuristics and optimization methods.
The best known solutions for packing equal disks into squares, triangles and other shapes
are published on Specht’s website http://packomania.com [30]. Establishing the critical
packing density, i.e., the disk area that can always be packed into a unit square, for (not

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 5:3

1 1.2 1.4 1.6 1.8 2 2.2 2.4
2.2

2.3

2.4

2.5

2.6

λ2
√

2 λ = (195 +
√

5257)/128

195π
256

π√
2

√
469+182

√
7

1728 π

Aspect ratio λ

C
rit

ic
al

co
ve
rin

g
de
ns
ity

d
∗ (
λ

)=
A

∗
(λ

)
λ

Figure 2 The critical covering density d∗(λ) depending on λ and its values at the threshold value
λ2, the global minimum

√
2 and the aspect ratio λ at which the density becomes as bad as for the

square.

necessarily equal) disks in a square was proposed by Demaine, Fekete, and Lang [12] and
solved by Morr, Fekete and Scheffer [26, 17]. Using a recursive procedure for cutting the
container into triangular pieces, they proved that the critical packing density of disks in
a square is π

3+2
√

2 ≈ 0.539. The critical density for (not necessarily equal) disks in a disk
was recently proven to be 1/2 by Fekete, Keldenich and Scheffer [16]; see the video [5] for
an overview and various animations. The critical packing density of (not necessarily equal)
squares was established in 1967 by Moon and Moser [25], who used a shelf-packing approach
to establish the value of 1/2 for packing into a square.

For more related work, we refer the reader to the full version of our paper [15].

1.2 Our Contribution

We show that there is a threshold value λ2 =
√√

7/2− 1/4 ≈ 1.035797 . . ., such that for

λ < λ2 the critical covering area A∗(λ) is A∗(λ) = 3π
(
λ2

16 + 5
32 + 9

256λ2

)
, and for λ ≥ λ2, the

critical area is A∗(λ) = π(λ2 + 2)/4. These values are tight: For any λ, any collection of disks
of total area A∗(λ) can be arranged to cover a λ× 1-rectangle, and for any a(λ) < A∗(λ),
there is a collection of disks of total area a(λ) such that a λ× 1-rectangle cannot be covered.
(See Figure 2 for a graph showing the (normalized) critical covering density, and Figure 3 for
examples of worst-case configurations.) The point λ = λ2 is the unique real number greater
than 1 for which the two bounds 3π

(
λ2

16 + 5
32 + 9

256λ2

)
and π λ2+2

4 coincide; see Figure 2. At
this so-called threshold value, the worst case changes from three identical disks to two disks
— the circumcircle r2

1 = λ2+1
4 and a disk r2

2 = 1
4 ; see Figure 3. For the special case λ = 1, i.e.,

for covering a unit square, the critical covering area is 195π
256 ≈ 2.39301

The proof uses a careful combination of manual and automatic analysis, demonstrating
the power of the employed interval arithmetic technique.

EuroCG’20

5:4 Worst-Case Optimal Covering of Rectangles by Disks

1
2

r
r

r

r2 = λ2

16 +
5
32 +

9
256λ2

S1 =
√
4r2 − 1

r21 =
λ2+1
4

r22 =
1
4

︷ ︸︸ ︷

︸
︷︷

︸

1
2

︸
︷︷

︸
Figure 3 Worst-case configurations for small λ ≤ λ2 (left) and for large λ ≥ λ2 (right). Shrinking

r or r1 by any ε > 0 in either configuration leads to an instance that cannot be covered.

2 High-Level Description

Our main theorem gives a closed-form solution for the critical covering area A∗(λ) for any
λ ≥ 1, i.e., for any given rectangle R, we determine the total disk area that is (1) sometimes
necessary and (2) always sufficient to cover R. Due to limited space, we only sketch the
overall approach; details are contained in the full version [15] of the paper.

I Theorem 2.1. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let

λ2 =

√√
7

2 −
1
4 ≈ 1.035797 . . . , and A∗(λ) =

3π
(
λ2

16 + 5
32 + 9

256λ2

)
, if λ < λ2,

π λ
2+2
4 , otherwise.

(1) For any a < A∗(λ), there is a set D− of disks with A(D−) = a that cannot cover R.
(2) Let D = {r1, . . . , rn} ⊂ R, r1 ≥ r2 ≥ . . . ≥ rn > 0 be any collection of disks identified by

their radii. If A(D) ≥ A∗(λ), then D can cover R.
The critical covering area does not depend linearly on the area λ of the rectangle; it also
depends on the rectangle’s aspect ratio. Figure 2 shows a plot of the dependency of the
critical covering density d∗(λ) := A∗(λ)

λ , i.e., the amount of disk area required per rectangle
area, on λ. In the following, to simplify notation, we factor out π if possible; instead of
working with the areas A(D) or A∗(λ) of the disks, we use their weight W (D), i.e., their
area divided by π. Similarly, we work with the covering coefficient E∗(λ) := d∗(λ)

π instead of
the density d∗(λ); a lower covering coefficient corresponds to a more efficient covering.

As shown in Figure 2, the critical covering coefficient E∗(λ) is monotonically decreasing
from λ = 1 to

√
2 and monotonically increasing for λ >

√
2. For a square, E∗(1) = 195

256 ;
the point λ > 1 for which the covering coefficient becomes as bad as for the square is
λ := 195+

√
5257

128 ≈ 2.08988 . . .; for all λ ≤ λ, the covering coefficient is at most 195
256 .

2.1 Proof Components
The proof of Theorem 2.1 uses a number of components. First is a lemma that describes the
worst-case configurations and shows tightness, i.e., claim (1), of Theorem 2.1 for all λ.

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 5:5

I Lemma 2.2. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. (1) Two disks of
weight r2

1 = λ2+1
4 and r2

2 = 1
4 suffice to cover R. (2) For any ε > 0, two disks of weight r2

1−ε
and r2

2 do not suffice to cover R. (3) Three identical disks of weight r2 = λ2

16 + 5
32 + 9

256λ2

suffice to cover a rectangle R of dimensions λ × 1. (4) For λ ≤ λ2 and any ε > 0, three
identical disks of weight r2

− := r2 − ε do not suffice to cover R.

For large λ, the critical covering coefficient E∗(λ) of Theorem 2.1 becomes worse, as large
disks cannot be used to cover the rectangle efficiently. If the weight of each disk is bounded
by some σ ≥ r2

1, we provide the following lemma achieving a better covering coefficient E(σ)
with E∗(λ) ≤ E(σ) ≤ E∗(λ). This coefficient is independent of the aspect ratio of R.

I Lemma 2.3. Let σ̂ := 195
√

5257
16384 ≈ 0.8629. Let σ ≥ σ̂ and E(σ) := 1

2

√√
σ2 + 1 + 1.

Let λ ≥ 1 and D = {r1, . . . , rn} be any collection of disks with σ ≥ r2
1 ≥ . . . ≥ r2

n and
W (D) =

n∑
i=1

r2
i ≥ E(σ)λ. Then D can cover a rectangle R of dimensions λ× 1.

Note that E(σ̂) = 195
256 is the best covering coefficient established by Lemma 2.3, coinciding

with the critical covering coefficient of the square established by Theorem 2.1. Thus, we can
cover any rectangle with covering coefficient 195

256 if the largest disk satisfies r2
1 ≤ σ̂.

The final component is the following Lemma 2.4, which also gives a better covering
coefficient if the size of the largest disk is bounded. The bound on the largest radius that is
required for Lemma 2.4 is smaller than for Lemma 2.3; in return, the covering coefficient
that Lemma 2.4 yields is better. We remark that the result of Lemma 2.4 is not tight.

I Lemma 2.4. Let λ ≥ 1 and let R be a rectangle of dimensions λ×1. Let D = {r1, . . . , rn},
0.375 ≥ r1 ≥ . . . ≥ rn > 0 be a collection of disks. If W (D) ≥ 0.61λ, or equivalently
A(D) ≥ 0.61πλ ≈ 1.9164λ, then D suffices to cover R.

2.2 Proof Overview
The proofs of Theorem 2.1 and Lemmas 2.3 and 2.4 work by induction on the number of disks.
For proving Lemma 2.3 for n disks, we use Theorem 2.1 for n disks. For proving Theorem 2.1
for n disks, we use Lemma 2.4 for n disks; Lemma 2.3 is only used for fewer than n disks; see
Figure 4. For proving Lemma 2.4 for n disks, we only use Theorem 2.1 and Lemma 2.3 for
fewer than n disks. Therefore, there are no cyclic dependencies in our argument; however,
we have to perform the induction for Theorem 2.1 and Lemmas 2.3 and 2.4 simultaneously.
Strategies. The proofs of Theorem 2.1 and Lemma 2.4 are constructive; they are based
on an efficient recursive algorithm that uses a set of simple strategies. We go through the
list of strategies in some fixed order. For each strategy, we check a sufficient criterion for
the strategy to work. We call these criteria success criteria. They only depend on the total
available weight and a constant number of largest disks. If we cannot guarantee that a
strategy works by its success criterion, we simply disregard the strategy; this means that our
algorithm does not have to backtrack. We prove that, regardless of the distribution of the
disks’ weight, at least one success criterion is met, implying that we can always apply at
least one strategy. The number of strategies and thus success criteria is large — more than
40 strategies considering over 500 combinatorially different placements of the largest disks,
which would presumably need to be considered in a manual analysis. This is where the need
for automatic assistance comes from.
Recursion. Typical strategies are recursive; they consist of splitting the collection of disks
into smaller parts, splitting the rectangle accordingly, and recursing, or recursing after fixing
the position of a constant number of large disks.

EuroCG’20

5:6 Worst-Case Optimal Covering of Rectangles by Disks

Theorem 2.1
n disks n disks

Lemma 2.4

Lemma 2.3
n disks

n disks

< n disks

Theorem 2.1
Lemma 2.3
Lemma 2.4

Strategies

Figure 4 The inductive structure of the proof; the blue parts are computer-aided.

In the entire remaining proof, the criterion we use to guarantee that recursion works
is as follows. Given a collection D′ (D and a rectangular region R′ (R, we check
whether the preconditions of Theorem 2.1 or Lemma 2.3 or 2.4 are met after appropriately
scaling and rotating R′ and the disks. Note that, due to the scaling, the radius bounds of
Lemmas 2.3 and 2.4 depend on the length of the shorter side of R′. In some cases where
we apply recursion, we have more weight than necessary to satisfy the weight requirement
for recursion according to Lemma 2.3 or 2.4, but these lemmas cannot be applied due to
the radius bound. In that case, we also check whether we can apply Lemma 2.3 or 2.4 after
increasing the length of the shorter side of R′ as far as the disk weight allows. This excludes
the case that we cannot recurse on R′ due to the radius bound, but there is some R′′ ⊃ R′
on which we could recurse.

2.3 Interval Arithmetic
We use interval arithmetic to prove that there always is a strategy that works. In interval
arithmetic, operations like addition, multiplication or taking a square root are performed on
intervals [a, b] ⊂ R instead of numbers. Arithmetic operations on intervals are derived from
their real counterparts as follows. The result of an operation ◦ in interval arithmetic is

[a1, b1] ◦ [a2, b2] :=
[

min
x1∈[a1,b1],x2∈[a2,b2]

x1 ◦ x2, max
x1∈[a1,b1],x2∈[a2,b2]

x1 ◦ x2

]
.

Thus, the result of an operation is the smallest interval that contains all possible results of
x ◦ y for x ∈ [a1, b1], y ∈ [a2, b2]. Unary operations are defined analogously.

3 Conclusion

Our worst-case values correspond to instances with only 2 or 3 relatively large disks; if we
have an upper bound R on the size of the largest disk, this gives rise to the critical covering
area A∗R(λ) for λ× 1-rectangles. Getting some tight bounds on A∗R(λ) would be interesting
and useful. Establishing the critical covering density for disks and triangles is also open. We
are optimistic that an approach similar to the one of this paper can be used for a solution.

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 5:7

Computing optimal coverings by disks is quite difficult. Deciding whether a given collection
of disks can be packed into a unit square, is known to be NP-hard [12], the complexity of
deciding whether a given set of disks can be used to cover a unit square is still open.

References
1 A. K. Abu-Affash, P. Carmi, M. J. Katz, and G. Morgenstern. Multi cover of a poly-

gon minimizing the sum of areas. International Journal of Computational Geometry &
Applications, 21(06):685–698, 2011.

2 A. Agnetis, E. Grande, P. B. Mirchandani, and A. Pacifici. Covering a line segment with
variable radius discs. Computers & Operations Research, 36(5):1423–1436, 2009.

3 H. Alt, E. M. Arkin, H. Brönnimann, J. Erickson, S. P. Fekete, C. Knauer, J. Lenchner,
J. S. B. Mitchell, and K. Whittlesey. Minimum-cost coverage of point sets by disks. In
Proc. 22nd Annu. ACM Sympos. Comput. Geom., pages 449–458, 2006.

4 B. Bánhelyi, E. Palatinus, and B. L. Lévai. Optimal circle covering problems and their
applications. Central European Journal of Operations Research, 23(4):815–832, 2015.

5 A. T. Becker, S. P. Fekete, P. Keldenich, S. Morr, and C. Scheffer. Packing Geo-
metric Objects with Optimal Worst-Case Density (Multimedia Exposition). In Pro-
ceedings 35th International Symposium on Computational Geometry (SoCG), pages 63:1–
63:6, 2019. Video available at https://www.ibr.cs.tu-bs.de/users/fekete/Videos/
PackingCirclesInSquares.mp4.

6 K. Bezdek. Körök optimális fedései (Optimal covering of circles). PhD thesis, Eötvös
Lorand University, 1979.

7 K. Bezdek. Über einige optimale Konfigurationen von Kreisen. Ann. Univ. Sci. Budapest
Rolando Eötvös Sect. Math, 27:143–151, 1984.

8 S. Bhowmick, K. R. Varadarajan, and S. Xue. A constant-factor approximation for multi-
covering with disks. JoCG, 6(1):220–234, 2015.

9 K. Böröczky Jr. Finite packing and covering, volume 154. Cambridge University Press,
2004.

10 P. Brass, W. O. Moser, and J. Pach. Density problems for packings and coverings. Research
Problems in Discrete Geometry, pages 5–74, 2005.

11 P. Carmi, M. J. Katz, and N. Lev-Tov. Covering points by unit disks of fixed location. In
Proc. International Symposium on Algorithms and Computation (ISAAC), pages 644–655.
Springer, 2007.

12 E. D. Demaine, S. P. Fekete, and R. J. Lang. Circle packing for Origami design is hard. In
Origami5: 5th International Conference on Origami in Science, Mathematics and Educa-
tion, AK Peters/CRC Press, pages 609–626, 2011.

13 dpa. Rasensprenger zeichnet Kreise auf Fußballfeld, 2018.
14 G. Fejes Tóth. Recent progress on packing and covering. Contemporary Mathematics,

223:145–162, 1999.
15 S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah. Worst-Case Opti-

mal Covering of Rectangles by Disks. In Proceedings 36th International Symposium
on Computational Geometry (SoCG 2020), 2020. To appear. A video is available at
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/Cover_full.mp4.

16 S. P. Fekete, P. Keldenich, and C. Scheffer. Packing Disks into Disks with Optimal Worst-
Case Density. In Proceedings 35th International Symposium on Computational Geometry
(SoCG 2019), pages 35:1–35:19, 2019.

17 S. P. Fekete, S. Morr, and C. Scheffer. Split packing: Algorithms for packing circles with
optimal worst-case density. Discrete & Computational Geometry, 2018.

18 F. Fodor. The densest packing of 13 congruent circles in a circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 44:431–440, 2003.

EuroCG’20

5:8 Worst-Case Optimal Covering of Rectangles by Disks

19 E. Friedman. Circles covering squares web page, 2014. http://www2.stetson.edu/
~efriedma/circovsqu/.

20 A. Heppes and H. Melissen. Covering a rectangle with equal circles. Periodica Mathematica
Hungarica, 34(1-2):65–81, 1997.

21 M. Hifi and R. M’hallah. A literature review on circle and sphere packing problems: models
and methodologies. Advances in Operations Research, 2009. Article ID 150624.

22 C.-F. Huang and Y.-C. Tseng. A survey of solutions for the coverage problems in wireless
sensor networks. Journal of Internet Technology, 6(1):1–8, 2005.

23 H. Melissen. Loosest circle coverings of an equilateral triangle. Mathematics Magazine,
70(2):118–124, 1997.

24 J. B. M. Melissen and P. C. Schuur. Covering a rectangle with six and seven circles. Discrete
Applied Mathematics, 99(1-3):149–156, 2000.

25 J. W. Moon and L. Moser. Some packing and covering theorems. In Colloquium Mathe-
maticae, volume 17, pages 103–110. Institute of Mathematics, Polish Academy of Sciences,
1967.

26 S. Morr. Split packing: An algorithm for packing circles with optimal worst-case density. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 99–109, 2017.

27 E. H. Neville. On the solution of numerical functional equations. Proceedings of the London
Mathematical Society, 2(1):308–326, 1915.

28 K. J. Nurmela. Conjecturally optimal coverings of an equilateral triangle with up to 36
equal circles. Experimental Mathematics, 9(2):241–250, 2000.

29 N. Oler. A finite packing problem. Canadian Mathematical Bulletin, 4:153–155, 1961.
30 E. Specht. Packomania, 2015. http://www.packomania.com/.
31 P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and I. García. New

Approaches to Circle Packing in a Square. Springer US, 2007.
32 B. Szalkai. Optimal cover of a disk with three smaller congruent disks. Advances in

Geometry, 16(4):465–476, 2016.
33 G. F. Tóth. Thinnest covering of a circle by eight, nine, or ten congruent circles. Combi-

natorial and computational geometry, 52(361):59, 2005.
34 G. F. Tóth. Packing and covering. In Handbook of Discrete and Computational Geometry,

Third Edition, pages 27–66. Chapman and Hall/CRC, 2017.

Connected Coordinated Motion Planning with
Bounded Stretch
Sándor P. Fekete1, Phillip Keldenich1, Ramin Kosfeld1, Christian
Rieck1, and Christian Scheffer1

1 Departement of Computer Science, TU Braunschweig, Germany
{s.fekete, p.keldenich, r.kosfeld, c.rieck, c.scheffer}@tu-bs.de

Abstract
We consider the problem of coordinated motion planning for a swarm of simple, identical robots:
From a given start grid configuration of robots, we need to reach a desired target configuration
via a sequence of parallel, continuous, collision-free robot motions, such that the set of robots
stays connected at all times. The objective is to minimize the makespan of the motion schedule,
i.e., to reach the new configuration in a minimum amount of time. We show that this problem
is NP-hard, even for deciding whether a makespan of 2 can be achieved, while it is possible to
check in polynomial time whether a makespan of 1 can be achieved. We also provide a constant-
factor approximation for fat configurations. Our algorithm achieves a constant stretch factor :
If mapping the start configuration to the target configuration requires a maximum Manhattan
distance of d, then the total duration of our overall schedule is O(d), which is optimal up to
constant factors.

1 Introduction

Consider a connected configuration of objects, e.g., a swarm of mobile robots, which needs
to be transformed into a desired target configuration by a sequence of parallel, continuous,
collision-free motions that keeps the overall arrangement connected at all times. Such
problems occur in many contexts requiring relocation of autonomous agents; the connectivity
constraint arises naturally in many physical scenarios, e.g., for reconfigurable matter in space.
How can we coordinate the corresponding motion, such that a desired target configuration is
reached within a minimum amount of time, called makespan, without losing connectivity? As
it turns out, this problem is provably hard, even in relatively simple cases. We present methods
that, provided sufficient fatness of the start and target configuration, realize constant stretch:
If mapping the start configuration Cs to the target configuration Ct requires a maximum
Manhattan distance of d, then the total duration of our overall schedule is O(d).
Our Contributions. We provide new results for questions arising from efficiently recon-
figuring a connected, unlabeled swarm of robots from a given start configuration Cs into a
desired target configuration Ct, aiming for minimizing the overall makespan, i.e., the total
time required for running the full schedule, and maintaining connectivity in each step.

There exists a polynomial time algorithm to decide whether there is a schedule with a
makespan of 1 that transforms Cs into Ct, see Theorem 1.
It is NP-hard to decide whether there is a schedule with a makespan of 2 that transforms
Cs into Ct, see Theorem 2. This implies NP-hardness of approximating the minimum
makespan within a constant of (3

2 − ε), for any ε > 0, see Corollary 3.
There is a constant c such that for any pair of start and target configurations with fatness
of at least c, a schedule with constant stretch can be computed in polynomial time, see
Theorem 4. This implies that there is a constant-factor approximation for the problem
of computing schedules with minimal makespan restricted to pairs of start and target
configuration with a fatness of at least c, see Corollary 8.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

6:2 Connected Coordinated Motion Planning

Related Work. Coordinating the motion of many agents plays a central role when dealing
with large numbers of moving robots, vehicles, aircraft, or people. Basic questions arise in
many applications, such as ground swarm robotics [8, 9], aerial swarm robotics [2, 12], air
traffic control [3], and vehicular traffic networks [6, 10], and goes back to work by Schwartz
and Sharir [11]. Most previous work has largely focused on sequential schedules, where one
robot moves at a time, with objectives such as minimizing the number of moves. In practice,
however, robots usually move simultaneously, so we desire a parallel motion schedule, with
the objective of minimizing the makespan. In recent work [1, 4, 5], we provide several
fundamental insights into these problems of coordinated motion planning for the scenario
with labeled robots without a connectivity constraint.

2 Preliminaries

We consider n unlabeled robots at integer grid positions, inducing a grid graph. A configuration
C is c-fat, if for any vertex v there is a (c× c)-block B ⊂ C, such that v ∈ B.

A robot can move in discrete time steps by changing its location from a grid position v

to an adjacent grid position w; this is denoted by v → w. Two moves v1 → w1 and v2 → w2
are collision-free if v1 6= v2 and w1 6= w2. A transformation between two configurations C1 =
{v1, . . . , vn} and C2 = {w1, . . . , wn} is a set of collision-free moves {vi → wi | i = 1, . . . , n}.
For M ∈ N, a schedule is a sequence C1 ⇒ CM+1 := C1 → · · · → CM+1 of transformations,
with a makespan of M . A stable schedule, Cs ⇒χ Ct := Cs →χ · · · →χ Ct between the
start configuration Cs and the target configuration Ct uses only connected configurations. A
bottleneck matching between the vertices of Cs and Ct minimizes the maximal Manhattan
distance d, called the diameter of (Cs, Ct), between two matched vertices from Cs and Ct.
The stretch (factor) of a (stable) schedule is the ratio between the makespan M and the
diameter d.

3 Makespan 1 and 2

It can efficiently be decided whether a stable schedule Cs →χ Ct with a makespan of 1 exist.

I Theorem 1. For two configurations Cs and Ct, each with n vertices, it can be decided in
polynomial time whether there is a schedule with a makespan of 1 transforming Cs into Ct.

To decide this, it suffices to compute a maximum matching in the bipartite graph
G = (Vs ∪ Vt, E) consisting of vertices for all occupied positions in both configurations, and
edges between vertices if their respective positions are adjacent or identical. It is easy to see
that there is a schedule with a makespan of 1 if and only if G admits a perfect matching.
This can be checked with the method of Hopcraft and Karp in O(n5/2) time [7].

However, even for a makespan of 2, the same problem becomes provably hard.

I Theorem 2. For a pair of configurations Cs and Ct, each with n vertices, deciding whether
there is a stable schedule with a makespan of 2 transforming Cs into Ct is NP-hard.

The proof establishes a reduction from Planar Monotone 3SAT, which asks to decide
whether we can satisfy a Boolean 3-CNF formula ϕ for which in each clause the literals are
either all positive or all negative. For every instance ϕ of Planar Monotone 3SAT, we
construct an instance Iϕ, consisting of a start configuration Cs and a target configuration Ct,
as indicated in Figure 2. In the figure, we use three differently colored squares to indicate
occupied positions in the Cs (red), in Ct (dark cyan), and in both configurations (gray).

S.P. Fekete, P. Keldenich, R. Kosfeld, C. Rieck, and C. Scheffer 6:3

We can argue that there is a stable schedule transforming the start configuration into
the target configuration with a makespan of 2, if and only if ϕ is satisfiable. In order to
transform Cs into Ct, the separation gadgets (yellow) ensure that in the single intermediate
configuration, all clause and helper gadgets (shades of blue) are disconnected from each
other. Therefore, to satisfy the connectivity constraint, some robots of the variable gadget
(light red) have to move in a very particular way, such that these robots ensure connections
between the variable gadget and the clause gadgets. At the same time, we ensure that robots
representing a variable can either connect this variable to their positive or to their negative
literal containing clauses (otherwise the connectivity within the variable gadget would be
broken); thus, these movements can be used to determine a valid assignment for ϕ.

Most of the gadgets are straightforward. Because we use the movements in the variable
gadget to determine a variable assignment for ϕ, we briefly explain how this works.

Thus, consider the arrangement consisting of start and target configurations in Figure 1.
Without loss of generality, we consider the situation in which in the single intermediate
configuration robots representing the positive arm segment are connected to their respective
bridges. Hence, at least one robot of this segment (i.e., p1, . . . , p`) has to move up. Then
the robots on Xi and Ai have unique target locations, i.e., Yi and Bi, respectively. Given
all these moves, the robot Ri has to move up to maintain connectivity. Because Ri cannot
simultaneously maintain connectivity for Xi and Ai, its movement can be used to determine
the variable assignment for ϕ.

Ri

. . .

. . .

. . .

.

Ai

Ai

Bi

Bi

Ci

XiYi

XiYi

Di

p1 p2 p`

n1 n2 n`

z

Figure 1 The variable gadget. The robot Ri is used to determine the variable assignment.

More technical details of the proof of Theorem 2 are omitted due to space constraints. As
the proof of Theorem 2 shows that it is NP-hard to decide whether there is a stable schedule
with a makespan of 2 transforming Cs into Ct, we obtain the following.

I Corollary 3. It is NP-hard to compute for a pair of configurations Cs and Ct, each with n

vertices, a stable schedule that transforms Cs into Ct within a constant of (3
2 − ε) (for any

ε > 0) of the minimum makespan.

EuroCG’20

6:4 Connected Coordinated Motion Planning

x5x4x3x2x1

gadget placement in Iϕ

the complete instance Iϕ constructed from ϕ

x1 x2 x3 x4 x5

C1
C2

C3

C4 C5

clause-variable incidence graph of ϕ

separation gadget clause / helper gadget variable gadget

...

...

...

...

...

bridges

Figure 2 Symbolic overview of the NP-hardness reduction.

S.P. Fekete, P. Keldenich, R. Kosfeld, C. Rieck, and C. Scheffer 6:5

4 Bounded Stretch for Arbitrary Makespan

I Theorem 4. There is a constant c such that for any pair of start and target configurations
with a fatness of at least c, there is a stable schedule of constant stretch.

On a high level, the overall schedule proceeds in four phases; see Figure 3 for an overview.
In the preprocessing phase, we use a bottleneck matching algorithm for mapping the start
configuration Cs to the target configuration Ct, minimizing the maximum distance d between
a start and a target location. Furthermore, we establish the fatness in both configurations,
set c to be the minimum of both fatness values, and compute a resulting set of cd-tiles that
contain both Cs and Ct.

In the second phase, we build a scaffolding structure around Cs, based on the boundaries of
cd-tiles, resulting in a tiled configuration, see Figure 3(a). This structure provides connectivity
throughout the actual reconfiguration.

In the third phase, we perform the actual reconfiguration of the arrangement. This consists
of refilling the tiles of the scaffolding structure, achieving the proper number of robots within
each tile, based on elementary flow computations. As a subroutine, we transform the robots
inside each tile into a canonical triangular configuration, see Figure 3(b), and Figures 5 to 7.

In the fourth and final phase, we disassemble the scaffolding structure and move the
involved robots to their proper destinations, see Figure 3(c).

(a
)

S
ca

ff
ol

d
C

on
st

ru
ct

io
n

(b
)

R
efillin

g
T

iles

(c
)

S
ca

ff
ol

d
D

ec
on

st
ru

ct
io

n

Cs C ′
s

Ct C ′
t

Figure 3 Overview of the computed schedule: (a) Constructing the scaffold: transforming the
start configuration into a tiled configuration, (b) the refilling phase, and (c) deconstructing the
scaffold: transforming the tiled configuration into the target configuration.

EuroCG’20

6:6 Connected Coordinated Motion Planning

r

vP

Figure 4 Constructing the scaffold. Tiles with currently constructed boundary are marked in
pink, corresponding to one of the 25 tile classes. The zoom into the start configuration Cs shows the
5× 5-neighborhood N [T] of an active tile T (middle) and a further zoom into T with an associated
robot motion (right). In each transformation step a robot from the interior of a tile T ′ ∈ N [T] is
swapped with a free position on the boundary of T based on a path P in a BFS-tree.

We will not go into detail regarding the preprocessing. Because disassembling the scaffold
is the reverse of the building process, we will only describe the second and third phase:
Building the Scaffold. For the construction of the scaffold, we consider 25 different classes
of tiles, based on x- and y-coordinates modulo 5cd; see Figure 4. We process a single class
as follows: For each tile T we consider its neighborhood N [T] consisting of 5 × 5 tiles
centered at T . Hence, the neighborhoods of different tiles of the same class are disjoint. For
constructing the boundary of T , we make use of robots from the interior of a single tile in
the neighborhood of T . In particular, we swap a free position on the boundary of T with an
occupied position in the interior of a tile in N [T], which is a leaf in a respective BFS-tree.
Because the neighborhood of all tiles of the current class are disjoint, and a leaf cannot break
connectivity, we obtain:

I Lemma 5. There is a stable schedule within a makespan of O(d) transforming Cs into a
tiled configuration C ′

s, such that the interior of C ′
s is a subset of the start configuration Cs.

Reconfigure Single Tiles. We first compute Cs ⇒χ Cm
s and Ct ⇒χ Cm

t , where Cm
s and

Cm
t are monotone configurations. These reconfigurations are achieved by a specific sequence

of down and left movements, maintaining connectivity after each move. Proceeding from
these monotone configurations, the robots are arranged into a triangular configuration C∆
that occupies the lower left positions (defined by a diagonal line with a slope of −1) of the
interior of T . This is achieved by swapping pairs of occupied and empty positions within a
carefully defined area in several one-step moves along L-shaped paths. The property of C∆
is that it is the same for all initial configurations with equally many robots. Thus, to get the
stable schedule Cs ⇒χ C∆ ⇒χ Ct to reconfigure Cs into Ct, we can simply revert Ct ⇒χ C∆
and combine the result with Cs ⇒χ C∆; consider Figure 5 for illustration.

Because all distances are upper-bounded by O(d) and all robot movements stay within
the interior of T , we can reconfigure all tiles in parallel to obtain the following:

I Lemma 6. Let C ′
s, C ′

t be two tiled configurations such that C ′
s and C ′

t contain the same
number of robots in the interior of T for each tile T . There is a stable schedule transforming
C ′
s into C ′

t within a makespan of O(d).

S.P. Fekete, P. Keldenich, R. Kosfeld, C. Rieck, and C. Scheffer 6:7

mountainvalley
level Ulevel L

repeat untilPhase (2)

Phase (1)

Cs

C∆

Figure 5 Turning arrangement Cs (top) into a canonical triangular configuration C∆ (bottom).
Phase (1) (left to right), achieves a monotonic arrangement; light grey indicates previous positions
of active robots (shown in green). Phase (2) transforms the monotonic configuration into C∆.

Refilling Tiles. In general, tiles in C ′
s and C ′

t differ in the number of contained robots, so
that we have to transfer robots between tiles. We model this robot transfer by a supply and
demand flow, see Figure 6. By partitioning the flow into O(1) subflows, each subflow can be
realized within a makespan of O(d). For realizing a single subflow, we use the reconfiguration
of single tiles as a preprocessing step. In particular, we partition the interior of each tile T

into nine subtiles with equal side lengths (up to rounding), see Figure 7. For each transfer
path between T and T ′, we place the desired amount of robots inside the subtile of T that
shares an edge with the boundary of T adjacent to T ′. As mentioned, these configurations
can be formed for all tiles in parallel in O(d), so that all robots can be moved into their
respective target tiles. By repeating this approach, we obtain the following:

I Lemma 7. We can efficiently compute a stable schedule transforming C ′
s into C ′

t within a
makespan of O(d).

The correctness of the approach (Theorem 4) follows from Lemmas 5, 6, and 7. As the
diameter of the pair (Cs, Ct) is a lower bound for the makespan of any schedule transforming
Cs into Ct, we obtain the following.

I Corollary 8. There is a constant-factor approximation for computing stable schedules with
minimal makespan between pairs of start and target configurations with a fatness of at least
c, for some constant c.

EuroCG’20

6:8 Connected Coordinated Motion Planning

12

Algorithmic computation Scheduling

(a) The supply and (b) Flow

(c) Preprocessings (d) Flow realizations

f1

f2

demand flow partitioning

Figure 6 An overview of the schedule refilling tiles: transforming C′
s into C′

t by realizing a
partition of a supply and demand flow that is computed in advance.

40

5656

56

0

00

0

(a) (b) (c)

Figure 7 (a) A portion of a set of paths containing a vertex v: 56 paths are passing v from left
to right, while 40 + 56 = 96 paths are starting in v. (b) The configuration after realizing the set of
paths shown in the previous figure. (c) How positions of robots have changed after realization.

5 Conclusion

We have shown that coordinated motion planning for a connected swarm of robots is a
challenging problem, even in relatively simple cases. On the other hand, we have shown
that (assuming sufficient connectivity of the swarm), it is possible to compute efficient
reconfiguration schedules with constant stretch.

It is straightforward to extend our approach to other scenarios, e.g., to three-dimensional
configurations. Other questions appear less clear. Can we show that constant stretch cannot
be achieved for “thin” arrangements? Can we extend our methods to the labeled case? To
what extent can the overall algorithm be turned into a set of distributed protocols, with only
limited central computation and coordination?

S.P. Fekete, P. Keldenich, R. Kosfeld, C. Rieck, and C. Scheffer 6:9

References
1 Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Matthias Konitzny, Lillian Lin, and

Christian Scheffer. Coordinated motion planning: The video. In Proc. Symposium on
Computational Geometry (SoCG), pages 74:1–74:6, 2018. Video at https://www.ibr.cs.
tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4.

2 Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar.
A survey on aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837–855, 2018.

3 Daniel Delahaye, Stéphane Puechmorel, Panagiotis Tsiotras, and Eric Féron. Mathematical
models for aircraft trajectory design: A survey. In Air Traffic Management and Systems,
pages 205–247, 2014.

4 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded
stretch. In Proc. Symposium on Computational Geometry (SoCG), pages 29:1–29:17, 2018.

5 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Schefffer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded
stretch. SIAM Journal on Computing, 48:1727–1762, 2019.

6 Sándor P. Fekete, Björn Hendriks, Christopher Tessars, Axel Wegener, Horst Hellbrück,
Stefan Fischer, and Sebastian Ebers. Methods for improving the flow of traffic. In Christian
Müller-Schloer, Hartmut Schmeck, and Theo Ungerer, editors, Organic Computing — A
Paradigm Shift for Complex Systems, volume 1 of Autonomic Systems. Birkhäuser, 2011.

7 John E Hopcroft and Richard M Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

8 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly
in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

9 Erol Šahin and AlanWinfield (editors). Special issue on swarm robotics. Swarm Intelligence,
2(2–4), 2008.

10 Michael Schreckenberg and Reinhard Selten (editors). Human Behaviour and Traffic Net-
works. Springer, 2004.

11 Jacob T. Schwartz and M. Sharir. On the piano movers’ problem: III. Coordinating the
motion of several independent bodies: the special case of circular bodies moving amidst
polygonal barriers. Int. J. Robotics Res., 2(3):46–75, 1983.

12 M. Turpin, K. Mohta, N. Michael, and V. Kumar. Goal assignment and trajectory planning
for large teams of interchangeable robots. Autonomous Robots, 37(4):401–415, 2014.

EuroCG’20

Recognition and Reconfiguration of Lattice-Based
Cellular Structures by Simple Robots
Amira Abdel-Rahman1, Aaron T. Becker2, Daniel E. Biediger2,
Kenneth C. Cheung3, Sándor P. Fekete4, Benjamin Jenett1,3, Eike
Niehs4, Christian Scheffer4, Arne Schmidt4, and Mike Yannuzzi2

1 Center for Bits and Atoms (CBA), Massachusetts Institute of Technology,
Cambridge, MA, USA. bej@mit.edu, amira.abdel-rahman@cba.mit.edu

2 Department of Electrical and Computer Engineering, University of Houston,
USA. {atbecker,dbiediger}@uh.edu

3 NASA Ames Research Center, Coded Structures Lab (CSL), Moffett Field,
CA, USA. kenny@nasa.gov

4 Department of Computer Science, TU Braunschweig, Germany. {s.fekete,
e.niehs, c.scheffer, arne.schmidt}@tu-bs.de

Abstract
We consider recognition and reconfiguration of lattice-based cellular structures by very sim-

ple robots with only basic functionality. The underlying motivation is the construction and mod-
ification of space facilities of enormous dimensions, where the combination of new materials with
extremely simple robots promises structures of previously unthinkable size and flexibility. We
present algorithmic methods that are able to detect and reconfigure arbitrary polyominoes, based
on finite-state robots, while also preserving connectivity of a structure during reconfiguration.
Specific results include methods for determining a bounding box, scaling a given arrangement,
and adapting more general algorithms for transforming polyominoes.

1 Introduction

Building and modifying large-scale structures is an important and natural objective in a
vast array of applications. In many cases, the use of autonomous robots promises significant
advantages, but also a number of additional difficulties, in particular when aiming for
construction in orbit around earth. In recent years, a number of significant advances have been
made to facilitate overall breakthroughs. One important step has been the development of
ultra-light and scalable composite lattice materials [16] that allow the construction of modular,
reconfigurable, lattice-based structures [18]. A second step has been the design of simple
autonomous robots [17,19] that are able to move on the resulting lattice structures and move
their elementary cell components, thereby allowing the reconfiguration of the overall edifice.

In this paper, we address the next step in this hierarchy: Can we enable extremely simple
robots to perform a more complex construction task for cellular structures in space, such as
patrolling and marking the perimeter, scaling up a given seed construction, and a number
of other design operations? As we demonstrate, even the extremely limited capabilities of
machines with a finite number of states suffice for these tasks. In particular, we show that
two robots suffice to construct the bounding box for a given arrangement, without losing
connectivity. This is then used for other objectives, such as scaling up a given arrangement
by a constant factor, as well as other, more general transformations.

1.1 Related Work
Assembly by simple robots has also been considered at the micro scale, where global control
is used for supplying the necessary force for moving agents, e.g., see Becker et al. [3] for
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

7:2 Recognition and Reconfiguration by Simple Robots

0% 20% 40% 60% 80% 100%
Figure 1 Snapshots from building a bounding box for a z-shaped polyomino using a 2D simulator,

a 3D simulator, and staged hardware robots; shown are steps {0, 24, 48, 72, 96, 120}. See our
video [1] for more context and animations.

P

Figure 2 From left to right: Bounding box (gray) surrounding a polyomino (blue); the boundary
∂P (dark blue) of a shape P ; a non-simple polyomino with one hole; a disconnected arrangement.

the corresponding problem of motion planning, Schmidt et al. [20] for using this model for
assembling structures, and Balanza-Martinez et al. [2] for theoretical characterizations.

From an algorithmic view, we are interested in different models representing programmable
matter and further recent results. Inspired by the single-celled amoeba, Derakhshandeh et al.
introduced the Amoebot model [6, 10]. The Amoebot model provides a framework based on
an equilateral triangular graph and active particles that can occupy a single vertex or a pair
of adjacent vertices within that graph. Further related work to the amoebot model can be
found in [4,5, 7–9,11]. In [15], Gmyr et al. introduced a model with two types of particles:
active robots acting like a deterministic finite automaton and passive tile particles. Further
results are shown in [14]. Fekete et al. [12] introduced more complex geometric algorithms
for copying, reflecting, rotating, and scaling a given polyomino as well as an algorithm for
constructing a bounding box surrounding a polyomino. However, their algorithms do not
guarantee connectivity of intermediate arrangements. We build upon their model by allowing
multiple robots working on the same grid environment.

2 Preliminaries

We consider an infinite square grid graph G, where Z2 defines the vertices, and for every two
vertices with distance one there is a corresponding edge in G. We use the compass directions
(N,E, S,W) for orientation when moving on the grid and may use up, right, down, and left
synonymously.

A. Abdel-Rahman et al. 7:3

Every vertex of G is either occupied by a tile or unoccupied. Tiles represent passive
particles of programmable matter that cannot move or manipulate themselves. The maximal
connected set of occupied vertices is called polyomino.

The boundary of a polyomino P is denoted by ∂P and includes all tiles of P that are
(horizontally, vertically or diagonally) adjacent to an empty vertex (see also Figure 2).
Polyominoes can have holes, i.e., finite maximal connected sets of empty vertices. Polyominoes
without holes are called simple; otherwise, they are non-simple. The bounding box of a given
polyomino P is defined as the boundary of the smallest rectangle enclosing P enlarged by
one unit; it will be denoted by bb(P) (see Figure 2).

We use robots as active particles in our model. These robots work like finite deterministic
automata that can move around on the grid and manipulate the polyomino. A robot has the
abilities to move along the edges of the grid graph and to change the state of the current vertex
by placing or removing a tile on it. The robots work in a series of Look-Compute-Move (LCM)
steps. Depending on the current state of the robot and the vertex it is positioned on (Look),
the next step is computed according to a specific transition function δ (Compute), which
determines the future state of robot and vertex, and the actual movement (Move). In the move
phase, the robot can either remove a tile, place a tile (if there is not already a tile) or move to a
adjacent vertex. Moving a tile is the same as deleting the tile at the start and placing a tile after
the move sequence. In the case of multiple robots, we assume that they cannot be placed on the
same vertex at the same time. Communication between robots is limited to adjacent vertices
and can be implemented by expanding the Look phase by the states of all adjacent robots.

Connectivity is ensured if the union of all placed tiles and all used robots is connected.
Accordingly, a robot can hold two components together (see blue robot in Figure 3).

3 Constructing a Bounding Box

In this section, we describe an algorithm to construct the bounding box while keeping
connectivity of intermediate arrangements. Due to space constraints, we only sketch technical
details; see the full version of the paper [13] for a full description. To accomplish the required
connectivity, we specify, without any loss of generality, that the connection between bb(P)
and P must be on the south side of the boundary. For ease of presentation, the polyomino is
shown in blue and the bounding box in gray; the robots cannot actually distinguish between
those tiles. In the following, we assume that two robots are placed adjacent to each other on
an arbitrary tile of the polyomino P , and that the first robot R1 (shown in red in all figures)
is the leader. As we will see, the second robot R2 (blue in all figures) holds the polyomino
and the bounding box together. In practice, we would rather use a special marker, called
pebble, to mark a tile that holds P and bb(P) together.

The construction can be split into three phases: (1) finding a start position, (2) construct-
ing the bounding box, and (3) the clean-up. To find a suitable start position, we search for a
locally y-minimal vertex that is occupied by a tile. This can be done by scanning the cur-
rent row (i.e., moving left until we find an empty vertex and then moving right) and moving
downwards whenever possible. Afterwards, R1 starts the bounding box construction one
vertex further down. This brings us to phase (2).

The construction of the bounding box is performed clockwise around P , i.e., whenever
possible, R1 makes a right turn. At some point, R1 finds a tile either belonging to P or to
the bounding box. To decide whether a tile t belongs to P or the current bounding box, we
start moving around the boundary of the shape t belongs to. At some point, R1 reaches R2.
If R1 is above R2 then t is a tile of P , otherwise t is a tile of the bounding box. To find

EuroCG’20

7:4 Recognition and Reconfiguration by Simple Robots

Figure 3 Left: R1 (red) hits a tile belonging to P . Right: The triggered shifting process is finished.

Figure 4 Traversing a gap by building a bridge. From left to right: R1 finds a particle t not
belonging to bb(P). R1 then picks up R2, so both can move to t. Both, R1 and R2 reached t.
Afterwards, R2 deletes remaining pieces of the old bounding box.

t again, we move below R2 and follow the construction until we cannot move any further.
From there we can carry on building bb(P).

Now, consider the two cases: If the tile does not belong to P , we are done with phase (2)
and can proceed to phase (3). If it is a tile belonging to P , we need to shift the current line
outwards until there is no more conflict, then continue the construction (see Figure 3). If the
line to shift is the first line of the constructed bounding box, we know that there exists a tile
of P that has the same y-coordinate than the current starting position. Therefore, we build a
bridge to traverse this gap, as shown in Figure 4. Afterwards, we can restart from phase (1).

For phase (3), consider the case when R1 reaches a tile from the bounding box. If the hit
tile is not a corner tile, the current line needs to be shifted outwards until the next corner is
reached (see Figure 5(a)). Then we can search for another suitable connection between P
and bb(P), place a tile there, and get to R2 to remove unnecessary parts of the bounding
box (see Figure 5(b)-(d)). To move to R2, we move counterclockwise around bb(P) until we
find a tile with three adjacent tiles. From there we move north and follow the path until we
find R2. Because bb(P) has only one tile with three adjacent tiles left, we can always find
the connection between P and bb(P).

I Theorem 1. Given a polyominino P of width w and height h, building a bounding box
surrounding P with the need that boundary and P are always connected, can be done with two
robots in O(max(w, h) · (wh+ k · |∂P |)) steps, where k is the number of convex corners in P .

The proof of this theorem is analogous to that from [12]; see [13] for full details.

4 Scaling Polyominoes

Now we consider scaling a given shape by a factor c by building a scaled copy to the left of
the bounding box. This copy process will be done column-wise from right to left. In the
following we assume that the robot R1 already built the bounding box and is positioned on
one of its tiles.

A. Abdel-Rahman et al. 7:5

(a) (b) (c) (d)

Figure 5 The second case of finishing the bounding box. (a) An already constructed part of the
bounding box is hit. (b) The last boundary side is shifted. (c) R1 found a suitable new connectivity
vertex above the southern side, places a tile and retraces its path to the initial starting position. (d)
The unnecessary part of the bounding box is removed and both robots catch up to the new connection.

4.1 Scaling
The scaling process can be divided into two phases: (1) the preparation phase, and (2) the
scaling phase. In phase (1) we fill up the last column within bb(P), add a tile in the second
last column above the south side of bb(P) and remove the lowest tile (called column marker)
and third lowest tile (called row marker) on the east side of bb(P) (see Figure 6). This gives
us three columns within the bounding box (including bb(P) itself). The first (from west
to east) is the current column of P to scale. The second column, which is filled with tiles
excepting the topmost row, is used to ensure connectivity and helps to recognize the end of
the current column. The third column marks the current overall progress, i.e., we can find
the tile in the correct current column and row that we want to scale next; we only have to
move two steps to the west from the row marker to find the next vertex to scale.

In phase (2), we simply search for the vertex v to scale by moving to the column marker,
then to the row marker, and afterwards moving two steps to the west. We then place the
row marker one vertex upwards. For possible cases, see Figure 6. When we reach the top
row of the bounding box, we move the column marker one vertex to the left and place a new
row marker. Then we add a c× c square to the left of bb(P), if v was occupied. If we did not
move the column marker, we move left from the south side of bb(P) until we reach an end
and start moving up until we find the place to build the c× c-square. If v was empty, then
we leave out one tile within the square, e.g. the tile in the middle (see Figure 6 right).

After scaling a column that only contained empty vertices, we know that we are done
with scaling. Thus, we can start removing all tiles, proceeding columnwise within bb(P) from
right to left. If necessary, all scaled empty tiles can also be removed by one scan through the
scaled field. A formal proof can be found in the full version [13].

I Theorem 2. After building bb(P), scaling a polyomino P of width w and height h by a
constant scaling factor c without loss of connectivity can be done with one robot in O(wh ·
(c2 + cw + ch)) steps.

4.2 Adapting Algorithms
As shown in [12], there are algorithms that may not guarantee connectivity. An immediate
consequence of being able to scale a given shape is that we can simulate any algorithm
A within the Robot-on-Tiles model while guaranteeing connectivity: We first scale the
polyomino by three and then execute A by always performing three steps into one direction
if A does one step. If at some point the robot needs to move through empty vertices, then we

EuroCG’20

7:6 Recognition and Reconfiguration by Simple Robots

Figure 6 Left: Configuration after the preparation phase. Right three: Different states during
phase (2): Scaling an occupied vertex, scaling an empty vertex, and reaching the end of a column.

place a 3×3-square with the middle vertex empty (if a clean up is desired at the end of A, i.e.,
removing all scaled empty vertices, we fill up the complete row/column with these squares).
This guarantees connectivity during the execution and we obtain the following theorem.

I Theorem 3. If there is an algorithm A for some problem Π in the Robots-on-Tiles model
with runtime T (A), such that the robot moves within a w′ × h′ rectangle, then there is an
algorithm A′ for Π with runtime O(wh ·(c2 +cw+ch)+max((w′−w)h′, (h′−h)w′)+c ·T (A))
guaranteeing connectivity during execution.

5 Conclusion

We demonstrated how geometric algorithms for finite automata can be used to enable very
simple robots to perform a number of fundamental but non-trivial construction tasks, such
as building a bounding box and scaling a given shape by some constant, that guarantee
connectivity between all tiles and robots during their execution.

Future work includes investigation of algorithms without the preceding bounding box
construction (e.g. scaling) or distributed algorithms that do not rely on a scaling procedure.

References
1 A. Abdel-Rahman, A. T. Becker, D. E. Biediger, K. C. Cheung, S. P. Fekete, N. A. Ger-

shenfeld, S. Hugo, B. Jenett, P. Keldenich, E. Niehs, C. Rieck, A. Schmidt, C. Scheffer,
and M. Yannuzzi. Space ants: Constructing and reconfiguring large-scale structures with
finite automata. 2020. Video at https://www.ibr.cs.tu-bs.de/users/fekete/Videos/
Space_submit.mp4.

2 J. Balanza-Martinez, A. Luchsinger, D. Caballero, R. Reyes, A. A. Cantu, R. Schweller,
L. A. Garcia, and T. Wylie. Full tilt: universal constructors for general shapes with uniform
external forces. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2689–2708, 2019.

3 A. T. Becker, S. P. Fekete, P. Keldenich, D. Krupke, C. Rieck, C. Scheffer, and A. Schmidt.
Tilt assembly: algorithms for micro-factories that build objects with uniform external forces.
Algorithmica, pages 1–23, 2017.

4 J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa.
Convex hull formation for programmable matter, 2018.

5 J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Improved leader
election for self-organizing programmable matter. In A. Fernández Anta, T. Jurdzinski,
M. A. Mosteiro, and Y. Zhang, editors, Algorithms for Sensor Systems, pages 127–140,
Cham, 2017. Springer International Publishing.

6 Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann.
Brief announcement: Amoebot – a new model for programmable matter. In Proceedings
of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’14,
pages 220–222, New York, NY, USA, 2014. ACM.

A. Abdel-Rahman et al. 7:7

7 Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa, C. Scheideler, and T. Stroth-
mann. On the runtime of universal coating for programmable matter. In Y. Rondelez and
D. Woods, editors, DNA Computing and Molecular Programming, pages 148–164, Cham,
2016. Springer International Publishing.

8 Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. An algorith-
mic framework for shape formation problems in self-organizing particle systems. In Pro-
ceedings of the 2nd Annual International Conference on Nanoscale Computing and Com-
munication, NANOCOM’ 15, pages 21:1–21:2, New York, NY, USA, 2015. ACM.

9 Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Universal
coating for programmable matter. CoRR, abs/1601.01008, 2016.

10 Z. Derakhshandeh, R. Gmyr, T. Strothmann, R. Bazzi, A. W. Richa, and C. Schei-
deler. Leader election and shape formation with self-organizing programmable matter. In
A. Phillips and P. Yin, editors, DNA Computing and Molecular Programming, pages 117–
132, Cham, 2015. Springer International Publishing.

11 G. A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi. Shape formation
by programmable particles. CoRR, abs/1705.03538, 2017.

12 S. P. Fekete, R. Gmyr, S. Hugo, P. Keldenich, C. Scheffer, and A. Schmidt. Cadbots:
Algorithmic aspects of manipulating programmable matter with finite automata. CoRR,
abs/1810.06360, 2018.

13 S. P. Fekete, E. Niehs, C. Scheffer, and A. Schmidt. Connected assembly and reconfiguration
by finite automata. 2019.

14 R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Scheideler, and T. Stroth-
mann. Forming tile shapes with simple robots. In D. Doty and H. Dietz, editors, DNA Com-
puting and Molecular Programming, pages 122–138, Cham, 2018. Springer International
Publishing.

15 R. Gmyr, I. Kostitsyna, F. Kuhn, C. Scheideler, and T. Strothmann. Forming tile shapes
with a single robot. In 33rd European Workshop on Computational Geometry (EuroCG
2017), pages 9–12, 2017.

16 C. E. Gregg, J. H. Kim, and K. C. Cheung. Ultra-light and scalable composite lattice
materials. Advanced Engineering Materials, 20(9):1800213, 2018.

17 B. Jenett and D. Cellucci. A mobile robot for locomotion through a 3D periodic lattice
environment. In IEEE International Conference on Robotics and Automation (ICRA),
pages 5474–5479, 2017.

18 B. Jenett, D. Cellucci, C. Gregg, and K. Cheung. Meso-scale digital materials: modular,
reconfigurable, lattice-based structures. In ASME 2016 11th International Manufacturing
Science and Engineering Conference. American Society of Mechanical Engineers Digital
Collection, 2016.

19 B. Jenett and K. Cheung. Bill-e: Robotic platform for locomotion and manipulation of
lightweight space structures. In 25th AIAA/AHS Adaptive Structures Conference, page
1876, 2017.

20 A. Schmidt, S. Manzoor, L. Huang, A. T. Becker, and S. P. Fekete. Efficient parallel self-
assembly under uniform control inputs. IEEE Robotics and Automation Letters, 3(4):3521–
3528, 2018.

EuroCG’20

Targeted Drug Delivery: Algorithmic Methods for
Collecting a Swarm of Particles with Uniform,
External Forces
Aaron T. Becker1, Sándor P. Fekete2, Li Huang1, Phillip
Keldenich2, Linda Kleist2, Dominik Krupke2, Christian Rieck2, and
Arne Schmidt2

1 Department of Electrical and Computer Engineering, University of Houston,
USA. {atbecker,lhuang28}@uh.edu

2 Department of Computer Science, TU Braunschweig, Germany.
{s.fekete, p.keldenich, l.kleist, d.krupke, c.rieck, arne.schmidt}@tu-bs.de

Abstract
We investigate algorithmic approaches for targeted drug delivery in a complex, maze-like envi-
ronment, such as a vascular system. The basic scenario is given by a large swarm of micro-scale
particles (“agents”) and a particular target region (“tumor”) within a system of passageways.
Agents are too small to contain on-board power or computation and are instead controlled by a
global external force that acts uniformly on all particles, such as an applied fluidic flow or elec-
tric field. The challenge is to deliver all agents to the target region with a minimum number of
actuation steps. We provide a number of results for this challenge. We show that the underlying
problem is NP-hard, which explains why previous work did not provide provably efficient algo-
rithms. We also develop a number of algorithmic approaches that greatly improve the worst-case
guarantees for the number of required actuation steps.

1 Introduction

A crucial challenge for a wide range of vital medical problems, such as the treatment of cancer,
localized infections and inflammation, or internal bleeding is to deliver active substances to
a specific location in an organism. The traditional approach of administering a sufficiently
large supply of these substances into the circulating blood may cause serious side effects, as
the outcome intended for the target site may also occur in other places, with often undesired,
serious consequences. Moreover, novel custom-made substances that are specifically designed
for precise effects are usually in too short supply to be generously poured into the blood
stream. In the context of targeting brain tumors (see Figure 1), an additional difficulty is
the blood-brain barrier. This makes it necessary to develop other, more focused methods for
delivering agents to specific target regions.

Given the main scenario of medical applications, this requires dealing with navigation
through complex vascular systems, in which access to a target location is provided by pathways
(in the form of blood vessels) through a maze of obstacles. However, the microscopic size of
particles necessary for passage through these vessels makes it prohibitively difficult to store
sufficient energy in suitably sized microrobots, in particular in the presence of flowing blood.

A promising alternative is offered by employing a global external force, e.g., a fluidic
flow or an electromagnetic field. When such a force is applied, all particles are subjected
to the same direction and distance of motion, unless they are blocked by obstacles in their
way. While this makes it possible to move all particles at once, it introduces the difficulty of
using uniform forces for many particles in different locations with different local topology to
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

8:2 Targeted Drug Delivery

Figure 1 (Left) An MRI image of a brain tumor (red circle), located in the cerebellum.
(Right) How can the swarm of particles (yellow dots) be delivered to the target region?

navigate them to one final destination. In this paper, we investigate how this objective can
be achieved with a small number of actuator steps.

Previous work [11] described a basic approach that delivers all particles in a polyomino
with n pixels to a target in at most O(n3) actuator steps. While a delivery time of this
magnitude is usually impractical, we investigate how to improve this.

Our Contribution.
We prove that minimizing the length of a command sequence for gathering all particles
is NP-hard, even if the environments are modeled by polyominoes. Our reduction
implies hardness for the related localization problem (as explained in Section 3 before
Corollary 3.2).
We develop an algorithmic strategy for gathering all particles in a polyomino with a
worst-case guarantee of at most O(kD2) steps; here D denotes the maximum distance
between any two pixels of the polyomino and k the number of its convex corners. Both k
and D are usually much smaller than the number n of grid locations in the polyomino: n
may be in Ω(D2), for two-dimensional and in Ω(D3) for three-dimensional environments.
For the special case of hole-free polyominoes, we can gather all particles in O(kD) steps.

Further details and algorithmic studies can be found in [7].

1.1 Related Work
This paper seeks to understand control for large numbers of microrobots, and uses a generalized
model that could apply to a variety of drug-carrying microparticles. An example are particles
with a magnetic core and a catalytic surface for carrying medicinal payloads [10, 15]. An
alternative are aggregates of superparamagnetic iron oxide microparticles, 9 µm particles
that are used as a contrast agent in MRI studies [14]. Real-time MRI scanning can allow
feedback control using the location of a swarm of these particles.

Steering magnetic particles using the magnetic gradient coils in an MRI scanner was
implemented in [12, 15]. 3D Maxwell-Helmholtz coils are often used for precise magnetic
field control [14]. Still needed are motion planning algorithms to guide the swarms of robots
through vascular networks. To this end, we build on the techniques for controlling many
simple robots with uniform control inputs presented in [4–6]; see video and abstract [3] for
a visualizing overview. For a recent survey on challenges related to controlling multiple
microrobots (less than 64 robots at a time), see [8].

Becker, Fekete, Huang, Keldenich, Kleist, Krupke, Rieck, Schmidt 8:3

As the underlying problem consists of bringing together a number of agents in one location,
a highly relevant algorithmic line of research considers rendezvous search, which requires two
or more independent, intelligent agents to meet [1, 2, 9, 13].

2 Preliminaries

The “robots” in this paper are simple particles without autonomy. Every environment is
modeled by a polyomino, i.e., a set of unit squares, so called pixels, in the plane which are
joined edge to edge. An example of a polyomino is illustrated in Figure 2. Pixels in the plane
not belonging to P are blocked because they stop the motion from an adjacent pixel. The
particles are commanded in unison: In each step, all particles are relocated by one unit in
one of the directions “Up” (u), “Down” (d), “Left” (l), or “Right” (r), unless the destination
is a blocked pixel; in this case, a particle remains in its previous pixel. A motion plan is a
command sequence C = 〈c1, c2, c3, . . . 〉, where each command ci ∈ {u, d, l, r}.

We assume that the size of a particle is insignificant compared to a pixel. Hence, many
of them can be located in the same pixel. During the course of a command sequence, two
particles π1 and π2 may end up in the same pixel p, if π1 moves into p, while π2 remains
in p due to a blocked pixel. Once two particles share a pixel, any subsequent command will
relocate them in unison—they will not be separated, so they can be considered to be merged.

The distance between two pixels p and q is the length of a shortest path on the integer
grid between p and q that stays within P . The diameter of a polyomino P describes the
maximum distance between any two of its pixels; we denote it by D. A configuration of P is
a set of pixels containing at least one particle. The set of all possible configurations of P is
denoted by P . We call a command sequence gathering if it transforms a configuration A ∈ P
into a configuration A′ such that |A′| = 1, i.e., if it merges all particles in the same pixel.

3 Hardness

We show that the following decision problem, which we call Min-Gathering, is hard: Given
a polyomino P and a set of particles, is there a gathering sequence of length `?

I Theorem 3.1. Min-Gathering is NP-hard.

Proof-Sketch. The proof is based on a reduction from 3-Sat. For every instance Φ of 3-Sat,
we construct a polyomino PΦ of diameter D containing a particle in every pixel such that
there exists a gathering sequence of length ` := 1

2 (D + b) if and only if Φ is satisfiable.
PΦ is constructed as follows, see Figure 2: For every variable, we insert a variable gadget.

We join all variable gadgets vertically in a row to a variable block; we call the top row of each
variable gadget its variable row. For every clause, we construct a clause gadget that contains
a left (right) literal arm for each incident positive (negative) literal in the corresponding
variable row and an exit arm in the bottom. To obtain PΦ, we join all clause gadgets from
left to right by a bottom row and insert a variable block at the left and right end of the
bottom row of length b. Note that b denotes the number of pixels in the bottom row of PΦ,
and that the distance between the two red particles (i.e., the two leftmost particles above
the variable blocks) realizes the diameter D.

We can argue that by applying a command sequence according to a satisfying assignment
for Φ, the left (right) red particle moves to the left (right) pixel of the bottom row, where
these particles can be merged, yielding a gathering sequence of length `. Note that in this
command sequence, particles in the clause gadgets traverse one of the literal arms, reaching
the bottom row at the exact same time.

EuroCG’20

8:4 Targeted Drug Delivery

Conversely, if Φ is not satisfiable, then in at least one clause a particle uses the exit arm
(see blue particle). Therefore, due to the different heights of the exit arms of the variable
and the clause gadgets, particles remain in the exit arms and do not reach the bottom row
simultaneously with the red particles. Thus, there is no gathering sequence of length `. J

x1

x2

x3

x4

variable block

clause gadget

variable gadget

b

Figure 2 The polyomino PΦ for the 3-Sat-instance Φ = (x1 ∨x2 ∨x3)∧(x2 ∨x3 ∨x4). A gathering
sequence for the two red particles of length 1

2 (D + b) corresponds to a variable assignment of Φ.

Note that the left pixel of the bottom row is one of two possible merge location for a
gathering sequence of length 1

2 (D+b). Therefore, the same reduction shows that the problem
remains hard if a target location is prescribed. Because every pixel contains a particle, this
implies that the decision problem of Robot Localization is also hard. In an instance of
this problem, we are given a sensorless robot r in a polyomino, and wonder whether there
exists a command sequence of length ` such that we know the position of r afterwards. The
above observations yield the following.

I Corollary 3.2. Robot Localization is NP-hard.

4 Algorithmic Approaches

We start by merging two particles in a special class of polyominoes. A polyomino P is simple
(or hole-free) if decomposing P with horizontal lines through pixel edges results in a set of
rectangles R such that the edge-contact graph C(R) of R is a tree. The edge-contact graph
of R has a vertex for each rectangle and an edge for each side contact; a point contact does
not suffice.

I Theorem 4.1. For any two particles in a simple polyomino P with diameter D, there
exists a gathering sequence of length D.

Proof-Sketch. Let R be a decomposition of P into rectangles by cutting P with horizontal
lines through pixel edges. Then, because P is simple, the edge-contact graph C(R) of the
rectangles R is a tree. For an example, consider Figure 3.

Becker, Fekete, Huang, Keldenich, Kleist, Krupke, Rieck, Schmidt 8:5

π

π′

Figure 3 A simple polyomino P , and its edge-contact graph C(R) (in gray). When the red
particle π moves towards the green particle π′, π and π′ follow the red and the green path, respectively.

For every t, let Rt and R′
t be the rectangles of P containing the two particles π and π′

after applying t commands, respectively. Moreover, let St be a shortest path from Rt to R′
t

in C(R). Moreover, let St(1) be the successor of Rt on St (if it exists, i.e., Rt 6= R′
t).

We use the following strategy.
Phase 1: While Rt 6= R′

t, compute a shortest path St from Rt to R′
t in C(R). Move π to

St(1) via a shortest path in P . Update Rt and R′
t.

Phase 2: If Rt = R′
t, move π towards π′ by a shortest (horizontal) path; note that this

gathering sequence merges the particles within Rt.

In fact, the resulting sequence has the following property: For every s > t, the rectan-
gles Rs and R′

s are either equal to Rt or lie in the connected component C of C(R \ Rt)
containing R′

t. This implies that the merge location and R′
t lie in C or are equal to Rt. Con-

sequently, in every step, π moves towards the merge location on a shortest path and thus the
gathering sequence is at most of length D. J

We call the strategy used to prove Theorem 4.1 DynamicShortestPath (DSP): Move
one particle towards the other along a shortest path; update the shortest path if a shorter
one exists. The example in Figure 4 shows that DSP may perform significantly worse in
non-simple polyominoes, i.e., it may not yield a gathering sequence of length O(D).

h

w

Figure 4 When the red particle π moves towards the green particle π′ by shortest paths, π visits
the entire bottom path.

Nevertheless, DSP always merges two particles: When a particle π follows π′ in a
polyomino with n pixels, then within n commands either the shortest path is updated or
π′ must meet a wall. Therefore, for every n commands, the distance between the particles
decreases by at least 1. Therefore, the following holds true.

I Proposition 4.2. For every polyomino P with n pixels and diameter D and every configu-
ration with two particles, DSP yields a gathering sequence of length O(nD).

EuroCG’20

8:6 Targeted Drug Delivery

Using a different strategy yields a better bound.

I Theorem 4.3. For any two particles in a polyomino P , there exists a gathering sequence
of length at most D2.

Proof. Let q be the top-rightmost pixel of P . To merge the two particles in q, our strategy
is as follows: Identify the particle π that is bottom-leftmost. Apply a command sequence
that moves π to q on a shortest path. Repeat.

I Claim. In each iteration, the sum of the distances ∆ of the two particles to q decreases.

Note that ∆ decreases when the other particle π′ has a collision. If π′ had no collision,
there exist a pixel that is higher or more to the right than q, contradicting the choice of q.
Consequently, the sum of distances ∆, which is at most 2D at start, decreases at least by 1
for every D steps. Hence after O(D2) steps, ∆ is reduced to 0. J

Note that there exist polyominoes, e.g., a square, where the number n of pixels is in
Ω(D2). Therefore, Theorem 4.3 significantly improves the bound of O(n3) in [11]. Finally, we
note that a shortest gathering sequence for two particles in a non-simple polyomino may need
to exceed D; Figure 5 illustrates the non-simple polyomino used to obtain Proposition 4.4.

I Proposition 4.4. There exists a non-simple polyomino P with two particles such that a
shortest gathering sequence has length 3/2D −O(

√
D).

h

1
2 (h− 1) 1

2 (h− 1)h+ 5

Figure 5 Merging the two particles in this non-simple polyomino needs to exceed D.

In the following, we show how to guarantee with few commands that the number of
remaining particles is proportional to the complexity of the polyomino, namely the number
of its convex corners.

I Lemma 4.5. Let P be a polyomino with diameter D and k convex corners. For every
configuration A ∈ P, there exists a command sequence of length 2D which transforms A to a
configuration A′ ∈ P such that |A′| ≤ k/4.

Proof. We distinguish four types of convex corners; northwest (NW), northeast (NE),
southwest (SW), southeast (SE). By the pigeon hole principle, one of the types occurs at
most k/4 times; without loss of generality, let this be the NW corners.

We show that after applying the sequence 〈l, u〉D, every particle lies in a NW corner:
Consider a particle π in pixel p. Unless π lies in a NW corner, it moves for at least one
command in {l, u}. Because P is finite, there exists an ` large enough such that π ends in
a NW corner q when the command sequence 〈l, u〉` is applied, i.e., there exists an pq-path
consisting of at most ` commands of types l and u, respectively. Because a monotone path is
a shortest path, it holds that ` ≤ D. J

Becker, Fekete, Huang, Keldenich, Kleist, Krupke, Rieck, Schmidt 8:7

By combining Lemma 4.5 with Theorem 4.1 and Theorem 4.3, respectively, we obtain
the following upper bounds.

I Corollary 4.6. For a set of particles in a simple polyomino P with diameter D and k
convex corners, there exists a gathering sequence of length O(kD).

I Corollary 4.7. For any set of particles in a polyomino P with diameter D and k convex
corners, there exists a gathering sequence of length at most O(kD2).

References
1 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous. International Se-

ries in Operations Research and Management Science. Kluwer Academic Publishers, Boston,
Dordrecht, London, 2003.

2 Edward J Anderson and Sándor P Fekete. Two dimensional rendezvous search. Operations
Research, 49(1):107–118, 2001.

3 A. T. Becker, Erik D. Demaine, Sándor P. Fekete, S. H. Mohtasham Shad, and R. Morris-
Wright. Tilt: The video. Designing worlds to control robot swarms with only global signals.
In 31st International Symposium on Computational Geometry (SoCG), pages 16–18, 2015.

4 Aaron T. Becker, Erik D. Demaine, S. P. Fekete, and James McLurkin. Particle computa-
tion: Designing worlds to control robot swarms with only global signals. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 6751–6756, 2014.

5 Aaron T. Becker, Erik D. Demaine, Sàndor P. Fekete, Golnaz Habibi, and James McLurkin.
Reconfiguring massive particle swarms with limited, global control. In Algorithms for
Sensor Systems (ALGOSENSORS), pages 51–66, 2014.

6 Aaron T. Becker, Erik D. Demaine, Sándor P. Fekete, Jarrett Lonsford, and Rose Morris-
Wright. Particle computation: Complexity, algorithms, and logic. Natural Computing,
18(1):181–201, 2019.

7 Aaron T. Becker, Sándor P. Fekete, Li Huang, Phillip Keldenich, Linda Kleist, Dominik
Krupke, Christian Rieck, and Arne Schmidt. Targeted Drug Delivery: Algorithmic Methods
for Collecting a Swarm of Particles with Uniform, External Forces. In IEEE International
Conference on Robotics and Automation (ICRA), 2020. To appear.

8 Sagar Chowdhury, Wuming Jing, and David J. Cappelleri. Controlling multiple microrobots:
recent progress and future challenges. Journal of Micro-Bio Robotics, 10(1-4):1–11, 2015.

9 Paola Flocchini. Gathering. In Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro,
editors, Distributed Computing by Mobile Entities, Current Research in Moving and Com-
puting, pages 63–82. Springer, 2019.

10 Julia Litvinov, Azeem Nasrullah, Timothy Sherlock, Yi-Ju Wang, Paul Ruchhoeft, and
Richard C Willson. High-throughput top-down fabrication of uniform magnetic particles.
PloS one, 7(5):e37440, 2012.

11 Arun V. Mahadev, Dominik Krupke, Jan-Marc Reinhardt, Sándor P. Fekete, and Aaron T.
Becker. Collecting a swarm in a 2D environment using shared, global inputs. In 13th
Conference on Automation Science and Engineering (CASE), pages 1231–1236, 2016.

12 Jean-Baptiste Mathieu and Sylvain Martel. Magnetic microparticle steering within the
constraints of an MRI system: proof of concept of a novel targeting approach. Biomedical
microdevices, 9(6):801–808, 2007.

13 Malika Meghjani and Gregory Dudek. Multi-robot exploration and rendezvous on graphs.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5270–5276, 2012.

14 Lyes Mellal, David Folio, Karim Belharet, and Antoine Ferreira. Magnetic microbot design
framework for antiangiogenic tumor therapy. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1397–1402, 2015.

EuroCG’20

8:8 Targeted Drug Delivery

15 Pierre Pouponneau, Jean-Christophe Leroux, and Sylvain Martel. Magnetic nanoparticles
encapsulated into biodegradable microparticles steered with an upgraded magnetic reso-
nance imaging system for tumor chemoembolization. Biomaterials, 30(31):6327–6332, 2009.

Coordinated Particle Relocation Using Finite
Static Friction with Boundary Walls∗

Victor M. Baez1, Aaron T. Becker1, Sándor P. Fekete2, and Arne
Schmidt2

1 Department of Electrical & Computer Engineering, University of Houston,
USA† {vjmontan, atbecker}@uh.edu

2 Department of Computer Science, TU Braunschweig, 38106 Braunschweig,
Germany. {s.fekete, arne.schmidt}@tu-bs.de

Abstract
We present methods for achieving arbitrary reconfiguration of two particles in convex work-

spaces, based on the use of external forces, such as a magnetic field or gravity. This concept can
be used for a wide range of applications in which particles do not have their own energy supply.

A crucial challenge for achieving any desired target configuration is breaking global symme-
try in a controlled fashion. Previous work made use of specifically placed barriers; however, intro-
ducing precisely located obstacles into the workspace is impractical for many scenarios. In this
paper, we present a different, less intrusive method: making use of the interplay between static
friction with a boundary and the external force to achieve arbitrary reconfiguration. Our key
contributions are a precise characterization of the critical coefficient of friction that is sufficient
for rearranging two particles in triangles, convex polygons, and regular polygons.

1 Introduction

Reconfiguring a large set of objects in a prespecified manner is a fundamental task for a
large spectrum of applications, including swarm robotics, smart materials and advanced
manufacturing. In many of these scenarios, the involved items are not equipped with
individual motors or energy supplies, so actuation must be performed from the outside.
Moreover, reaching into the workspace to manipulate individual particles of an arrangement
is often impractical or even impossible; instead, global external forces (such as gravity or a
magnetic force) may have to be employed, targeting each object in the same, uniform manner.
These limitations of individual navigation apply even in scenarios of swarm robotics: For
example, the well-known kilobots do have individual actuation and energy supply, but often
make use of an external light source for navigation [10]; as a consequence, directing a swarm
of kilobots by switching on a light beacon works just like activating an external force. This
concept of global control has also been studied for using biological cells as reactive robots
controlled by magnetic fields [2, 8]. Global control also has applications in assembling nano-
and micro-structures. Related work shows how to assemble shapes by adding one particle at
a time [7, 4], or combining multiple pairs of subassemblies in parallel in one time step [12].

Considering this approach of navigation by a global external force gives rise to a number
of problems, including navigation of one particle from a start to a goal position [9], particle
computation [5, 6], or emptying a polygon [1]. Zhang et al. [15, 16] show how to rearrange a
rectangle of agents in a workspace that is only constant times larger than the number of agents.

∗ A video showing context and animations of our results can be found in [3].
† Work from these authors was partially supported by National Science Foundation IIS-1553063 and

IIS-1619278.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

9:2 Particle Relocation Using Finite Static Friction

Figure 1 A robot arm moving a triangle to reconfigure two particles. Top left: Two particles
are close together. Top right: Blue particles has been separated from the red particle with zig-zag
moves. Bottom left: Situation after a south-east and a south-west move. Bottom right: After the
blue particle is kept in the bottom left corner, the red particles is moved away with zig-zag moves.

A crucial issue for all these tasks is how to combine the use of a uniform force (which is the
same for all involved items) with the individual requirements of object relocation (which may
be distinct for different particles): How can we achieve an arbitrary arrangement of particles
if all of them are subjected to the same external force? Previous work (such as [6]) has shown
how arbitrary reconfiguration of an ensemble is possible with the help of specifically placed
barriers; however, introducing precisely located obstacles into the workspace is impractical
for many scenarios. In this paper, we present a different, less intrusive method: making use
of the interplay between static friction with a boundary of the workspace and the external
force to achieve any desired configuration. A real-world example is shown in Figure 1.

Shahrokhi et al. [13, 14] already considered reconfiguration problems of particles using
friction at the walls. However, they assume walls have infinite friction, i.e., a particle lying at
a wall cannot be moved when there is a movement parallel to the wall. This differs from the
more realistic assumptions in this paper, in which we only consider finite friction as in [11]

1.1 Our Results.
We provide a fundamentally new approach to manipulating a swarm of objects by an external,
global force, demonstrating how static boundary friction can be employed to achieve arbitrary
reconfiguration. Our results include the following.

We show that any two particles in an arrangement can be arbitrarily relocated in a convex
workspace, provided sufficient friction as a function of the geometry.
More specifically, for a triangle with second smallest angle β, we prove that an angle of
friction of π2 − β is always sufficient to guarantee any reconfiguration.

V. Baez, A.T. Becker, S.P. Fekete, A. Schmidt 9:3

θ

~u

~u
r1

r2

θ

r1

r2

~u

~u

θ

~ures

N(b)N(b)

Figure 2 Left: An input force command u(t) within the cone ±θ about the normal to the
boundary results in no motion of r1. Right: An input force command u(t) outside the cone results in
a motion of both particles. Observe that r1 slides along the boundary with a resulting force ures(t).

Ci

(0, 0)

r1

r2

r2 − r1r̃1

r̃2

r̃2 − r̃1

Cj

Figure 3 Left: A six-sided polygon P with start positions r1 and r2 for two particles and their
goal positions r̃1 and r̃2. Middle: The ∆ configuration of the polygon and the positions of the start
and end configuration. Right: Lightgray (darkgray) area corresponds to the Ci-area (Cj-area, resp.).

2 Preliminaries

I Definition 1. Let θ be the angle of friction and µ := tan θ be the coefficient of friction.
For a particle r lying at a boundary side b, let N(b) be the normal to b. If the angle between
force command ~u and N(b) is at most θ, then r does not move at all. If the angle is larger
than π

2 then r moves with full speed. In this paper we do not consider the remaining case.

I Problem 1. Given a workspace, i.e., a convex polygon with n corners C1, . . . , Cn, particles
r1 and r2, and an angle of friction θ, is it possible to reach the configuration r̃1 and r̃2?

In this paper, we do not make any assumption on the initial positions of r1 and r2, except
that they are well separated, i.e., they have a distance ε > 0 to each other.

I Definition 2 (∆ Configuration). The ∆ configuration space ∆P of a convex polygon P
with vertices C1, . . . , Cn is defined as ∆P := ch (Ci − Cj | Ci, Cj ∈ P), where ch(·) denotes
the convex hull (for an example see Figure 3). This gives us the set of all relative positions
of r2 to r1.

From this definition follows that ∆P = ∆−P , where −P is P rotated by π. This motivates
the following definition.

I Definition 3. Let C be some vertex of P . The C-area in ∆P is the union of P and −P
having C centered at the origin (see Figure 3 right).

Note that the union of C-areas for all C ∈ P equals ∆P .

3 Reconfiguration of two particles

Just like in the context of sorting algorithms in computer science or discrete mathematics, a
critical component for achieving arbitrary reconfiguration of larger ensembles is the ability

EuroCG’20

9:4 Particle Relocation Using Finite Static Friction

to rearrange two specific particles. For our purposes of employing external forces and static
friction, the additional aspects of geometry and physics have to be considered. These are
addressed in this section.

The main idea for this first step is to try to completely cover the ∆ configuration. We
start by developing a strategy for separating two particles in Subsection 3.1, which gives us
a lower bound for θ for every strategy in this section. This is followed by an upper bound for
θ in triangles (Subsection 3.1) and arbitrary convex polygons (Subsection 3.2), i.e., we can
guarantee any reconfiguration with any angle of friction higher than this bound. By each
strategy we develop, more parts of the ∆ configuration are covered. Thus, our goal is to give
strategies, whose union of covered areas is exactly the ∆ configuration.

3.1 Reconfiguration of two particles in arbitrary triangles
As a first step, we provide a sufficient large angle of friction to separate two specific particles.

I Lemma 4. Assume particle r1 is positioned in a corner with angle α, then we can move
r2 to any position in the polygon without moving r1 by performing zig-zag moves, if θ > α

2
(see Fig. 1 and 4a).

Proof. Omitted due to space constraints. J

Now, let T be a triangle with corners A,B and C, and angles α, β and γ. Furthermore, let
α be the smallest angle in T and we assume that θ > α

2 is guaranteed. Consider two particles
r1 and r2 within T and their goal positions r̃1 and r̃2. We have the following strategies to
reach the goal positions (see also Fig. 4 for a graphical sketch):
Blue: Move r1 to A. As shown in Figure 4a, use zig-zag moves to place r2 in T while r1 is

fixed in A, such that r2 − r1 = r̃2 − r̃1. Then, translate r1 and r2 to their goal positions.
Red: First, place r2 in A and move r1 to B. Then, place r2 anywhere in the area spanned

by AB and the angle π
2 − β + θ. Afterwards, translate r1 and r2 to their goal positions.

Green: First, Place r2 in A and move r1 to C. Then, place r2 in the area spanned by AC
and the angle π

2 − γ + θ, such that r2 − r1 = r̃2 − r̃1. Afterwards, translate r1 and r2 to
their goal positions.

Orange: Place r2 in C and r1 in B (as we will see later, this is always possible if θ > α
2). Then,

place r2 in the area spanned by BC and the angle π
2 − β + θ, such that r2 − r1 = r̃2 − r̃1.

Afterwards, translate both particles to their goal position.
Violet: Place r2 in B and r1 in C. Then, place r2 anywhere in the area spanned by CB and

the angle π
2 − γ + θ, such that r2 − r1 = r̃2 − r̃1 Finally, translate both particles to their

goal position.
These strategies can also be used by switching the particles r1 and r2: Assume that r1 lies
in corner A. To switch r1 and r2, we separate both particles to corners B and C, then we
use strategy orange or violet (depending on which particle is in which corner), and as a last
step, we move r2 to A.

I Observation 1. In the ∆ configuration, the covered areas of strategies that overlap are red
with orange and green with violet. The blue strategy covers the A-area, red and orange cover
parts of the B-area, and green and violet cover parts of the C-area (see Figure 5).

I Lemma 5. If θ > π
2 − γ, then the area of the red and orange strategy cover the B-area.

V. Baez, A.T. Becker, S.P. Fekete, A. Schmidt 9:5

α
r1 r2

α
r2 r1

r̃1 r̃1

A B

C

A B

C

r̃2

(a) Blue strategy. Dotted lines in the right figure represent the vector r̃2 − r̃1. We move r1 to the cross
with zig-zag moves and then translate both particles to their goal positions.

α

r1 r2
θ

r2

α

r2 r1
θ

θ

r1

r̃1r̃1

A B

C

A B

C
θ

π
2
− γ + θ

π
2
− β + θ

(b) Red and green strategy

α
r1

r2

r̃1

α
r2

r1

r̃1

A B

C

A B

C

θ θ

π
2 − β + θ

(c) Orange strategy

α

r1

r2
α

r1

r2

r̃1 r̃1

A B

C

A B

C

θθ

π
2 − γ + θ

(d) Violet strategy

Figure 4 Illustration of the five strategies. Colored areas correspond to valid goal positions for
r2, if the goal position of r1 is r̃1. Left column: We fix r1 and move r2. Right column: We switch
the intermediate locations of r1 and r2.

EuroCG’20

9:6 Particle Relocation Using Finite Static Friction

α

(a)

α

(b)

α β

(c)

Figure 5 Shown in (a) and (b) are the ∆ configurations of top right blue triangle. Colors represent
the areas in the ∆ configuration covered by our five strategies with an angle of friction of α

2 + ε

for some ε > 0. (a),(b): We observe that every strategy may cover areas not covered by any other
strategy. (c): If θ > π

2 − β and β < γ then we can guarantee full coverage.

Proof. We can prove that the red strategy covers the B-area if θ > π
2 − γ, and that the

orange strategy covers the B-area if θ > π
2 − α > π

2 − γ. Therefore, the lemma holds. Due
to space constraints, full details are omitted. J

With a similar proof, we can show the following lemma:

I Lemma 6. If θ > π
2 − β, then the area of the green and violet strategy cover the C-area.

I Theorem 7. Let T be a triangle with angles α ≤ β ≤ γ. If θ > π
2 − β, then we can

guarantee any reconfiguration of two particles, i.e., ∆T is completely covered by our strategies.

Proof. To cover the A-, B-, and C-area of the ∆ configuration, the angle of friction θ must
be greater than max(α2 ,

π
2 − β, π2 − γ). This is true for θ > π

2 − β. J

Because π
2 − γ = π−2γ

2 ≤ π−γ−β
2 = α

2 , the B-area is always covered if θ > α
2 . This leads

to the following corollary.

I Corollary 8. For a triangle T with angles α ≤ β ≤ γ, at least two thirds of all configurations
can be guaranteed if θ > α

2 .

3.2 Reconfiguration of two particles in convex polygons
In this section we generalize the strategy for triangles, i.e., for a particle r1 in corner Ci and
a particle r2 in corner Cj , moving particle r2 to cover the Ci-area. As shown in Figure 6, we
cannot guarantee full coverage with this strategy, because any movement for r2 in direction to
C1 would also move r1. This happens for all pairs of vertices (Ci, Cj) of P , where the segment
CjCj+1 has a larger negative slope than the segment CiCi−1, i.e., if the sum of exterior
angles between vertices Ci and Cj is smaller than γi. This motivates the following definition.

I Definition 9. For a vertex Ci ∈ P , let δi be the exterior angle at vertex Ci. Let
P+
i,j := {Ci, Ci+1, . . . , Cj−1, Cj} and P−i,j := {Ci, Ci−1, . . . , Cj+1, Cj}. We define

η+
i,j :=

∑

Ck∈P+
i+1,j−1

δk and η−i,j :=
∑

Ck∈P−
i−1,j+1

δk

V. Baez, A.T. Becker, S.P. Fekete, A. Schmidt 9:7

C0

C1

C2

C3

γ3

γ0

γ2

γ1

δ0

δ3 δ2

δ1

γ3

γ0

γ2

γ1

δ0

δ3 δ2

δ1

δ0

δ3

δ2

δ1 δ0

δ3

δ2

δ1C0

C1

C2

C3

Figure 6 Left: Particle in C0 cannot be moved without moving a particle in C3, because δ0 < γ3.
Right: However, we can move the particle in C0 to any place in the polygon without moving a
particle in C2 (unless the friction is too small), because δ3 + δ0 > γ2 and δ1 + δ0 > γ2.

Furthermore, let Pi := {Cj ∈ P | η+
i,j+1 ≥ γi ∧ η−i,j−1 ≥ γi}, i.e., Pi contains every vertex

of P such that we can use the strategy described in the beginning of this section. Note that
all indices are modulo n.

I Lemma 10. For a vertex Ci of P , we have |Pi| ≥ 1.

Proof. Assume that |Pi| = 0. W.l.o.g., let j be the largest index, such that η+
i,j+1 < γi. If

η−i,j > γi, then it immediately follows that Cj+1 ∈ Pi and |Pi| ≥ 1. Otherwise, we have
two adjacent vertices Cj and Cj+1 such that η+

i,j+1 < γi and η−i,j < γi. This implies that
2γi > η+

i,j+1 + η−i,j−1 = −δi +
∑

Ck∈P
δk = −δi + 2π > 2π − 2δi = 2γi. This is a contradiction

and therefore |Pi| ≥ 1. J

I Lemma 11. Let P be a convex polygon with vertices C0, . . . , Cn−1 and angles γ0, . . . , γn−1.
We can cover the Ci-area if θ > min

j∈Pi

(
γi

2 ,max
(γj

2 , η
+
i,j − π

2 , η
−
i,j − π

2
))
.

Proof. Omitted due to space constraints. J

Combining Lemmas 10 and 11 yields the following theorem.

I Theorem 12. Let P be a convex Polygon with vertices C0, . . . , Cn−1 and angles γ0, . . . , γn−1.

If θ > max
0≤i<n

(
min
j∈Pi

(
γi

2 ,max
(γj

2 , η
+
i,j − π

2 , η
−
i,j − π

2
)))

, then every configuration of two parti-
cles can be reached.

I Corollary 13. If P is a regular polygon with n vertices and if µ > cot(π/n), then every
reconfiguration is possible.

4 Conclusion

We introduced a novel approach for rearranging the positions of particles by applying global
uniform forces, making use of different local static friction to achieve arbitrary goal positions.
To this end, we provided strategies enabling arbitrary rearrangements of two particles in
convex workspaces, giving a characterization of the critical coefficient of friction in terms of
the boundary geometry. Future work can now investigate optimal motion planning.

EuroCG’20

9:8 Particle Relocation Using Finite Static Friction

References
1 G. Aloupis, J. Cardinal, S. Collette, F. Hurtado, S. Langerman, and J. O’Rourke. Draining

a polygon—or—rolling a ball out of a polygon. Computational Geometry, 47(2):316–328,
2014.

2 D. Arbuckle and A. A. Requicha. Self-assembly and self-repair of arbitrary shapes by a
swarm of reactive robots: algorithms and simulations. Autonomous Robots, 28(2):197–211,
2010.

3 V. M. Baez, A. T. Becker, S. P. Fekete, and A. Schmidt. Coordinated particle reloca-
tion with global control and local friction, 2020. https://www.ibr.cs.tu-bs.de/users/
fekete/Videos/Friction_SoCG20.mp4.

4 J. Balanza-Martinez, A. Luchsinger, D. Caballero, R. Reyes, A. A. Cantu, R. Schweller,
L. A. Garcia, and T. Wylie. Full tilt: Universal constructors for general shapes with uniform
external forces. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2689–2708, 2019.

5 A. Becker, E. D. Demaine, S. P. Fekete, and J. McLurkin. Particle computation: Designing
worlds to control robot swarms with only global signals. In IEEE ICRA, pages 6751–6756,
2014.

6 A. T. Becker, E. D. Demaine, S. P. Fekete, J. Lonsford, and R. Morris-Wright. Particle
computation: complexity, algorithms, and logic. Natural Computing, 18(1):181–201, 2019.

7 A. T. Becker, S. P. Fekete, P. Keldenich, D. Krupke, C. Rieck, C. Scheffer, and A. Schmidt.
Tilt assembly: algorithms for micro-factories that build objects with uniform external forces.
Algorithmica, pages 1–23, 2017.

8 P. S. S. Kim, A. T. Becker, Y. Ou, A. A. Julius, and M. J. Kim. Imparting magnetic dipole
heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control.
Journal of Nanoparticle Research, 17(3):1–15, 2015.

9 J. S. Lewis and J. M. O’Kane. Planning for provably reliable navigation using an unreliable,
nearly sensorless robot. The International Journal of Robotics Research, 32(11):1342–1357,
2013.

10 M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal. Kilobot: A low cost
robot with scalable operations designed for collective behaviors. Robotics and Autonomous
Systems, 62(7):966–975, 2014.

11 A. Schmidt, V. M. Baez, A. T. Becker, and S. P. Fekete. Coordinated particle relocation
using finite static friction with boundary walls. IEEE Robotics and Automation Letters,
5(2):985–992, April 2020.

12 A. Schmidt, S. Manzoor, L. Huang, A. T. Becker, and S. P. Fekete. Efficient parallel self-
assembly under uniform control inputs. IEEE Robotics and Automation Letters, 3(4):3521–
3528, 2018.

13 S. Shahrokhi, A. Mahadev, and A. T. Becker. Algorithms for shaping a particle swarm
with a shared input by exploiting non-slip wall contacts. In IEEE/RSJ IROS, pages 4304–
4311, 2017.

14 S. Shahrokhi, J. Shi, B. Isichei, and A. T. Becker. Exploiting nonslip wall contacts to
position two particles using the same control input. IEEE Transactions on Robotics, pages
1 – 12, 2019.

15 Y. Zhang, X. Chen, H. Qi, and D. Balkcom. Rearranging agents in a small space using global
controls. In IEEE/RSJ Int Conf on Intelligent Robots and Systems, pages 3576–3582, 2017.

16 Y. Zhang, E. Whiting, and D. Balkcom. Assembling and disassembling planar structures
with divisible and atomic components. IEEE Transactions on Automation Science and
Engineering, 15(3):945–954, 2018.

Probing a Set of Trajectories to Maximize
Captured Movement
Sándor P. Fekete1, Alexander Hill1, Dominik Krupke1, Tyler
Mayer2, Joseph S. B. Mitchell2, Ojas Parekh3, and Cynthia
A. Phillips3

1 Department of Computer Science, TU Braunschweig, Germany
{s.fekete,a.hill,d.krupke}@tu-bs.de

2 Department of Applied Mathematics and Statistics, Stony Brook University,
USA.
tmayer93@gmail.com, jsbm@ams.sunysb.edu

3 Sandia National Labs, USA
{odparek,caphill}@sandia.gov

Abstract
We study the Trajectory Capture Problem (TCP), in which, for a given input set T of
trajectories in the plane, and an integer k Ø 2, we seek to compute a set of k points
(“portals”) to maximize the total length of all subtrajectories of T between pairs of
portals. This problem naturally arises in trajectory analysis and summarization.

We show that TCP is polynomial time solvable in 1D and NP-hard in 2D and then
focus on tackling the TCP with integer linear programming to solve instances to provable
optimality. We analyze this method on di�erent classes of data, including benchmark
instances that we generate. We demonstrate that we are able to compute provably
optimal solutions for real-world instances.

1 Introduction

We study the Trajectory Capturing Problem (TCP): Given a set T of trajectories and
an integer k Ø 2, determine a set of k portals (points) to maximize the sum of the lengths of
the inter-portal subtrajectories in T ; such subtrajectories are said to be “captured” by the
set of portals. This problem arises in placing a limited number of toll booths, cameras for
average speed measurement, various other types of sensors, or abstract collections of focus
points for sampling trajectories. For example, consider the scenario shown in Figure 1, which
corresponds to more than 500,000 data points that arise from the trajectories of over 250
taxi cabs in San Francisco. Our goal is to identify a small subset of locations that allow us
to capture as much of the movement pattern as possible.

Our main results are as follows. We mention proofs that the TCP is NP-hard and
allows constant-factor approximation, based on geometric parameters. Our main focus is
on demonstrating that even relatively large instances of the TCP can be solved to provable
optimality with the help of Integer Programming.

Related Work. Related to the TCP is the well-studied geometric hitting set problem,
in which one seeks a smallest cardinality set of points to hit a given set of lines, segments,
or trajectories. These NP-hard problems are hard to approximate (below a threshold),
and special cases have improved (constant-factor) approximation algorithms; see, e.g., the
references in [5]. The di�erence to the TCP is the need to place at least two hit points on
a trajectory in order to get (partial and weighted) credit for hitting it.

Buchin et al. [4] provide a set of positive and negative results for the similarly motivated
problem of covering the most ‘sites’ in a weighted graph by a tree or a path of limited weight.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

10:2 Probing a Set of Trajectories to Maximize Captured Movement

Figure 1 A set of taxi trajectories in the San Francisco Bay Area.

Limiting the weight and maximizing the covered vertices instead of limiting the spanning
vertices and maximizing the covered weight in between, however, makes it fundamentally
di�erent to ours.

There is a vast literature on problems of analyzing, clustering, and summarizing a set
of trajectories. In particular, notions of “flocks” and “meetings” have been formalized and
studied algorithmically [2, 6, 9, 17]. Gudmundsson, van Kreveld, and Speckmann [7] de-
fine leadership, convergence, and encounter and provide exact and approximate algorithms
to compute each. Andersson et al. [1] show that the Leader-Problem (LP) variants (LP-
Report-All, LP-max-Length, LP-Max-Size) are all polynomially solvable and provide exact
algorithms. Buchin et al. [3] present a framework to fully categorize trajectory grouping
structures (grouping, merging, splitting, and ending of groups). They model grouping pat-
terns in trajectory data using the Reeb graph in 3D and show several combinatorial bounds.
Other approaches to trajectory summarization naturally include cluster analysis, of which
there is a large body of related work. Li, Han, and Yang [12] consider rectilinear trajectories
and show how to cluster with bounding rectangles of a given size. Several approaches (e.g.,
[14, 11, 10, 8]) consider density based methods for clustering sub-trajectories; Lee, Han,
and Li [10] take it one step further by considering a two-level clustering hierarchy that first
accounts for regional density and then considers lower-level movement patterns. Li, Ding,
Han, and Kays [13] consider a problem (related to [7]) in which they seek to identify all
swarms or groups of entities moving within an arbitrary shaped cluster for a certain, pos-
sibly disconnected, duration of time. Also, Uddin, Ravishankar, and Tsotras [16] consider
finding what they call regions of interest in a trajectory database.

2 Preliminaries

We are given a set of trajectories T , each specified by a sequence of points, e.g., in the
Euclidean plane. We seek a set P = {p1, . . . , pk} of k portals, i.e., selected points that
lie on some of the trajectories. While our practical study focuses on instances in which the
trajectories T are purely spatial, e.g., given as polygonal chains or line segments in the plane,
our methods apply equally well to more general portals and to trajectories that include the
temporal component and live in space-time. More generally, we are given a graph G, with
length-weighted edges, and a set of (simple) paths within G. We wish to determine a subset
of k of the nodes of G that maximizes the sum of the (weighted) lengths of the subpaths (of
the input paths) that link consecutive portals along the input paths.

S.P. Fekete, A.Hill, D. Krupke, T.Mayer, J.S.B. Mitchell, O. Parekh, C.A. Phillips 10:3

We seek to compute a P that maximizes the total captured weight of subtrajectories
between pairs of portals. For a trajectory · œ T , if there are two or more portals of P that
lie along · , say {pi1 , . . . , piq} (for q Ø 2), then the subtrajectory, ·pi1 ,piq , between pi1 and
piq is captured by P , and we get credit for its weight f(·pi1 ,piq). (For many of our instances,
f(·pi1 ,piq) corresponds to the Euclidean distances, denoted by |·pi1 ,piq |, but our methods
generalize to other types of weights.) Let fP (·) denote the captured weight of trajectory ·

by the portal set P . The Trajectory Capture Problem (TCP) is then to compute, for
given T and k, a set of k portals P = {p1, . . . , pk} to maximize

q
·œT fP (·).

3 One-Dimensional TCP

In the one-dimensional setting, the underlying graph G is a path, and the input trajectories
T = {(a1, b1), . . . , (an, bn)} are a set of subpaths of G, specified by pairs of integers, ai, bi. A
solution to the TCP then consists of k points, P = {p1, . . . , pk}, w.l.o.g. indexed in sorted
order, p1 < p2 < · · · < pk.

I Theorem 1. The one-dimensional TCP can be solved exactly in polynomial time.

Proof. For i = 1, 2, . . . , k ≠ 1, let Vi(x) be the maximum possible length of T captured
by points (pi, . . . , pk), with pi = x œ {a1, . . . , an, b1, . . . , bn}; let Vk(x) = 0, for any x.
Then, the value functions Vi satisfy the following dynamic programming recursion, for i =
1, 2, . . . , k ≠ 1, and each x œ {a1, . . . , an, b1, . . . , bn}:

Vi(x) = max
xÕœ{a1,...,an,b1,...,bn},xÕ>x

{Vi+1(xÕ) +
ÿ

j:(x,xÕ)™(aj ,bj)

(xÕ ≠ x)}.

The summation counts the length (xÕ ≠ x) once for each input interval that contains the
interval (x, xÕ). We can compute the O(nk) values Vi(x) in time O(n2k) by incrementally
updating the summation as we consider values of xÕ in increasing order. J

4 Two-Dimensional TCP

The TCP is NP-hard (and hard to approximate) in the general graph setting (in which there
is a general graph G given, and a set of paths within G is given as the input trajectories),
even in the case of unweighted (weight-1) edges: We can simply give as input paths the set
of single-edge paths in G; thus, the TCP that asks if we can achieve total capture weight of!
k
2
"

is asking if there is a clique of size k in G.
For TCP with input trajectories T given by (straight) line segments, we can show that

the problem is also NP-hard by a reduction from Hitting Lines, see Fig. 2.

I Theorem 2. The TCP for an input set T of n line segments, arbitrarily overlapping in
the plane, is NP-hard.

By a more intricate construction, we can show hardness even for axis-aligned segments.
On the other hand, we can provide the following approximation results, based on specific

geometric parameters of the instances. The proofs are omitted from this short abstract.

I Theorem 3. The TCP for an input set T = T1 fiT2 fi · · ·fiTK , with each subset Ti having
no crossing points, has a polynomial-time K-approximation algorithm.

I Theorem 4. The TCP for an input set T of arbitrarily overlapping/crossing trajectory
paths in the plane having bounded depth D (i.e., no point of Ÿ2 lies in more than D input
trajectories) has a polynomial-time D-approximation algorithm.

EuroCG’20

10:4 Probing a Set of Trajectories to Maximize Captured Movement

�
R + �

p

R0

Figure 2 Reduction from Hitting Lines in which we have to decide whether we can hit all n

(black) lines with l pins. There exists a circle that contains all intersections. For the reduction we
create a second significantly larger circle and extend the lines to the lower half. We add n blue
segments at the ends of the extended hitting lines to a point far below. The n blue lines are very
long and captured by n + 1 portals. We can additionally capture the part between the two circles
with l = k ≠ (n + 1) portals if there exists a hitting set with l pins.

5 Practical Results

5.1 Integer Linear Programming
We assume an input graph G = (V,E), and a collection of trajectories T . Each trajectory
· œ T is represented as a path in G, and we refer to the two interchangeably. An edge e

in a trajectory · represents a portion of · that is captured by any pair of nodes (portals)
p, q œ V that induces a subpath of · containing e. Capturing an edge e earns an associated
weight f(e), and we seek to maximize the total weight earned by capturing edges subject to
selecting at most k nodes. An IP can now be stated as follows.

max
q

·œT ,eœE(·) f(e)x·,e

q
vœV yv Æ k (Constraint 1)

’· = (v0, . . . , vl) œ T :

’i œ 0, . . . , l ≠ 1 :
;

x·,vivi+1 Æ yi if i = 0,
x·,vivi+1 Æ yi + x·,vi≠1vi else (Constraint 2)

’i œ 1, . . . , l :
;

x·,vi≠1vi Æ yi if i = l,
x·,vi≠1vi Æ yi + x·,vivi+1 else (Constraint 3)

’v œ V, · œ e œ · : x·,e, yv œ {0, 1}

We have two types of Boolean variables: yv, for v œ V , which indicates if node v is one
of the k selected portals, and x·,e, for edge e œ E on trajectory · , which indicates if the
portion e of trajectory · is captured by selected portals. For an edge e, there are distinct
variables, x·,e, x· Õ,e, for trajectories · ”= · Õ because e may be captured in · but not in · Õ.

Our objective function maximizes the weighted sum of captured trajectory edges, where

S.P. Fekete, A.Hill, D. Krupke, T.Mayer, J.S.B. Mitchell, O. Parekh, C.A. Phillips 10:5

E(·) denotes the edges of · in G, and f(e) is the weight (i.e. length) of edge e. (Optionally,
we could have trajectory-dependent weights on edges.) Constraint 1 limits the number (Æ k)
of selected portals. Constraints 2 and 3 enforce that, in order for an edge to be captured
as part of trajectory · , there must be a selected portal in each direction; either there is a
selected portal at the next node, or the following trajectory edge is also captured. In the
latter case, because · has no cycle (it is a simple path), there must be a selected portal on
· at some point in that direction if any portion of · is to be captured.

Figure 3 shows an example; using “xi” as shorthand for the IP variables x·,vivi+1 that
correspond to the edges along trajectory path · = (v0, v1, . . . , v6). Constraints 2 are: x0 Æ
y0, x1 Æ y1 + x0, x2 Æ y2 + x1, . . . , x5 Æ y5 + x4. Constraints 3 are: x5 Æ y6, x4 Æ y5 + x5,
x3 Æ y4 + x4, . . . , x0 Æ y1 + x1. With portals selected at v1 and v4 (i.e., with y1 = y4 = 1,
yi = 0 otherwise), we get constraints x0 Æ 0, x5 Æ 0, and x4 Æ y5 + x5 = 0, implying that
only the subpath (v1, v2, v3, v4) of · contributes to the objective function.

·

v1

v2

v3

v4
v5

v6

x0

x1
x2

x3 x4

x5

v0

Figure 3 Formulating the IP: Trajectory · = (v0, v1, . . . , v6) is highlighted in blue. With selected
portals at v1 and v4, the portion highlighted in red is captured.

5.2 Experimental Evaluation
We used three kinds of instances for experimental evaluation: (1) Instances based on 10-20%
of the segments/edges in a straight line embedding of a complete graph with 35-55 random
points (likely to have high degree while most intersections only have degree 4) where the
trajectories are the full edges, (2) random non-overlapping axis-parallel segments, and (3)
trajectories based on real-world taxi tracking data. For all instances, we used CPLEX
(V12.7.1 with default settings) with a time limit of 900 s on Intel(R) Core(TM) i7-4770 with
32 GB. The code and data is available at https://github.com/ahillbs/trajectory_
capturing.

For type (1) we see in Figure 4 that instances with up to ≥ 2500 candidate points (i.e.,
nodes at intersection points in the graph, where selected portals can be placed) can be solved
for 15 Æ k Æ 23 to provable optimality within the time limit. Instances with more than
2500 candidate points are most often not solved for k < 23. For instances with k Ø 23, the
problem seems to be easier to solve. In Figure 4b we see that for k = 15 and between 1500
and 2000 candidate points, instances start to become very di�cult to solve. On the other
hand, for k Ø 23 instances are still solvable for more than 2500 candidate points.

For (2) axis-parallel non-overlapping segments (see Fig. 5), we do not know the hardness
but one can devise a simple 2-approximation via dynamic programming. Indeed, these

EuroCG’20

10:6 Probing a Set of Trajectories to Maximize Captured Movement

 14

 16

 18

 20

 22

 24

 26

 0 1000 2000 3000 4000 5000 6000 7000 8000

k

Candidate points

solved and unsolved instances comparison

unsolved
solved

(a) Instances solved within 900 s.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000

tim
e

in
 s

ec
on

ds

Candidate points

time consumption for k = 15

ProbShared

(b) Time used for instances with k = 15.

Figure 4 Instances with a percentage of segments between 35-55 random points. The problem
is harder for placing only 15 portals than placing 25 portals.

Figure 5 An instance with 1100 axis-parallel segments and 8200-8500 candidate points.

instances are much easier to solve, see Fig. 7. We have solved instances with 2000 segments
and 19,000 candidate points. Furthermore, for instances with up to 20,000 candidate points,
the integrality gap was never larger than 20% for k = 5, 7% for k = 10, 5% for k = 15 and
less than 2.5% for larger k.

For (3) we studied taxi cab trajectories in the San Francisco Bay Area. Figure 6 shows
our results for k = 5 optimal portals. (The data is based on 375 vehicles, sampled every
5 minutes, 288 times per day, for one week [15]; the satellite imagery is courtesy of Planet
Labs.) Our experiments included runs on 30 instances, with k ranging from 5 to 11, on sets
of 10 to 120 trajectories of varying lengths (comprised of 1300 to 3700 edges, and 600 to
1800 vertices). The measurements of the trajectories are snapped to a regular grid graph
to counteract GPS inaccuracy. Solution times were up to 200 seconds of computation, with
most instances taking less than 10 seconds.

6 Conclusion

The main theoretical questions that remain open are: (1) Is TCP NP-hard for axis-aligned
segments that are allowed to intersect at single points (endpoints or crossing points) but

S.P. Fekete, A.Hill, D. Krupke, T.Mayer, J.S.B. Mitchell, O. Parekh, C.A. Phillips 10:7

Figure 6 (Left) Data points before processing. (Right) Solution to real-world TCP instance: An
optimal set of k = 5 portals are highlighted by yellow dots. The captured parts of the trajectories
are highlighted in red while not captured parts are shown in blue.

not to overlap in subsegments? (our construction relied on overlapping segments); and, (2)
Can we improve the approximation factor (of K) for a set of trajectories that is the union
of K subsets, each of which is noncrossing? On the practical side, there is a wide range of
real-world classes of instances that we can explore.

References
1 Mattias Andersson, Joachim Gudmundsson, Patrick Laube, and Thomas Wolle. Report-

ing leaders and followers among trajectories of moving point objects. GeoInformatica,
12(4):497–528, 2008.

2 Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Reporting
flock patterns. Computational Geometry, 41(3):111–125, 2008.

3 Kevin Buchin, Maike Buchin, Marc van Kreveld, Bettina Speckmann, and Frank Staals.
Trajectory grouping structure. In Algorithms and data structures, pages 219–230. Springer,
2013.

4 Kevin Buchin, Sergio Cabello, Joachim Gudmundsson, Maarten Lö�er, Jun Luo, Günter
Rote, Rodrigo I Silveira, Bettina Speckmann, and Thomas Wolle. Finding the most relevant
fragments in networks. J. Graph Algorithms Appl., 14(2):307–336, 2010.

5 Sándor P Fekete, Kan Huang, Joseph SB Mitchell, Ojas Parekh, and Cynthia A Phillips.
Geometric hitting set for segments of few orientations. Theory of Computing Systems,
62(2):268–303, 2018.

6 Joachim Gudmundsson and Marc van Kreveld. Computing longest duration flocks in tra-
jectory data. In Proc. of the 14th Annual ACM International Symposium on Advances in
Geographic Information Systems, pages 35–42. ACM, 2006.

7 Joachim Gudmundsson, Marc van Kreveld, and Bettina Speckmann. E�cient detection of
patterns in 2d trajectories of moving points. Geoinformatica, 11(2):195–215, 2007.

8 Marios Hadjieleftheriou, George Kollios, Dimitrios Gunopulos, and Vassilis J Tsotras. On-
line discovery of dense areas in spatio-temporal databases. In Advances in Spatial and
Temporal Databases, pages 306–324. Springer, 2003.

9 Patrick Laube, Matt Duckham, and Thomas Wolle. Decentralized movement pattern detec-
tion amongst mobile geosensor nodes. In Geographic Information Science, pages 199–216.
Springer, 2008.

EuroCG’20

10:8 Probing a Set of Trajectories to Maximize Captured Movement

Figure 7 IP runtime and integrality gap for axis-parallel instances and k = 5, 10, . . . , 25.

S.P. Fekete, A.Hill, D. Krupke, T.Mayer, J.S.B. Mitchell, O. Parekh, C.A. Phillips 10:9

10 Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez. Traclass: trajectory classification
using hierarchical region-based and trajectory-based clustering. Proceedings of the VLDB
Endowment, 1(1):1081–1094, 2008.

11 Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-and-
group framework. In Proc. of the 2007 ACM SIGMOD International Conference on Man-
agement of Data, pages 593–604. ACM, 2007.

12 Yifan Li, Jiawei Han, and Jiong Yang. Clustering moving objects. In Proc. Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 617–
622. ACM, 2004.

13 Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. Swarm: Mining relaxed temporal
moving object clusters. Proceedings of the VLDB Endowment, 3(1-2):723–734, 2010.

14 Mirco Nanni and Dino Pedreschi. Time-focused clustering of trajectories of moving objects.
Journal of Intelligent Information Systems, 27(3):267–289, 2006.

15 Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. CRAWDAD
dataset epfl/mobility (v. 2009-02-24), doi:10.15783/c7j010, February 2009.

16 Md Reaz Uddin, Chinya Ravishankar, and Vassilis J Tsotras. Finding regions of interest
from trajectory data. In Mobile Data Management (MDM), 2011 12th IEEE International
Conference on, volume 1, pages 39–48. IEEE, 2011.

17 Marcos R Vieira, Petko Bakalov, and Vassilis J Tsotras. On-line discovery of flock patterns
in spatio-temporal data. In Proc. of the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 286–295. ACM, 2009.

EuroCG’20

On the Average Complexity of the k-Level∗

Man-Kwun Chiu1, Stefan Felsner2, Manfred Scheucher2, Patrick
Schnider3, Raphael Steiner2, and Pavel Valtr4

1 Department of Mathematics and Computer Science,
Freie Universität Berlin, Germany,
{chiumk}@zedat.fu-berlin.de

2 Institut für Mathematik,
Technische Universität Berlin, Germany,
{felsner,scheucher,steiner}@math.tu-berlin.de

3 Department of Computer Science,
ETH Zürich, Switzerland
{patrick.schnider}@inf.ethz.ch

4 Department of Applied Mathematics,
Faculty of Mathematics and Physics, Charles University, Czech Republic

Abstract
Let L be an arrangement of n lines in the Euclidean plane. The k-level of L consists of all
vertices v of the arrangement which have exactly k lines of L passing below v. The complexity
(the maximum size) of the k-level in a line arrangement has been widely studied. In 1998 Dey
proved an upper bound of O(n · (k +1)1/3). Due to the correspondence between lines in the plane
and great-circles on the sphere, the asymptotic bounds carry over to arrangements of great-circles
on the sphere, where the k-level denotes the vertices at distance at most k to the south pole.

We prove an upper bound of O((k + 1)2) on the expected complexity of the k-level in great-
circle arrangements if the south pole is chosen uniformly at random among all cells.

We also consider arrangements of great (d−1)-spheres on the sphere Sd which are orthogonal
to a set of random points on Sd. In this model, we prove that the expected complexity of the
k-level is of order Θ((k + 1)d−1).

1 Introduction

Let L be an arrangement of n lines in the Euclidean plane. The vertices of L are the
intersection points of lines of L. Throughout this article we consider arrangements with
the properties that no line is vertical and no three lines intersect in a common vertex. The
k-level of L consists of all vertices v which have exactly k lines of L below v. We denote
the k-level by Vk(L) and its size by fk(L). Moreover, by fk(n) we denote the maximum of
fk(L) over all arrangements L of n lines, and by f(n) = fb(n−2)/2c(n) the maximum size of
the middle level.

A k-set of a finite point set P in the Euclidean plane is a subset K of k elements of
P that can be separated from P \K by a line. Paraboloid duality is a bijection P ↔ LP

between point sets and line arrangements (for details on this duality see [17, Chapter 6.5] or
[8, Chapter 1.4]). The number of k-sets of P equals |Vk−1(LP) ∪ Vn−1−k(LP)|.

∗ M.-K. Chiu was supported by ERC StG 757609. S. Felsner and M. Scheucher were supported by
DFG Grant FE 340/12-1. R. Steiner was supported by DFG-GRK 2434. P. Schnider was supported
by the SNSF Project 200021E-171681. P. Valtr was supported by the grant no. 18-19158S of the
Czech Science Foundation (GAČR) and by the PRIMUS/17/SCI/3 project of Charles University. This
work was initiated at a workshop of the collaborative DACH project Arrangements and Drawings in
Schloss St. Martin, Graz. We thank the organizers for the inspiring atmosphere. We also thank Birgit
Vogtenhuber for interesting discussions.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

11:2 On the Average Complexity of the k-Level

In discrete and computational geometry bounds on the number of k-sets of a planar
point set, or equivalently on the size of k-levels of a planar line arrangement have important
applications. The complexity of k-levels was first studied by Lovász [14] and Erdős et al. [11].
They bound the size of the k-level by O(n · (k + 1)1/2). Dey [6] used the crossing lemma
to improve the bound to O(n · (k + 1)1/3). In particular, the maximum size f(n) of the
middle level is O(n4/3). Concerning the lower bound on the complexity, Erdős et al. [11]
gave a construction showing that f(2n) ≥ 2f(n) + cn = Ω(n log n) and conjectured that
f(n) ≥ Ω(n1+ε). An alternative Ω(n log n)-construction was given by Edelsbrunner and
Welzl [10]. The current best lower bound fk(n) ≥ n · eΩ(

√
log k) was obtained by Nivasch [16]

improving on a bound by Tóth [22].

1.1 Generalized Zone Theorem
In order to define “zones”, let us introduce the notion of “distances”. For x and x′ being a
vertex, edge, line, or cell of an arrangement L of lines in R2 we let their distance distL(x, x′)
be the minimum number of lines of L intersected by the interior of a curve connecting a point
of x with a point of x′. Pause to note that the k-level of L is precisely the set of vertices
which are at distance k to the bottom cell.

The (≤ j)-zone Z≤j(`,L) of a line ` in an arrangement L is defined as the set of vertices,
edges, and cells from L which have distance at most j from `. See Figure 1a for an illustration.

0-zone

1-zone

2-zone3-zone

`

1-zone2-zone

(a) (b)

Figure 1 (a) The higher order zones of a line `. (b) The correspondence between great-circles
on the unit sphere and lines in a plane. Using the center of the sphere as the center of projection
points on the sphere are projected to the points in the plane.

For arrangements of hyperplanes in Rd the (≤ j)-zone is defined alike. The classical
zone theorem provides bounds for the zone ((≤ 0)-zone) of a hyperplane (cf. [9] and [15,
Chapter 6.4]). A generalization with bounds for the complexity of the (≤ j)-zone appears as
an exercise in Matoušek’s book [15, Exercise 6.4.2]. In the proof of Theorem 2.1 we use a
variant of the 2-dimensional case (Theorem 1.1). For the sake of completeness and to provide
explicit constants, we include the proof in the full version [5].

I Theorem 1.1. Let L be a simple arrangement of n lines in R2 and ` ∈ L. The (≤ j)-zone
of ` contains at most 2e · (j + 2)n vertices strictly above `.

M.-K. Chiu et. al. 11:3

1.2 Arrangements of Great Circles
Let Π be a plane in 3-space which does not contain the origin and let S2 be a sphere in 3-space
centered at the origin. The central projection ΨΠ yields a bijection between arrangements of
great circles on S2 and arrangements of lines in Π. Figure 1b gives an illustration.

The correspondence ΨΠ preserves intersesting properties, e.g. simplicity of the arrange-
ments. If ΨΠ(C) = L, and L has no parallel lines, then ΨΠ induces a bijection between pairs
of antipodal vertices of C and vertices of L.

As in the planar case, we define the distance between points x, y of S2 relative to a
great-circle arrangement C as the minimum number of circles of C intersected by the interior
of a curve connecting x with y. The k-level (≤ k-zone resp.) of C is the set of all the vertices
of C at distance k (distance at most k resp.) from the south pole.

Let Π1 and Π2 be two parallel planes in 3 space with the origin between them and let Ψ1
and Ψ2 be the respective central projections. For a great-circle arrangement C we consider
L1 = Ψ1(C) and L2 = Ψ2(C). A vertex v from the k-level of C maps to a vertex of the k-level
in one of L1, L2 and to a vertex of the (n− k − 2)-level in the other. Hence, bounds for the
maximum size of the k-level of line arrangements carry over to the k-level of great-circle
arrangements except for a multiplicative factor of 2.

The (≤ j)-zone of a great-circle C in C projects to a (≤ j)-zone of a line in each of L1 and
L2. Hence, the complexity of a (≤ j)-zone in C is upper bounded by two times the maximum
complexity of a (≤ j)-zone in a line arrangement. Theorem 1.1 implies that the (≤ j)-zone
of a great-circle C in an arrangement of n great-circles contains at most 4e · (j + 2)n vertices.

1.3 Higher Dimensions
The problem of determining the complexity of the k-level admits a natural extension to
higher dimensions. We consider arrangements in Rd of hyperplanes with the properties that
no hyperplane is parallel to the xd-axis and no d + 1 hyperplanes intersect in a common point.
The k-level Vk(A) of A consists of all vertices (i.e. intersection points of d hyperplanes)
which have exactly k hyperplanes of A below them (with respect to the d-th coordinate).
We denote the k-level by Vk(A) and its size by fk(A). Moreover, by f

(d)
k (n) we denote the

maximum of fk(A) among all arrangements A of n hyperplanes in Rd.
As in the planar case, there remains a gap between lower and upper bounds;

Ω(nbd/2ckdd/2e−1) ≤ f
(d)
k (n) ≤ O(nbd/2ckdd/2e−cd),

here cd > 0 is a small positive constant only depending on d. Details and references can be
found in Chapter 11 of Matoušek’s book [15]. In dimensions 3 and 4 improved bounds have
been established. For example, for d = 3, it is known that f

(3)
k (n) ≤ O(n(k + 1)3/2) (see [21]).

For the middle level in dimension d ≥ 2 an improved lower bound f (d)(n) ≥ nd−1 · eΩ(
√

log n)

is known (see [22] and [16]).
We call the intersection of Sd with a central hyperplane in Rd+1 a great-(d− 1)-sphere

of Sd. Similar to the planar case, arrangements of hyperplanes in Rd are in correspondence
with arrangements of great-(d− 1)-spheres on the unit sphere Sd (embedded in Rd+1). The
terms “distance” and “k-level” generalize in a natural way.

2 Our Results

In the first part of this paper we consider arrangements of great-circles on the sphere and
investigate the average complexity of the k-level when the southpole is chosen uniformly

EuroCG’20

11:4 On the Average Complexity of the k-Level

at random among the cells. This question was raised by Barba, Pilz, and Schnider while
sharing a pizza [4, Question 4.2].

In Section 3 we prove the following bound on the average complexity.

I Theorem 2.1. Let C be a simple arrangement of n great-circles. For k < n/3 the expected
size of the k-level is at most 4e · (k + 2)2 when the southpole is chosen uniformly at random
among the cells of C.

The condition k < n/3 is needed for Lemma 3.2 as for larger k we would have to double
the multiplicative constant. However, for k in Ω(n3/5) the stated bound is implied by the
O(nk1/3) bound on the maximum size of a k-level. Still it is remarkable that the bound is
independent of the number n of great-circles in the arrangement.

In the second part, we investigate arrangements of randomly chosen great-circles. Here we
propose the following model of randomness. On S2 we have the duality between points and
great-circles (each antipodal pair of points defines the normal vector of the plane containing
a great-circle). Since we can choose points uniformly at random from S2, we get random
arrangements of great-circles. The duality generalizes to higher dimensions so that we can
talk about random arrangements on Sd for a fixed dimension d ≥ 2. Using the duality
between antipodal pairs of points on Sd and great-(d− 1)-spheres, we prove the following
bound on the expected size of the k-level in this random model (the proof can be found in
the full version [5]). Again the bound does not depend on the size of the arrangement.

I Theorem 2.2. Let d ≥ 2 be fixed. In an arrangement of n great-(d− 1)-spheres chosen
uniformly at random on the unit sphere Sd (embedded in Rd+1), the expected size of the
k-level is of order Θ((k + 1)d−1) for all k ≤ n/2.

3 Proof of Theorem 2.1

For the proof of Theorem 2.1, we fix a great-circle C from C and denote the closures of the
two hemispheres of C on S2 as C+ and C−. As an intermediate step, we bound the size of
the set Fk(C+) of pairs (F, v), where F is a cell of C− touching C and v is a vertex of C+

whose distance to F is k. We show |Fk(C+)| ≤ 2e · (k + 1)2n. In the case k = 0, vertex v

must be one of the 2n vertices on C and F is one of the two cells of C− which is adjacent
to v. Hence, we obtain |F0(C+)| ≤ 4n. It remains to deal with the general case k ≥ 1. Note
that if (v, F) ∈ Fk(C+) then v belongs to the (≤ k − 1)-zone of C.

Consider a family I of half-intervals in R, it consists of left-intervals of the form (−∞, a]
and right-intervals [b,∞). A subset J of k half-intervals from I is a k-clique if there is a
point p ∈ R that lies in all the half-intervals of J but not in any half-interval of I \ J .

I Lemma 3.1. Any family H of half-intervals in R contains at most k + 1 different k-cliques.

Proof. For p ∈ R, let l(p) be the number of left-intervals and r(p) the number of right-
intervals containing p. A point p certifies a k-clique if and only if l(p) + r(p) = k. From the
monotonicity of the functions l and r it follows that if (l(p1), r(p1)) = (l(p2), r(p2)) for two
points p1 and p2, then they are contained in the same intervals. Thus the number of k-cliques
is at most the number of pairs (l, r) such that l + r = k and l, r ≥ 0, which is k + 1. J

The next lemma is a corresponding result for half-circles on the circle S1.

I Lemma 3.2. Any family H of n half-circles in S1 with n > 3k contains at most k + 1
different k-cliques.

M.-K. Chiu et. al. 11:5

Proof. For this proof, we embed S1 as the unit-circle in R2, which is centered at the origin o.
We consider the set X of all points from S1, which are contained in precisely k of the
half-circles of I, and distinguish the following two cases.

Case 1: The origin o is not contained in the convex hull of X. There is a line separating o
from X and rotational symmetry allows us to assume that X is contained in Π+ = {(x, y) ∈
R2 : y > 0}. For each half-circle C ∈ H, the central projection of C ∩ Π+ to the line y = 1 is
a half-interval. Since k-cliques of H and k-cliques of the half-intervals are in bijection we get
from Lemma 3.1 that H has at most k + 1 different k-cliques.

Case 2: The origin o is contained in the convex hull of X. By Carathéodory’s theorem,
we can find three points p1, p2, p3 such that o lies in the convex hull of p1, p2, p3. Since each
of the n half-circles from H contains at least one of these three points, and each of these
three points lies on precisely k half-circles, we have n ≤ 3k – a contradiction to n > 3k. J

For a fixed vertex v in the (≤ k − 1)-zone of C with v ∈ C+, let BC+(v) be the set of
cells F such that (F, v) ∈ Fk(C+), in particular dist(F, v) = k.

Claim. For k ≥ 1, we have |BC+(v)| ≤ k.

Proof. Consider a great-circle D 6= C from C. For a point x ∈ C, we say that (v, x) is D-
separated if every path from v to x in C+ intersects D. The set of all D-separated points forms
a half-circle HD on C. Let H be the set of these half-circles, i.e., H = {HD : D ∈ C, D 6= C}.
See Figure 2.

v
D

D′

HD

HD′

C

Figure 2 An illustration of the cyclic half-circles H.

We claim that there is a bijection between BC+(v) and the (k − 1)-cliques in H. Indeed,
if the intersection of the half-circles of a clique K, viewed as a subset of C, is IK , then
IK is the interval of C which is reachable from v by crossing the circles corresponding to
the half-circles of K. If F is a cell from C− at distance k from v, then C and a subset of
k − 1 additional circles have to be crossed to reach v from F , i.e., there is a (k − 1)-clique
in H whose intersection is F ∩ C. The number of (k − 1)-cliques in H is at most k by
Lemma 3.2. J

Claim. For k ≥ 1, we have |Fk(C+)| ≤ 2e · k(k + 1)n.

Proof. By definition, the set Fk(C+) is the set of pairs (F, v) such that v ∈ C+ is in the
(≤ k)-zone of C and F ∈ BC+(v). As already noted in Section 1.2, the (≤ k)-zone contains
at most 4e · (k + 1)n vertices of C and at most 2e · (k + 1)n vertices in C+. From the above
claim we have |BC+(v)| ≤ k, hence we conclude that |Fk(C+)| ≤ 2e · k(k + 1)n. J

EuroCG’20

11:6 On the Average Complexity of the k-Level

To include the case k = 0 we relax the bound to |Fk(C+)| ≤ 2e · (k + 1)2n. Since C

was chosen arbitrarily among all great-circles from C and C+ was chosen arbitrarily among
the two hemispheres of C, the upper bound from the above claim holds for any induced
hemisphere of C. For the union Fk of the Fk(C+) over all the 2n choices of the hemisphere
C+, we have

|Fk| ≤
∑

C+ hemisphere

|Fk(C+)| ≤ 4e(k + 1)2n2.

Proof of Theorem 2.1. The k-level with the southpole chosen in cell F consists of the
vertices at distance k from F . Thus, the expected complexity of the k-level when choosing F

uniformly at random equals |Fk| divided by the number of cells. Since the number of cells in
an arrangement of n great-circles is 2

(
n
2
)

+ 2 and |Fk| ≤ 4e(k + 1)2n2, we can conclude the
statement from

4e · (k + 1)2 · n2

2
(

n
2
)

+ 2
≤ 4e · (k + 1)2 · n

n− 1 ≤ 4e · (k + 2)2 · k + 1
k + 2 ·

n

n− 1︸ ︷︷ ︸
≤1

. J

4 Discussion

Theorem 2.1 is about arrangements of great-circles. All the elements of the proof, however,
carry over to great-pseudocircles whence the result could also be stated for arrangements of
great-pseudocircles. Projective arrangements of lines are obtained by antipodal identification
from arrangements of great-circles. Hence, if you pick a cell u.a.r. in a projective arrangement
of lines (pseudo-lines) the the expected number of vertices at distance k from the cell is as in
Theorem 2.1. If the projection ΨΠ is used to project an arrangements C of great-pseudocircles
to an Euclidean arrangement L on Π such that the south-poles coincide, then the k-level of
C corresponds to the union of the k- and the (n− k − 2)-level of L.

With respect to lower bounds we would like to know the answer to:
I Question 1. Is there a family of arrangements where the expected size of the middle level
is superlinear when the southpole is chosen uniformly at random?

Recursive constructions from [10] and [11] show that the size of the (n/2− s)-level can be
in Ω(n log n) for any fixed s. Nevertheless computer experiments suggest that if we choose a
random southpole for these examples the expected size of the middle level drops to be linear.

Theorem 2.2 deals with the average size of the k-level in arrangements of randomly chosen
great-circles. In our model, great-circles are chosen independently and uniformly at random
from the sphere. Since point sets, line arrangements, and great-circle arrangements are in
strong correspondence the bound from Theorem 2.2 also applies to k-sets in point sets and
k-levels of line arrangements from a specific random distribution.

In the context of Erdős–Szekeres-type problems, several articles made use of point sets
which are sampled uniformly at random from a convex shape [3, 23, 2, 1]. Also the average
size of the convex hull (0-level) is well-studied for sets of points which are sampled uniformly
at random from a convex shape K. If K is a disk, the convex hull has expected size O(n1/3),
and if K is a convex polygon with k sides, the expected size is O(k log n) [13, 18, 19, 20].
In particular, the expected size of the convex hull is not constant, which is a substantial
contrast to our setting. In fact, our setting appears to be closer to the setting of random
order types, for which the expected size of the convex hull was recently shown to be 4 + o(1)

M.-K. Chiu et. al. 11:7

[12]. Hence it would be very interesting to obtain bounds on the average number of k-sets
also in this setting. Last but not least, Edelman [7] showed that the expected number of
k-sets of an allowable sequence is of order Θ(

√
kn).

References
1 M. Balko, M. Scheucher, and P. Valtr. Holes and islands in random point sets, 2020. To

appear at the 36th International Symposium on Computational Geometry (SoCG 2020).
2 J. Balogh, H. González-Aguilar, and G. Salazar. Large convex holes in random point sets.

Computational Geometry, 46(6):725–733, 2013.
3 I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canadian Mathematical

Bulletin, 30(4):436–445, 1987.
4 L. Barba, A. Pilz, and P. Schnider. Sharing a pizza: bisecting masses with two cuts, 2019.

arXiv:1904.02502.
5 M.-K. Chiu, S. Felsner, M. Scheucher, P. Schnider, R. Steiner, and P. Valtr. On the Average

Complexity of the k-Level, 2019. arXiv:1911.02408.
6 T. K. Dey. Improved bounds for planar k-sets and related problems. Discrete & Computa-

tional Geometry, 19(3):373–382, 1998.
7 P. H. Edelman. On the average number of k-sets. Discrete & Computational Geometry,

8:209–213, 1992.
8 H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, 1987.
9 H. Edelsbrunner, R. Seidel, and M. Sharir. On the Zone Theorem for Hyperplane Arrange-

ments. In New Results and New Trends in Computer Science, pages 108–123. Springer,
1991.

10 H. Edelsbrunner and E. Welzl. On the number of line separations of a finite set in the
plane. Journal of Combinatorial Theory, Series A, 38:15–29, 1985.

11 P. Erdős, L. Lovász, G. J. Simmons, and E. G. Straus. Chapter 13 - dissection graphs of
planar point sets. In A Survey of Combinatorial Theory, pages 139–149. North-Holland,
1973.

12 X. Goaoc and E. Welzl. Convex hulls of random order types. To appear at the 36th
International Symposium on Computational Geometry (SoCG 2020), 2020.

13 S. Har-Peled. On the expected complexity of random convex hulls, 2011. arXiv:1111.5340.
14 L. Lovász. On the number of halving lines. Annales Universitatis Scientiarum Budapesti-

nensis de Rolando Eötvös Nominatae Sectio Mathematica, 14:107–108, 1971.
15 J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.
16 G. Nivasch. An improved, simple construction of many halving edges. Contemporary

Mathematics, 453:299–305, 2008.
17 J. O’Rourke. Computational Geometry in C. Cambridge University Press, 1994.
18 F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer,

1985.
19 H. Raynaud. Sur l’enveloppe convexe des nuages de points aleatoires dans Rn. Journal of

Applied Probability, 7(1):35–48, 1970.
20 A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten.

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2(1):75–84, 1963.
21 M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets in three dimen-

sions. Discrete & Computational Geometry, 26(2):195–204, Jan 2001.
22 G. Tóth. Point Sets with Many k-Sets. Discrete & Computational Geometry, 26(2):187–194,

2001.
23 P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Scien-

tiarum Mathematicarum Hungarica, pages 155–163, 1995.

EuroCG’20

Topological Drawings meet Classical Theorems
from Convex Geometry∗

Helena Bergold1, Stefan Felsner2, Manfred Scheucher2,
Felix Schröder2, and Raphael Steiner2

1 Fakultät für Mathematik und Informatik,
FernUniversität in Hagen, Germany,
{helena.bergold}@fernuni-hagen.de

2 Institut für Mathematik,
Technische Universität Berlin, Germany,
{felsner,scheucher,fschroed,steiner}@math.tu-berlin.de

Abstract
In this article, we discuss classical theorems from Convex Geometry in the context of simple
topological drawings of the complete graph Kn. In a simple topological drawing, any two edges
share at most one point: either a common vertex or a point where they cross.

We present generalizations of Kirchberger’s Theorem and the Erdős–Szekeres Theorem, a
family of simple topological drawings with arbitrarily large Helly number, a new proof of the gen-
eralized Carathéodory’s Theorem, and discuss further classical theorems from Convex Geometry
in the context of simple topological drawings.

1 Introduction

A point set in the plane (in general position) induces a straight-line drawing of the complete
graph Kn. In this article we investigate topological drawings of Kn and use the triangles
of such drawings for convexity related studies. In a topological drawing D of Kn, vertices
are mapped to points in the plane and edges are mapped to simple curves connecting the
corresponding end-points such that every pair of edges has at most one common point, which
is either a common endpoint or a crossing; see Figure 1. Note that several edges may cross
in a single point. A topological drawing is called straight-line if all edges are drawn as line
segments, and pseudolinear if all arcs of the drawing can be extended to bi-infinite curves
such that any two of these curves cross at most once (the family of curves is an arrangement
of pseudolines).

Figure 1 Forbidden patterns in topological drawings: self-crossings, double-crossings, touchings,
and crossings of adjacent edges.

1.1 Our Results
In Section 2, we present a new combinatorial generalization of topological drawings – which
we name generalized signotopes. They allow us to prove a generalization of Kirchberger’s

∗ S. Felsner and M. Scheucher were supported by DFG Grant FE 340/12-1. R. Steiner was supported by
DFG-GRK 2434. We thank Winfried Hochstättler for valuable discussions and helpful comments.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

12:2 Topological Drawings meet Classical Theorems from Convex Geometry

Theorem in Section 3. We present a family of topological drawings with arbitrarily large
Helly number in Section 4, and, in Section 5, we discuss generalizations of Carathéodory’s
Theorem, Erdős–Szekeres Theorem, and colorful variants of the classical theorems.

In the full version, we also describe the SAT model, which we used to test hypotheses
about simple topological drawings, and give a more detailed analysis of the named theorems
in terms of the convexity hierarchy introduced by Arroyo, McQuillan, Richter, and Salazar [1].
In particular, some of the theorems turn out to generalize to pseudolinear drawings but not
to pseudocircular drawings, i.e., topological drawings where all arcs can be simultaneously
extended to pseudocircles such that any two do not touch and cross at most twice.

2 Preliminaries

Given a topological drawing D of Kn, we call the induced subdrawing of three vertices a
triangle. Note that the edges of a triangle in a topological drawing do not cross. The removal
of a triangle separates the plane into two connected components. A point p is in the interior
of a triangle or more generally of a topological drawing D if p is in a bounded connected
component of R2 −D.

In a topological drawing, we assign an orientation χ(abc) ∈ {+,−} to each ordered triple
abc of vertices. The sign χ(abc) indicates whether we go counterclockwise or clockwise around
the triangle when visiting the vertices a, b, c in this order.

In a straight-line drawing of Kn the underlying point set S = {s1, . . . , sn} is in general
position (no three points lie on a line). If the points are sorted from left to right, then
for every 4-tuple si, sj , sk, sl with i < j < k < l the sequence χ(ijk), χ(ijl), χ(ikl), χ(jkl)
(index-triples in lexicographic order) is monotone, i.e., there is at most one sign-change. A
signotope is a mapping χ :

([n]
3

)
→ {+,−} with the above monotonicity property. Signotopes

are in bijection with Euclidean pseudoline arrangements and can be used to characterize
pseudolinear drawings [7, 3].

Let us now consider topological drawings of the complete graph. There are two types
of drawings of K4 on the sphere: type I has a crossing and type II has no crossing. Type I
can be drawn in two different ways in the plane: in type Ia the crossing is only incident to
bounded faces and in type Ib the crossing lies on the outer face; see Figure 2.

123+

124+

134+

234−

123+

124+

134−
234−

123+

124+

134+

234+

1 2

34

1 2

34

1 2

4

3

type Ia type Ib type II

Figure 2 The three types of topological drawings of K4 in the plane.

A drawing of K4 with vertices a, b, c, d can be characterized in terms of the sequence of
orientations χ(abc), χ(abd), χ(acd), χ(bcd). The drawing is

of type Ia or type Ib iff the sequence is + + ++, + +−−, +−−+, −+ +−, −−++, or
−−−−; and
of type II iff the number of +’s (and −’s respectively) in the sequence is odd.

H. Bergold, S. Felsner, M. Scheucher, F. Schröder, and R. Steiner 12:3

Therefore there are at most two sign-changes in the sequence and, moreover, any such
sequence is in fact induced by a topological drawing of K4. Allowing up to two sign-changes
is equivalent to forbidding the two patterns +−+− and −+−+.

If a mapping χ : [n]3 → {+,−} is alternating, i.e., χ(iσ(1), iσ(2), iσ(3)) = sgn(σ) ·
χ(i1, i2, i3), and χ avoids the two patterns on sorted indices, i.e., χ(ijk), χ(ijl), χ(ikl), χ(jkl)
has at most two sign-changes for i < j < k < l, then it avoids the two patterns on
χ(abc), χ(abd), χ(acd), χ(bcd) for any pairwise different a, b, c, d ∈ [n]. We refer to this as the
symmetry property of the forbidden patterns.

The symmetry property allows us to define generalized signotopes as alternating mappings
χ : [n]3 → {+,−} with at most two sign-changes on χ(abc), χ(abd), χ(acd), χ(bcd) for any
pairwise different a, b, c, d ∈ [n]. We remark that generalized signotopes can be seen as a
proper generalization of topological drawings of Kn – details are deferred to the full version.

3 Kirchberger’s Theorem

Two point sets A,B ⊆ Rd are called separable if there exists a hyperplane H separating
them. It is well-known that if two sets A,B are separable they can also be separated by
a hyperplane H containing one point of A and B. Kirchberger’s Theorem (see [12] or [5])
asserts that two finite point sets A,B ⊆ Rd are separable if and only if for every C ⊆ A ∪B
with |C| = d+ 2, C ∩A and C ∩B are separable.

We prove a generalization of the 2-dimensional version of Kirchberger’s Theorem in
the setting of generalized signotopes, where two sets A,B ⊆ [n] are separable if there exist
i, j ∈ A∪B such that χ(i, j, x) = + for all x ∈ A\{i, j} and χ(i, j, x) = − for all x ∈ B\{i, j}.
In this case we say that ij separates A from B and write χ(i, j, A) = + and χ(i, j, B) = −.
Moreover, if we can find i ∈ A and j ∈ B, we say that A and B are strongly separable.

I Theorem 3.1 (Kirchberger’s Theorem for Generalized Signotopes). Let χ : [n]3 → {+,−} be
a generalized signotope, and A,B ⊆ [n]. If for every C ⊆ A ∪B with |C| = 4, the sets A ∩C
and B ∩ C are (strongly) separable, then A and B are (strongly) separable.

Proof. First note that it is sufficient to prove the theorem for strongly separable since all
4-tuples which are weakly separable are also strongly separable. More details will be given
in the full version. Hence in the following we always assume that the 4-tuples are strongly
separable.

To prove the claim we consider a counterexample (χ,A,B) minimizing the size of the
smaller of the two sets. By symmetry we may assume |A| ≤ |B|. First we consider the cases
|A| = 1, 2, 3 individually and then the case |A| ≥ 4.

Let A = {a}, we need to find b ∈ B such that χ(a, b, B) = −. Let B′ be a maximal subset
of B such that B′ can be separated from {a}, and let b ∈ B be such that χ(a, b, B′) = −.
Suppose that B′ 6= B, then there is a b∗ ∈ B\B′ with

χ(a, b, b∗) = +. (1)

By maximality of B′, the sets {a} and B′ ∪ {b∗} cannot be separated. Hence, we have

χ(a, b∗, b′) = + (2)

for some b′ ∈ B′. Since χ is alternating (1) and (2) together imply b′ 6= b. Since b′ ∈ B′ we
have χ(a, b, b′) = −. From this together with (1) and (2) it follows that the four element set
{a, b, b′, b∗} has no separator. This is a contradiction, whence B′ = B.

EuroCG’20

12:4 Topological Drawings meet Classical Theorems from Convex Geometry

As a consequence we obtain:

Every one-element set {a} with a ∈ A can be separated from B. Since χ is alternating
there can be at most one b(a) ∈ B such that χ(a, b(a), B) = −.

Now we look at the case where A = {a1, a2}. Let bi = b(ai), if b1 = b2, or χ(a1, b1, a2) =
+, or χ(a2, b2, a1) = + we have a separator for A and B. So assume that b1 6= b2,
and χ(a1, b1, a2) = −, and χ(a2, b2, a1) = −. Since χ is alternating we also know that
χ(a1, b2, b1) = + and χ(a2, b1, b2) = +. Together these four signs show that {a1, b1, a2, b2} is
not separable, a contradiction.

The case |A| = 3 works similarly but is more technical. A proof of this case, will be given
in the full version.

Now we consider the remaining case where (χ,A,B) is a minimal counterexample with
4 ≤ |A| ≤ |B|.

Let a∗ ∈ A. By minimality of (χ,A,B), A\{a∗} = A′ is separable from B. Let a ∈ A′
and b ∈ B such that χ(a, b, A′) = + and χ(a, b, B) = −. Hence it is

χ(a, b, a∗) = −. (3)

Let b∗ = b(a∗), i.e., χ(a∗, b∗, B) = −. There is some a′ ∈ A′ such that

χ(a∗, b∗, a′) = −. (4)

If a′ = a, then b 6= b∗ because of (3) and (4). From χ(a, b, B) = −, χ(a∗, b∗, B) = −, (3),
and (4) it follows that the 4-element set {a, b, a∗, b∗} has no separation. The contradiction
shows a′ 6= a.

Let b′ = b(a′). If b = b′, then a′ ∈ A′ implies χ(a, b, a′) = + which yields χ(a′, b′, a) = −.
If b 6= b′ we look at the four elements a, b, a′, b′, and have:

χ(a′, b′, a) =? , χ(a′, b′, b) = − , χ(a′, a, b) = + , χ(b′, a, b) = −

To avoid the forbidden pattern for a′b′ab we must have χ(a′, b′, a) = −.
Hence, regardless whether b = b′ or b 6= b′ we have

χ(a′, b′, a) = − . (5)

Since |A| ≥ 4, we know by the minimality of (χ,A,B) that the set {a, b, a′, b′, a∗, b∗},
which has 3 elements of A and at least 4 elements in total, is separable. It follows from
χ(a, b, B) = χ(a′, b′, B) = χ(a∗, b∗, B) = + that the only possible separators are ab, a′b′,
and a∗b∗. They, however, do not separate because of (3), (5), and (4) respectively. This is
impossible, hence, there is no counterexample. J

4 Helly’s Theorem

Helly’s Theorem asserts that the intersection of n convex sets S1, . . . , Sn in Rd is non-empty
if the intersection of every d+ 1 of these sets in non-empty. In other words, the Helly number
of a family of n convex sets in Rd is at most d+ 1. The result of Goodman and Pollack [9]
(see also [2]) shows that Helly’s Theorem holds for pseudoconfigurations of points in two
dimensions, and thus for pseudolinear drawings.

In the more general setting of topological drawings, we investigate the intersection
properties of triangles. We show that Helly’s Theorem does not generalize to topological

H. Bergold, S. Felsner, M. Scheucher, F. Schröder, and R. Steiner 12:5

drawings by constructing topological drawings with arbitrarily large Helly number. Note
that the following theorem does not contradict the topological Helly Theorem [10] (cf. [8])
because the intersections of two triangles are not connected.

I Theorem 4.1. For every odd integer n, there exists a topological drawing of K3n with Helly
number at least n, i.e., there are n triangles such that any n− 1 have a common interior,
but not all n have a common interior.

Sketch of the proof. The basic idea of the construction is to draw n triangles on the cylinder
with the property that any n− 1 triangles have a common interior, while there is no common
intersection of all n triangles; the left-hand side of Figure 3 gives an illustration. Such a
cylindrical drawing can clearly be drawn in the plane as depicted on the right-hand side
of Figure 3. The technical part, however, is to complete such a drawing of n triangles to a
topological drawing of the complete graph K3n. Technical details are deferred to the full
version.

Figure 3 An illustration of a topological drawing of K3n with Helly number n.

For the construction, we identify the cylinder surface with the real plane R2. As illustrated
in Figure 4, we place the vertices of K3n on 3 different layers.

y = 0

y = n+ 1

y = n

Figure 4 Placement of the vertices and drawing edges between different layers.

The edges between different layers are drawn as straight-line segments (see Figure 4).
Edges between two vertices of the same layer are drawn as circular arcs above the top layer,
below the bottom layer and in a sufficiently small range above the middle layer (see Figure 5).
The obtained drawing is topological (details will be given in the full version), which concludes
the proof. J

EuroCG’20

12:6 Topological Drawings meet Classical Theorems from Convex Geometry

y = n

y = n− ε′

y = n+ ε′

Figure 5 Edges between middle-layer vertices are drawn as very flat circular arcs.

5 Further Results

Carathéodory’s Theorem asserts that, if a point x lies in the convex hull of a point set P
in Rd, then x lies in the convex hull of at most d+ 1 points of P . A more general version
of Carathéodory’s Theorem in the plane is by Balko, Fulek, and Kynčl, who provided a
generalization to topological drawings [3, Lemma 4.7]. In the full version, we present a new
proof for their theorem.

I Theorem 5.1 (Carathéodory for Topological Drawings [3]). Let D be a topological drawing
of Kn and let x ∈ R2 be a point in the interior of D. Then there is a triangle in D which
contains x in its interior.

In the full version, we also study colorful variants of the theorems. For example it turned
out that Barany’s Colorful Carathéodory Theorem [4] holds up to pseudolinear drawings [11]
but not for pseudocircular drawings (see Figure 6).

0 0 0 11 122 2

Figure 6 A circular drawing of K9 violating the condition of Colorful Carathéodory Theorem.

The classical Erdős–Szekeres Theorem [6] asserts that every straight-line drawing of Kn

contains a crossing-maximal subdrawing of size k = Ω(logn), that is, a subdrawing of Kk

with
(
k
4
)
crossings. Pach, Solymosi, and Tóth [13] generalized this result by showing that

every topological drawing of Kn has a crossing-maximal subdrawing of size k = Ω(log1/8 n).
A simple Ramsey–type argument shows that a variant of the Erdős–Szekeres Theorem even
applies to generalized signotopes.

H. Bergold, S. Felsner, M. Scheucher, F. Schröder, and R. Steiner 12:7

References
1 A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar. Convex drawings of the complete

graph: topology meets geometry. arXiv:1712.06380, 2017.
2 A. Bachem and A. Wanka. Separation theorems for oriented matroids. Discrete Mathe-

matics, 70(3):303–310, 1988.
3 M. Balko, R. Fulek, and J. Kynčl. Crossing Numbers and Combinatorial Characterization

of Monotone Drawings of Kn. Discrete & Computational Geometry, 53(1):107–143, 2015.
4 I. Bárány. A generalization of Carathéodory’s Theorem. Discrete Mathematics, 40(2):141–

152, 1982.
5 A. Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics. Amer-

ican Mathematical Society, 2002.
6 P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,

2:463–470, 1935.
7 S. Felsner and H. Weil. Sweeps, Arrangements and Signotopes. Discrete Applied Mathe-

matics, 109(1):67–94, 2001.
8 X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner. Bounding helly numbers via

betti numbers. In A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek,
pages 407–447. Springer, 2017.

9 J. E. Goodman and R. Pollack. Helly-type theorems for pseudoline arrangements in P2.
Journal of Combinatorial Theory, Series A, 32(1):1–19, 1982.

10 E. Helly. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten.
Monatshefte für Mathematik Band 37, pages 281–302, 1930.

11 A. F. Holmsen. The intersection of a matroid and an oriented matroid. Advances in
Mathematics, 290:1–14, 02 2016.

12 P. Kirchberger. Über Tchebychefsche Annäherungsmethoden. Mathematische Annalen,
57:509–540, 1903.

13 J. Pach, J. Solymosi, and G. Tóth. Unavoidable configurations in complete topological
graphs. Discrete & Computational Geometry, 30(2):311–320, 2003.

EuroCG’20

On the width of the monotone-visibility kernel of
a simple polygon
David Orden1, Leonidas Palios2, Carlos Seara3, Jorge Urrutia4, and
Paweł Żyliński5

1 Departamento de Física y Matemáticas, Universidad de Alcalá, Spain,
david.orden@uah.es

2 Dept. of Computer Science and Engineering, University of Ioannina, Greece,
palios@cs.uoi.gr

3 Mathematics Department, Universitat Politècnica de Catalunya, Spain,
carlos.seara@upc.edu

4 Instituto de Matemáticas, Universidad Nacional Autónoma de México, México,
urrutia@matem.unam.mx

5 Institute of Informatics, University of Gdańsk, Poland,
zylinski@inf.ug.edu.pl

Abstract
Given a simple polygonal region P with n vertices, we present an efficient O(n logn) time and
O(n) space algorithm for computing, over all values of angle θ, the maximum width of the
θ-kernel(P), i.e., the locus of points in P from which any point of P can be reached by a (θ+ π

2)-
monotone path.

1 Introduction

The computation of the widest corridor through a set S of n points in the plane, defined as an
open region bounded by two parallel lines that intersect the convex hull of S, has attracted
the interest of the computational geometry community since the late 1980s and early 1990s,
having applications to robot motion planning [2, 4, 5]. Computing the width of a simple
polygon P with n vertices, defined as the width of the narrowest corridor containing P , is
another well-known problem in computational geometry [8]; it can be computed in linear
time using what are known as rotating calipers [10].

The present work deals with the width of a particular corridor through a simple polygonal
region P : the θ-kernel of P , denoted as θ-kernel(P). The θ-kernel(P) is defined as the locus
of points in P from which any point of P can be reached by a path which has a connected
intersection with any line forming an angle θ with the positive x-axis or, in other words,
which is monotone with respect to the direction θ + π

2 . Figure 1 shows the θ-kernel of a
polygon for three different values of the angle θ, together with an example of a π

2 -monotone
path from a point inside the 0-kernel. For further details see [6]. We present an efficient
O(n logn) time and O(n) space algorithm that, given a simple polygonal region P with n
vertices, finds an angle θ ∈ [−π2 , π2) for which the width of the θ-kernel(P) is maximized.

This work has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie grant
agreement No 734922.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

13:2 On the width of the monotone-visibility kernel of a simple polygon

hS(θ)

hS(θ)

hS(θ)

hN(θ)
hN(θ)

hN(θ)

Figure 1 The θ-kernel(P) is shaded for θ = 0 (left), for θ = π
8 (middle), and for θ = π

4 (right).
In addition, a vertically monotone path from a point inside the 0-kernel is shown.

In the following we assume that the vertices of P are labeled {p1, p2, . . . , pn} in counter-
clockwise order around the boundary of P and that a θ-orientation will be an oriented line
forming angle θ with the x-axis.

I Definition 1.1. A reflex vertex pi ∈ P such that pi−1 and pi+1 are both below (resp.
above) pi with respect to a given θ-orientation is a reflex maximum (resp. reflex minimum)
with respect to the θ-orientation. An edge with orientation θ such that its two neighbors
are below (resp. above) with respect to that θ-orientation is also a reflex maximum (resp.
minimum) edge with respect to the θ-orientation.

For a given θ-orientation, P can have several reflex minima and reflex maxima, so there
is a lowest reflex minimum and a highest reflex maximum with respect to θ. It may also
happen that P has no reflex maxima (resp. minima), and then the role of the highest reflex
maximum (resp. lowest reflex minimum) will be undertaken by the lowest (resp. highest)
vertex of P . See Figure 2, left.

hS(0)

hN(0) hS(
π
2)

hN(
π
2)

Figure 2 Left: The shaded area is the 0-kernel of a polygonal region P , where the role of the
lowest reflex minimum is undertaken by the highest vertex of P . A vertically monotone path from
a point in the kernel is also shown. Right: The π

2 -kernel of the same P turns out to be empty.

I Definition 1.2. A pair (p, q) of vertices of P forms a pair of antipodal interior vertices
of P for a θ-orientation if p is the lowest reflex minimum vertex and q is the highest reflex
maximum vertex with respect to the θ-orientation, or vice versa.

In Figure 1 the pair of antipodal points is the same for θ = 0 (left) and θ = π
4 (right),

although the pair has changed in between for θ = π
8 (middle). Let hN (θ) and hS(θ) be,

respectively, the θ-orientations passing through the lowest reflex minimum and the highest
reflex maximum with respect to the current θ-orientation.

I Lemma 1.3 ([9]). The θ-kernel(P) is empty when hN (θ) is below hS(θ) with respect to θ.
Otherwise, it is given by the intersection of P and the strip determined by hN (θ) and hS(θ).

D. Orden, L. Palios, C. Seara, J. Urrutia, and P. Żyliński 13:3

Figure 2, right, shows an example where the π
2 -kernel(P) is empty because, with respect

to the π
2 -orientation, hN (π2) is below (to the right of) hS(π2). That is, there is no point from

which all other points could be reached by a horizontally monotone path.
In order to compute the maximum width of the θ-kernel(P) we maintain the lines hN (θ)

and hS(θ) enclosing the θ-kernel(P) for θ ∈ [−π2 , π2). As the pairs of antipodal interior
vertices of P can change during the process, we subdivide [−π2 , π2) into subintervals [θi, θi+1)
where the pair of antipodal interior vertices does not change, so that it is enough to compute
the maximum value of the width of the θ-kernel(P) for θ in each of these subintervals
[θi, θi+1).

2 Computing the maximum width of the θ-kernel(P)

Next, we sketch the algorithm to compute the intervals of the values of θ within [−π2 , π2)
such that θ-kernel(P) 6= ∅; i.e., the width of the θ-kernel(P), is not zero. Then we calculate
the maximum width, and maintain its maximum value over all the intervals.

ALGORITHM FOR COMPUTING INTERVALS SUCH THAT θ-kernel(P) 6= ∅

1. For each vertex pi ∈ P , check whether pi is reflex. If it is, compute the angular intervals
[θi1, θi2) and [θi1 +π, θi2 +π) of orientations θ for which pi is reflex, and the corresponding
reflex slope intervals defined when rotating with pivot pi the line containing the edge
pi−1pi up to the line containing the edge pipi+1 (see Figure 3, left). Then the vertex pi
is a candidate to be a reflex maximum and a reflex minimum only for the θ-orientations
in those reflex slope intervals. Note that, since θ ∈ [−π2 , π2), a reflex slope interval may
be split into two if it contains the orientation π/2.

2. Compute the sequence of event intervals, [θi, θi+1) ⊂ [−π2 , π2), each one defined by a pair
of θ-orientations such that for any value θ ∈ [θi, θi+1), the strip θ-kernel(P) is supported
by the same pair of reflex vertices; i.e., the same lowest reflex minimum and highest reflex
maximum for any θ ∈ [θi, θi+1). See Figure 1. The strip θ-kernel(P) with θ-orientation
is empty if the lowest reflex minimum is below the highest reflex maximum. In order to
compute the sequence of event intervals do the following:

Figure 3 Dualization of vertices into lines and a reflex slope interval into a segment.

EuroCG’20

13:4 On the width of the monotone-visibility kernel of a simple polygon

a. Dualize the vertices pi ∈ P into lines D(pi). On each of these lines, mark the segment
corresponding to the reflex slope interval of its primal point; i.e., dualize the supporting
lines on pi with slopes in those intervals. See Figure 3.
Color the segment blue if it corresponds to a reflex minimum vertex or red if it
corresponds to a reflex maximum vertex. Note that since a reflex vertex can become
reflex minimum for a θ-orientation and reflex maximum for the (θ + π)-orientation,
corresponding blue and red segments can lie on the same dual line corresponding to
that vertex.
It may be the case that for some θ-orientations there are no reflex minimum or no
reflex maximum vertices because there are no reflex vertices at all; i.e., at those θ-
orientations P has a convex chain part, and then the lowest or the highest convex
vertices of CH (P) play the role of the lowest reflex minimum or the highest reflex
maximum for those θ-orientations. Then we mark the line segments in the dual
accordingly, corresponding to those convex chains of CH (P); i.e., red if there is no
reflex minimum or blue if there is no reflex maximum.

b. Let DR and DB be the arrangements containing the blue and red segments defined
above. We then do a line-sweep with a vertical line (corresponding to a value θ) from
left to right such that the vertical line intersects some segments of the arrangement,
which correspond to the reflex vertices in the primal. Since dualization preserves the
above–below relationships between lines and/or points, the lowest blue segment and
the highest red segment intersected by the vertical line in the dual correspond to the
lowest reflex minimum and to the highest reflex maximum in the primal.

3. To do the line-sweep of step 2 in O(n logn) time, we compute the lower envelope of DB,
LDB and the upper envelope of DR, UDR [3]. After merging the two envelopes in linear
time, we do a line-sweep of LDB ∪ UDR , obtaining the sequence of pairs of antipodal
interior points for all the event intervals [θi, θi+1] as θ varies in [−π2 , π2).
In general, the lower envelope and the upper envelope of a set of n (possibly intersecting)
line segments in the plane have worst-case size O(nα(n)), where α(n) is the extremely-
slowly–growing inverse of Ackermann’s function [1], which would consequently give that
the number of pairs of antipodal interior vertices is O(nα(n)); see [3]. However, for
this particular arrangement of segments, we can prove that the complexity of the lower
envelope LDB and of the upper envelope UDR are in O(n). For the sake of easier reading,
this claim is proved as Lemma 2.1 below. Thus, merging the two envelopes has O(n)
complexity and we can line-sweep them in linear time.

4. Update an event interval [θi, θi+1) ⊆ [−π2 , π2) if, for the corresponding pair, the lowest
reflex minimum is above the highest reflex maximum in a θ-orientation.

I Lemma 2.1. The complexity of the lower envelope LDB and the complexity of the upper
envelope UDR are in O(n).

Proof. Clearly, the proof for the complexity of the lower envelope LDB is analogous to the
proof for the complexity of the upper envelope UDR . Thus, we concentrate on the former.
Figure 4 shows an example where the lowest reflex minimum for θ1 = 0 is d, and increasing
θ gives rise to a counterclockwise sliding rotation [7]; rotating with pivot at d, we hit b and
change the pivot to it, then hit c and change the pivot to it. When θ reaches the orientation ā
aligned to an edge incident to a, a becomes a reflex minimum, so we slide to a, then pivot
around a, until we hit c, and so on. Figure 5 shows the primal on the left, including the full
sequence of pivots, and the dual on the right, including the lower envelope LDB .

D. Orden, L. Palios, C. Seara, J. Urrutia, and P. Żyliński 13:5

a

b
c

ā

d

e

a

b
c

d

e

a

b
c

d

e

a

b
c

d

e

ā a

b
c

d

e

a

b
c

d

e

Figure 4 From left to right and from top to bottom, first steps of a sliding rotation. The pivot
point at each step is marked.

a

b

c

ā c̄ b̄0
π
2
a

b

c

d

d

e

ē

e

d b c a c a b e b a d

Figure 5 Left: Full sequence of pivots for the polygonal region in Figure 4 (where only the first
five pivots were included). Right: Illustration of the dual and the lower envelope LDB .

Next, for the rotation between 0 and π
2 , we describe a charging scheme proving that

the complexity of LDB is in O(n) (an analogous argument holds for the rest of the rotation
and for UDR). Figure 6, left, shows in purple the interior tangents, when a vertex is hit by
the rotation motion, together with an auxiliary dashed horizontal tangent arriving at the
starting vertex d. Figure 6, right, shows the dual, the lower envelope LDB , and the charging
labels in blue.

1. When a vertex z is reached by a sliding motion, this is because the orientation has
aligned with a side of the polygon incident to the vertex y. In this case, the vertex z
receives the label ȳ (the bar indicating “side incident to”). Note that this may happen
either (i) because z was inactive (not reflex minimum) and it becomes active (reflex
minimum), like the first appearance of a in Figure 6 where y = a and hence the label
is ā); or (ii) because an active vertex becomes inactive, like the second appearance of c
in Figure 6, and the sliding motion hits z (in the figure, this z is the second appearance
of a, which is labeled as c̄ because in this case y = c).

2. When a vertex z is hit by a rotating motion, an interior tangent yz arises.
a. If this is the first appearance of z, it receives the label z.

EuroCG’20

13:6 On the width of the monotone-visibility kernel of a simple polygon

a

b

c

ā c̄ b̄0
π
2
a

b

c

d

d

e

ē

e

b ā ė c̄ ḋ b̄cd ȧe ē

ė

ḋ
ȧ

d b c a c a b e b a d

d b c a c a b e b a d

Figure 6 Left: Polygon, sequence of vertices, and interior tangents. Right: Dual and charging
labels.

b. If this z has already been hit, then it is charged to the convex vertex ṙ closest to z in
CCW order that has not already been used (in the figure, the second appearance of c
is charged to ė, with the dot indicating “convex vertex incident to”).

It is clear that a label z̄ can appear at most two times and that a label z can appear
at most once. In order to see that a label ṙ always exists, observe that for z to have been
hit before yz, a tangent xz with slope(xz) < slope(yz) must exist. Hence, z being reflex
at orientation yz and y being reflex at orientation yz imply that there is a convex vertex
ṙ above yz, where r is the closest reflex vertex to ṙ in CCW order. For an example, take
z = b, y = a, x = d, r = d in Figure 6, where the second appearance of b happens at a
tangent ab and there is a tangent db with slope(db) < slope(ab), so that a convex vertex ḋ
exists above db. The same happens for z = c, y = a, x = b, r = e and for z = d, y = a,
x = horizontal, and r = a, using the auxiliary dashed horizontal arriving at d in order to
label the last d in the sequence as ȧ. (See Figure 7 for a second example.)

It just remains to show that for each y, a ẏ is used only once. To this end, observe that a
quadruple of internal tangents xz, yz, xt, and yt cannot appear: Without loss of generality,
assume that the extensions of xt and yz do cross when extending from x and y as in the
figure. Then, xt is not a valid interior tangent, since f is a lower reflex vertex. See Figure 8,
where z = b, y = f , x = a, and t = u. J

By Lemma 2.1, the sizes of both the lower envelope and the upper envelope are linear,
so all the steps of the algorithm above can be done within O(n logn) time and O(n) space.
Therefore, we get the following result.

I Theorem 2.2. For a simple polygon P with n vertices, there are O(n) angular intervals
[θi, θi+1) ⊂ [−π2 , π2) such that θ-kernel(P) 6= ∅ for all the values θ ∈ (θi, θi+1), and the set
of such intervals together with the maximum value of the width of the θ-kernel(P) can be
computed and maintained in O(n logn) time and O(n) space.

Proof. For each of the O(n) angular intervals, compute the maximum value of the width
of the θ-kernel(P) for θ ∈ [θi, θi+1) in constant time since we know the pair of supporting
points, the range of the value θ, and that the width of the θ-kernel(P) is an unimodal
function. J

D. Orden, L. Palios, C. Seara, J. Urrutia, and P. Żyliński 13:7

a

b

c

d

e

f

d cb a

d cb ā

c

ċ

a

c̄

b

ḋ

f

f̄

b

ȧ

e

e

b

ē

f

b̄

ḋ

ċ

ȧ

Figure 7 Another example of the charging scheme.

a

b

fḟ

u

Figure 8 Illustration of why label ḟ is not used a second time.

I Corollary 2.3. The maximum width of the θ-kernel(P) simple polygon P with n vertices
can be computed in O(n logn) time and O(n) space.

Acknowledgements

David Orden was supported by project MTM2017-83750-P of the Spanish Ministry of
Science (AEI/FEDER, UE). Carlos Seara was supported by projects MTM2015-63791-R
MINECO/FEDER and Gen. Cat. DGR 2017SGR1640. Jorge Urrutia was supported in
part by SEP-CONACYT of Mexico, Proyecto 80268, and by PAPIIT IN102117 Programa
de Apoyo a la Investigación e Innovación Tecnológica, UNAM. Paweł Żyliński was supported
by the grant 2015/17/B/ST6/01887 (National Science Centre, Poland).

References
1 W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen, 99,

(1928), 118–133.

EuroCG’20

13:8 On the width of the monotone-visibility kernel of a simple polygon

Canadian Conference on Computational Geometry, (2001).
2 S. Chattopadhyay and P. Das. The k-dense corridor problems. Pattern Recognition Letters,

11, (1990), 463–469.
3 J. Hershberger. Finding the upper envelope of n line segments in O(n logn) time. Inf.

Process. Lett., 33(4), (1989), 169–174.
4 M. Houle and A. Maciel. Finding the widest empty corridor through a set of points. In

G.T. Toussaint, editor, Snapshots of Computational and Discrete Geometry, 201–213. TR
SOCS-88.11, Dept. of Computer Science, McGill University, Montreal, Canada, (1988).

5 R. Janardan and F. P. Preparata. Widest-corridor problems. Nordic Journal of Computing,
1, (1994), 231–245.

6 D. Orden, L. Palios, C. Seara, and P. Żyliński. Generalized kernels of polygons under
rotation. In Proceedings of EuroCG 2018, paper 74.

7 D. Orden, P. Ramos, and G. Salazar. The number of generalized balanced lines. Discrete
& Computational Geometry, 44(4), 2010, 805–811.

8 F. P. Preparata and M. I. Shamos. Computational Geometry: An introduction, Springer-
Verlag, (1985).

9 S. Schuierer, G. J. E. Rawlins, and D. Wood. A generalization of staircase visibility. 3rd
Canadian Conference on Computational Geometry, Vancouver, 1991, 96–99.

10 G. Toussaint. Solving geometric problems with the rotating calipers. In Proceedings of IEEE
MELECON’83, Athens, Greece, May 1983.

On Implementing Multiplicatively Weighted
Voronoi Diagrams∗

Martin Held1 and Stefan de Lorenzo1

1 Universität Salzburg, FB Computerwissenschaften, Salzburg, Austria
{held,slorenzo}@cs.sbg.ac.at

Abstract
We present a simple wavefront-like approach for computing multiplicatively weighted Voronoi
diagrams of points and straight-line segments in the Euclidean plane. If the input sites may be
assumed to be randomly weighted points then the use of a so-called overlay arrangement [Har-
Peled&Raichel, Discrete Comput. Geom., 2015] allows to achieve an expected runtime complexity
of O(n log4 n), while still maintaining the simplicity of our approach. We implemented the full
algorithm for weighted points as input sites, based on CGAL. The results of an experimental
evaluation of our implementation suggest O(n log2 n) as a practical bound on the runtime. Our
algorithm can be extended to handle also additive weights in addition to multiplicative weights.

1 Introduction and Preliminaries

Aurenhammer and Edelsbrunner [1] present a worst-case optimal algorithm for constructing
the multiplicatively weighted Voronoi diagram (MWVD) of a set of n points in O(n2) time
and space. Har-Peled and Raichel [2] show that a bound of O(n log2 n) holds on the expected
combinatorial complexity if the weights of all points are chosen randomly. They also sketch
how to compute MWVDs in expected time O(n log3 n), where linear-time triangulation and
the algorithm by Aurenhammer and Edelsbrunner [1] are used as subroutines.

Let S := {s1, s2, . . . , sn} denote a set of n distinct weighted points in R2 that are indexed
such that w(si) ≤ w(sj) for 1 ≤ i < j ≤ n, where w(si) ∈ R+ is the weight associated with
si. It is common to regard the weighted distance dw(p, si) from an arbitrary point p in R2

to si as the standard Euclidean distance d(p, si) from p to si divided by the weight of si.
The (weighted) Voronoi region VRw(si, S) of si relative to S is the set of all points of the
plane that are not farther to si than to any other site sj in S. A connected component of a
Voronoi region is called a face. For two distinct sites si and sj of S, the bisector bi,j of si

and sj models the set of points of the plane that are at the same weighted distance from si

and sj . The MWVD VDw(S) of S is the union of the boundaries of the individual Voronoi
regions; see Figure 1. Following common terminology, a connected component of such a set
is called a (Voronoi) edge of VDw(S). An end-point of an edge is called a (Voronoi) node. It
is known that the bisector between two unequally weighted sites forms a circle.

The wavefront WF(S, t) emanated by S at time t ≥ 0 is the set of all points p of the
plane whose minimal weighted distance from S equals t. The wavefront itself consists of
several circular arcs which we call wavefront arcs. A common end-point of two consecutive
wavefront arcs is called a wavefront vertex; see the blue dots in Figure 2. For t ≥ 0, the
offset circle ci(t) of the i-th site si is given by a circle centered at si with radius t ·w(si). We
specify a point of ci(t) relative to si by its polar angle α and its (weighted) polar radius t and
denote it by pi(α, t). Every pair of offset circles defines exactly two (moving) vertices vl

i,j

∗ Work supported by Austrian Science Fund (FWF): Grant P31013-N31.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

15:2 On Implementing Multiplicatively Weighted Voronoi Diagrams

23
22

21

20

19

16

14

13

10

7

Figure 1 Left: Standard Voronoi diagram of a set of points (depicted by dark-green dots). Right:
The numbers next to the points indicate their weights and the corresponding MWVD is shown.

and vr
i,j which can be interpreted as the traces of the intersections of the two offset circles

over time. We refer to vl
i,j(t) as the vertex married to vr

i,j(t), and vice versa; see Figure 3.

Figure 2 Wavefronts (in blue) for equally-spaced points in time for the input shown in Figure 1.

2 A Simple Event-Based Construction Scheme

In prior work [3], we introduced a wavefront-based strategy to compute VDw(S) on the basis
of which we made our improvements. Thus, we want to review its main ideas. For the sake
of descriptional simplicity, we assume that no point in the plane has the same weighted
distance to more than three elements of S. (This restriction can be waived.)

I Definition 2.1 (Active point). A point p on the offset circle ci(t) is called inactive at time
t (relative to S) if there exists j > i, with 1 ≤ i < j ≤ n, such that p lies strictly inside of
cj(t). Otherwise, p is active (relative to S) at time t. A vertex vi,j(t) is an active vertex if it
is an active point on both ci(t) and cj(t) at time t; otherwise, it is an inactive vertex.

I Lemma 2.2. If pi(α, t) is inactive at time t then pi(α, t′) will be inactive for all t′ ≥ t.
An inactive point pi(α, t) cannot be part of the wavefront WF(S, t). Lemma 2.2 ensures
that none of its future incarnations pi(α, t′) can become part of the wavefront WF(S, t′).

M. Held and S. de Lorenzo 15:3

sj

si

sj

si

sj

si

sj

si

Figure 3 Two married vertices (highlighted by the blue dots) trace out the bisector (in black).

I Definition 2.3 (Active arc). For 1 ≤ i ≤ n and t ≥ 0, an active arc of the offset circle ci(t)
at time t is a maximal connected set of points on ci(t) that are active at time t. The closure
of a maximal connected set of inactive points of ci(t) forms an inactive arc of ci(t) at time t.

Every end-point of an active arc of ci(t) is given by the intersection of ci(t) with some other
offset circle cj(t), i.e., by a moving vertex vi,j(t). This vertex is active, too. If i < j then one
active arc of ci(t) and two active arcs of cj(t) are incident to vi,j(t). The arc arrangement
(AA) of S at time t, A(S, t), is the arrangement induced by all active arcs of all offset
circles of S at time t; see Figure 4. As time t increases, the offset circles expand. This
causes the vertices of A(S, t) to move, but it will also result in topological changes of the arc
arrangement. Every such topological change can be classified as one of three event types.

IDefinition 2.4 (Collision event). Let pi(α, tmin
ij) = pj(α+π, tmin

ij) be the point of intersection
of the offset circles of si and sj at the collision time tmin

ij , for some fixed angle α. A collision
event occurs between these two offset circles at time tmin

ij if the points pi(α, t) and pj(α+π, t)
have been active for all times 0 ≤ t ≤ tmin

ij .

I Definition 2.5 (Domination event). Let pi(α, tmax
ij) = pj(α, tmax

ij) be the point of intersec-
tion of the offset circles of si and sj at the domination time tmax

ij , for some fixed angle α. A
domination event occurs between these two offset circles at time tmax

ij if the points pi(α, t)
and pj(α, t) have been active for all times 0 ≤ t ≤ tmax

ij .

I Definition 2.6 (Arc event). An arc event e occurs at time te when an active arc shrinks
to zero length as two unmarried vertices vi,j(te) and vi,k(te) meet in a point pe on ci(te).

Domination events and arc events are easy to detect. The point and time of a collision is
trivial to compute for any pair of offset circles, too. For the rest of this section we assume that
all collisions among all pairs of offset circles are computed prior to the actual arc expansion.
All events are stored in a priority queue Q. If the maximum weight of all sites is associated
with only one site then there will be a time t when the offset circle of this site dominates
all other offset circles, i.e., when WF(S, t) contains only this offset circle as one active arc.
Obviously, at this time no further event can occur and the arc expansion stops. If multiple
sites have the same maximum weight then Q can only be empty once WF(S, t) contains
only one loop of active arcs which all lie on offset circles of these sites and if all wavefront
vertices move along rays to infinity.

During the arc expansion O(n2) collision and domination events are computed. We know
that collision events create and domination events remove active vertices (and make them
inactive for good). A collapse of an entire active-arc triangle causes two vertices to become
inactive. During every other arc event at least one active vertex becomes inactive, but at
the same time one inactive vertex may become active again. In order to bound the number
of arc events it is essential to determine how many vertices can be active and how often a
vertex can undergo a reactivation, i.e., change its status from inactive to active.

EuroCG’20

15:4 On Implementing Multiplicatively Weighted Voronoi Diagrams

Figure 4 A snapshot of the arc expansion for the input shown in Figure 1. Active arcs that are
currently not part of the wavefront are drawn in orange.

I Lemma 2.7. Every reactivation of a moving vertex during an arc event forces another
moving vertex to become inactive and remain inactive for the rest of the arc expansion.

I Lemma 2.8. Let h be the number of different vertices that ever were active during the arc
expansion. Then O(h) arc events can take place during the arc expansion.

Our naïve approach computes all potential collision events between all pairs of input sites as
preprocessing. Thus, h ∈ Θ(n2), and we get an overall runtime of O(n2 logn).

3 Reducing the Number of Collisions Computed

Experiments quickly indicate that the vast majority of pairwise collisions computed a priori
does never end up on pairs of active arcs. Furthermore, the resulting Voronoi diagrams show
a quadratic combinatorial complexity only for contrived input data.

This observation is backed by a result by Har-Peled and Raichel [2]: They show that the
expected combinatorial complexity of VDw(S) for a set S of n randomly weighted point sites
is O(n log2 n). In order to keep our paper self-contained, we summarize their key principles.

Candidate set: Consider an arbitrary (but fixed) point q ∈ R2, and let s be its nearest
neighbor in S under the weighted distance. Let s′ ∈ S \ {s} be another site. Since s is
the nearest neighbor of q we know that either s has a higher weight than s′ or a smaller
Euclidean distance to q than s′. Thus, one can define a candidate set for a weighted
nearest neighbor of q which consists of all sites s ∈ S such that all other sites in S either
have a smaller weight or a larger Euclidean distance to q. Now assume that the sites are
weighted randomly. Then Har-Peled and Raichel [2] show that this candidate set for q
has a cardinality of O(logn) with high probability.
Gerrymandering the plane: The plane R2 is partitioned into a small number of regions
such that the candidate set stays the same for all points within a region.
Randomized incremental campaigning: Consider inserting the sites in order of decreasing
weight: Then the i-th site is in the candidate set of a point q ∈ R2 if and only if it is the
(unweighted) nearest neighbor of q among the first i sites. That is, if and only if q lies in
the Voronoi region of the i-th site within the Voronoi diagram of the first i sites.

M. Held and S. de Lorenzo 15:5

In more formal terms, we make use of the following results in order to determine all collision
events among elements of S in near-linear expected time.

I Lemma 3.1 (Har-Peled and Raichel [2]). For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

I Lemma 3.2 (Har-Peled and Raichel [2]). Let Ki denote the Voronoi cell of si in the
unweighted Voronoi diagram of the i-th suffix Si := {si, . . . , sn}. Let OA denote the arrange-
ment formed by the overlay of the regions K1, . . . ,Kn. Then, for every face f of OA, the
candidate set is the same for all points in f .

Therefore, the overlay arrangement can be generated by incrementally constructing the
unweighted Voronoi diagram of S in which the sites are inserted ordered by decreasing
weights; see Figure 5. Kaplan et al. [4] prove that this overlay arrangement has an expected
complexity of O(n logn). Note that their result is applicable since inserting the points in
sorted order of their randomly chosen weights corresponds to a randomized insertion. These
results allow us to derive better complexity bounds.

Figure 5 We insert the sites ordered by decreasing weights to generate OA.

I Lemma 3.3. If a collision event occurs between the offset circles of two sites si, sj ∈ S
then there exists at least one candidate set which includes both si and sj.

I Theorem 3.4. All collision events can be determined in O(n log3 n) expected time by
computing the overlay arrangement OA of a set S of n input sites.

Thus, the number h of vertices created during the arc expansion can be expected to
be bounded by O(n log3 n). Theorem 2.8 tells us that the number of arc events is in O(h).
Therefore, O(n log3 n) events happen in total.

I Theorem 3.5. A wavefront-based approach allows to compute the multiplicatively weighted
Voronoi diagram VDw(S) of a set S of n (randomly) weighted point sites in expected
O(n log4 n) time and expected O(n log3 n) space.

4 Extensions

Consider a set S′ of n disjoint weighted straight-line segments in R2. A wavefront propagation
among weighted line segments requires us to refine our notion of “collision”. We call an

EuroCG’20

15:6 On Implementing Multiplicatively Weighted Voronoi Diagrams

intersection of two offset circles a non-piercing collision event if it marks the initial contact
of the two offset circles. That is, it occurs when the first pair of moving vertices appear. We
call an intersection of two offset circles a piercing collision event if it takes place when two
already intersecting offset circles intersect in a third point for the first time; see Figure 6. In
this case, a second pair of moving vertices appear.

Figure 6 An example of a non-piercing (left) as well as a piercing collision event (right).

Hence, a minor modification of our event-based construction scheme is sufficient to extend
it to weighted straight-line segments: We only need to check whether a piercing collision
event that happens at a point pe at time te currently is part of WF(S′, te). In such a case
the two new vertices as well as the corresponding active arc between them need to be flagged
as part of WF(S′, te). See Figure 7.

Figure 7 The MWVD of a set of weighted points and weighted straight-line segments together
with a family of wavefronts for equally-spaced points in time.

An extension to additive weights can be integrated easily into our scheme by simply
giving every offset circle a head-start of wa(si) at time t = 0, where wa(si) ≥ 0 denotes the
real-valued additive weight that is associated with si.

M. Held and S. de Lorenzo 15:7

5 Experimental Evaluation

We implemented our full algorithm for multiplicatively weighted points as input sites1, based
on the Computational Geometry Algorithms Library (CGAL) and exact arithmetic. In
particular, we use CGAL’s Arrangement_2 package for computing the overlay arrangement
and its Voronoi_diagram_2 package for computing unweighted Voronoi diagrams. The
computation of the MWVD itself utilizes CGAL’s Exact_circular_kernel_2 package.

103 104 105

Input size

2.0

2.2

2.4

2.6

2.8

3.0

#
E

v
en

ts
/
n

lo
g
n

103 104 105

Input size

10

11

12

13

14

#
E

v
en

ts
/
n

(a) The left plot shows the total number of (valid and invalid) collision events (divided by n log n);
the right plot shows the number of arc events (divided by n) processed during the arc expansion.

103 104 105

Input size

50

100

150

R
u

n
ti

m
e/
n

lo
g

2
n

(b) The orange plot shows the runtime consumed by the computation of the overlay arrangement.
The green plot shows the time which it took to process all events, and the blue plot shows the overall
runtime. All runtimes were divided by n log2 n.

Figure 8 Each marker on the x-axes indicates the number n of input sites for one out of over
3800 test cases. All weights and all point coordinates were chosen randomly.

We used our implementation for an experimental evaluation and ran our code on over
3800 inputs ranging from 256 vertices to 524 288 vertices. For all inputs all weights were
chosen uniformly at random, and all point coordinates were chosen according to either a

1 Our code is publicly available on GitHub under https://github.com/cgalab/wevo. We do also have
a prototype implementation that handles both weighted points and weighted straight-line segments. It
was used to generate the diagram shown in Figure 7.

EuroCG’20

15:8 On Implementing Multiplicatively Weighted Voronoi Diagrams

uniform or a normal distribution. All tests were carried out with CGAL 4.11 on an Intel
Xeon E5-2687W v4 processor clocked at 3.0 GHz. (We carried out our tests before CGAL 5.0
was released. Sample runs obtained with CGAL 5.0 indicate that all results would be the
same for CGAL 5.0.) The numbers of collision events and arc events that occurred during
the arc expansion are plotted in Figure 8a. Our tests suggest that we can expect at most
c · n logn collision events to occur, for some small constant c. (We had c ≤ 3 in our tests.)
Furthermore, we observed at most 14n arc events.

In any case, the number of events is smaller than predicted by the theoretical analysis.
This is also reflected by our runtime statistics: In Figure 8b the runtime of the generation of
the overlay arrangement, the time that was consumed by the computation of the MWVD,
and the overall runtime are plotted. Summarizing, our tests suggest an average overall
runtime of O(n log2 n) if all weights are chosen randomly.

References
1 Franz Aurenhammer and Herbert Edelsbrunner. An Optimal Algorithm for Constructing

the Weighted Voronoi Diagram in the Plane. Pattern Recogn., 17(2):251–257, 1984. doi:
10.1016/0031-3203(84)90064-5.

2 Sariel Har-Peled and Benjamin Raichel. On the Complexity of Randomly Weighted
Multiplicative Voronoi Diagrams. Discrete Comput. Geom., 53(3):547–568, 2015. doi:
10.1007/s00454-015-9675-0.

3 Martin Held and Stefan de Lorenzo. A Wavefront-Like Strategy for Computing Multi-
plicatively Weighted Voronoi Diagrams. In Proceedings of the 35th European Workshop on
Computational Geometry, Utrecht, Netherlands, 2019.

4 Haim Kaplan, Edgar Ramos, and Micha Sharir. The Overlay of Minimization Diagrams in
a Randomized Incremental Construction. Discrete Comput. Geom., 45(3):371–382, 2011.
doi:10.1007/s00454-010-9324-6.

Sometimes Reliable Spanners of Almost Linear
Size
Kevin Buchin1, Sariel Har-Peled2, and Dániel Oláh1

1 Department of Mathematics and Computing Science, TU Eindhoven, The
Netherlands
k.a.buchin@tue.nl | d.olah@tue.nl

2 Department of Computer Science, University of Illinois at Urbana-Champaign,
USA
sariel@illinois.edu

Abstract
Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted
from the network. In case of failures, some of the remaining vertices of a reliable spanner may
no longer admit the spanner property, but this collateral damage is bounded by a fraction of the
size of the attack. It is known that Ω(n logn) edges are needed to achieve this strong property,
where n is the number of vertices in the network, even in one dimension. Constructions of
reliable geometric (1 + ε)-spanners, for n points in Rd, are known, where the resulting graph
has O(n logn log log6 n) edges.

Here, we show randomized constructions of smaller size spanners that have the desired reli-
ability property in expectation or with good probability. The new construction is simple, and
potentially practical – replacing a hierarchical usage of expanders (which renders the previous
constructions impractical) by a simple skip-list like construction. This results in a 1-spanner,
on the line, that has linear number of edges. Using this, we present a construction of a reliable
spanner in Rd with O(n log log2 n log log logn) edges.

1. Introduction

Geometric graphs are such that their vertices are points in the d-dimensional Euclidean
space Rd and edges are straight line segments. Let G = (P,E) be a geometric graph,
where P ⊂ Rd is a set of n points and E is the set of edges. The shortest path distance
between two points p, q ∈ P in the graph G is denoted by dG(p, q) (or just d(p, q)). The
graph G is a t-spanner for some constant t ≥ 1, if d(p, q) ≤ t · ‖p− q‖ holds for all pairs of
points p, q ∈ P , where ‖p− q‖ stands for the Euclidean distance of p and q. The spanning
ratio, stretch factor, or dilation of a graph G is the minimum number t ≥ 1 for which G is
a t-spanner. A path between p and q is a t-path if its length is at most t · ‖p− q‖.

We focus our attention to construct spanners that can survive massive failures of vertices.
The most studied notion is fault tolerance [6, 7, 8], which provides a properly functioning
residual graph if there are no more failures than a predefined parameter k. It is clear, that
a k-fault tolerant spanner must have Ω(kn) edges to avoid small degree nodes. Therefore,
fault tolerant spanners must have quadratic size to be able to survive a failure of a constant
fraction of vertices. Another notion is robustness [2], which gives more flexibility by allowing
the loss of some additional nodes by not guaranteeing t-paths for them. For a function
f : N −→ R+ a t-spanner G is f -robust, if for any set of failed points B there is an extended
set B+ with size at most f(|B|) such that the residual graph G\B has a t-path for any pair
of points p, q ∈ P \ B+. The function f controls the robustness of the graph - the slower
the function grows the more robust the graph is. The benefit of robustness is that a near
linear number of edges are enough to achieve it, even for the case when f is linear, there
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

16:2 Sometimes Reliable Spanners of Almost Linear Size

are constructions with nearly O(n logn) edges. For ϑ ∈ (0, 1), a spanner that is f -robust
with f(k) = (1 + ϑ)k is a ϑ-reliable spanner [4]. This is the strongest form of robustness,
since the dilation can increase for only a tiny additional fraction of points beyond t. The
fraction is relative to the number of failed vertices and controlled by the parameter ϑ.

Recently, the authors [4] showed a construction of reliable 1-spanners of size O(n logn) in
one dimension, and of reliable (1 + ε)-spanners of size O

(
n logn log log6 n

)
in higher dimen-

sions (the constant in theO depends both on the dimension, ε, and the reliability parameter).
An alternative construction, with slightly worse bounds, was given by Bose et al. [1].

Limitations of previous constructions. The construction of Buchin et al. [4] (and also
the construction of Bose et al. [1]) relies on using expanders to get a monotone spanner
for points on the line, and then extending it to higher dimensions. The spanner (in one
dimension) has O(n logn) edges. Unfortunately, even in one dimension, such a reliable
spanner requires Ω(n logn) edges, as shown by Bose et al. [2].

The problem. As such, the question is whether one can come up with simple and practical
constructions of spanners that have linear or near linear size, while still possessing some
reliability guarantee – either in expectation or with good probability.

Some definitions. Given a graph G, an attack B ⊆ V (G) is a set of vertices that are being
removed. The damaged set B+, is the set of all the vertices which are no longer connected to
the rest the graph, or are badly connected to the rest of the graph – that is, these vertices no
longer have the desired spanning property. The loss caused by B, is the quantity |B+ \B|,
where we take the minimal damaged set. Note, that B+ is not necessarily unique. The loss
rate of B is λ(G,B) = |B+ \B| / |B|. A graph G is ϑ-reliable if for any attack B, the loss
rate λ(G,B) is at most ϑ.

Randomness and obliviousness. As mentioned above, reliable spanners must have size
Ω(n logn). A natural way to get a smaller spanner, is to consider randomized constructions,
and require that the reliability holds in expectation (or with good probability). Randomized
constructions are (usually) still sensitive to adversarial attacks, if the adversary is allowed
to pick the attack set after the construction is completed (and it is allowed to inspect it).
A natural way to deal with this issue is to restrict the attacks to be oblivious – that is, the
attack set is chosen before the graph is constructed (or without any knowledge of the edges).

In such an oblivious model, the loss rate is a random variable (for a fixed attack B). It
is thus natural to construct the graph G randomly, in such a way that E[λ(G,B)] ≤ ϑ, or
alternatively, that the probability P[λ(G,B) ≥ ϑ] is small.

Our results. We give a randomized construction of a 1-spanner in one dimension, that is
ϑ-reliable in expectation, and has size O(n). Formally, the construction has the property
that E[λ(G,B)] ≤ ϑ. This construction can also be modified so that λ(G,B) ≤ ϑ holds with
some desired probability. This is the main technical contribution of this work.

Next, following in the footsteps of the construction of reliable spanners, we use the one-
dimensional construction to get (1 + ε)-spanners that are ϑ-reliable either in expectation or
with good probability. The new constructions have size roughly O

(
n log log2 n

)
.

In this abstract, we only present the one-dimensional construction of reliable spanners
in expectation. For the missing proofs and further results, we refer to the full version [3].

K. Buchin, S. Har-Peled and D. Oláh 16:3

2. Preliminaries

IDefinition 2.1 (Reliable spanner). LetG = (P,E) be a t-spanner for some t ≥ 1 constructed
by a (possibly) randomized algorithm. Given an oblivious attack B, its damaged set B+

is the smallest set, such that for any pair of vertices u, v ∈ P \ B+, we have dG\B(u, v) ≤
t · ‖u− v‖, that is, t-paths are preserved for all pairs of points not contained in B+. The
quantity |B+ \B| is the loss of G under the attack B. The loss rate of G is λ(G,B) =
|B+ \B| / |B|. For ϑ ∈ (0, 1), the graph G is ϑ-reliable if λ(G,B) ≤ ϑ holds for any attack
B ⊆ P . Further, we say that the graph G is ϑ-reliable in expectation if E[λ(G,B)] ≤ ϑ

holds for any oblivious attack B ⊆ P . For ϑ, ρ ∈ (0, 1), we say that the graph G is ϑ-reliable
with probability 1− ρ if P[λ(G,B) ≤ ϑ] ≥ 1− ρ holds for any oblivious attack B ⊆ P .

Let [n] denote the interval {1, . . . , n}. Similarly, for x and y, let [x . . . y] denote the
interval {x, x + 1, . . . , y}. We borrow the notion of shadow from our previous work [4]. A
point p is in the α-shadow if there is a neighborhood of p, such that an α-fraction of it
belongs to the attack set. One can think about the maximum α such that p is in the α-
shadow of B as the depth of p (here, the depth is in the range [0, 1]). A point with depth
close to one, are intuitively surrounded by failed points, and have little hope of remaining
well connected. Fortunately, only a few points have depth truly close to one 1.

I Definition 2.2. Consider an arbitrary set B ⊆ [n] and a parameter α ∈ (0, 1). A number
i is in the left α-shadow of B, if and only if there exists an integer j ≥ i, such that∣∣[i . . . j] ∩B

∣∣ ≥ α
∣∣[i . . . j]

∣∣ . Similarly, i is in the right α-shadow of B, if and only if there
exists an integer h, such that h ≤ i and |[h . . . i] ∩B| ≥ α |[h . . . i]| . The left and right
α-shadow of B is denoted by S→(B) and S←(B), respectively. The combined shadow is
denoted by S(α,B) = S→(B) ∪ S←(B).

I Lemma 2.3 ([4]). For any set B ⊆ [n], and α ∈ (0, 1), we have that |S(α,B)| ≤
(
1 +

2 d1/αe
)
|B|. Further, if α ∈ (2/3, 1), we have that |S(α,B)| ≤ |B| /(2α− 1).

I Definition 2.4. Given a graph G over [n], a monotone path between i, j ∈ [n], such
that i < j, is a sequence of vertices i = i1 < i2 < · · · < ik = j, such that i`−1i` ∈ E(G), for
` = 2, . . . , k.

A monotone path between i and j has length |j− i|. We use log x and ln x to denote the
base 2 and natural base logarithm of x, respectively. For any set A ⊆ P , let Ac = P \ A
denote the complement of A. For two integer numbers x, y > 0, let x↑y = dx/ye y.

3. Construction of reliable spanners on the line

The input consists of a parameter ϑ > 0 and the point set P = [n] = {1, . . . , n}. The
backbone of the construction is a random elimination tournament, see Figure 3.1 as an
example. We assume that n is a power of 2 as otherwise one can construct the graph for
the next power of two, and then throw away the unneeded vertices.

The tournament is a full binary tree, with the leafs storing the values from 1 to n, say
from left to right. The value of a node is computed randomly and recursively. For a node,
once the values of the nodes were computed for both children, it randomly copies the value
of one of its children, with equal probability to choose either child. Let Pi be the values
stored in the ith bottom level of the tree. As such, P0 = P , and Plog n is a singleton. Each
set Pi can be interpreted as an ordered set (from left to right, or equivalently, by value). Let

α = 1− ϑ

8 and ε = 8(1− α)
c lnϑ−1 = ϑ

c lnϑ−1 , (3.1)

EuroCG’20

16:4 Sometimes Reliable Spanners of Almost Linear Size

1 2 3 4 5 6 7 8

1 3 6 7

3 6

3

Figure 3.1 An example of a tournament tree with n = 8.

where c > 1 is a sufficiently large constant. Let M be the smallest integer for which
|PM | ≤ 2M/2/ε holds (i.e., M = d(2/3) log(εn)e). For i = 0, 1, . . . ,M , and for all p ∈ Pi

connect p with the first

`(i) =
⌈

2i/2

ε

⌉
(3.2)

successors (and hence predecessors) of p in Pi. Let Ei be the set of all edges in level i. The
graph G on P is defined as the union of all edges over all levels – that is, E(G) = ∪M

i=0Ei.

4. Analysis

I Lemma 4.1. The graph G has O
(
nϑ−1 log ϑ−1) edges.

Proof. The number of edges contributed by a point in Pi is at most `(i) at level i, and
|Pi| = n/2i. Thus, we have

|E(G)| ≤
M∑

i=0
|Pi| · `(i) ≤

M∑

i=0

n

2i
·
⌈

2i/2

ε

⌉
≤

M∑

i=0

n

2i
· 2 · 2i/2

ε
≤ n

ε
·
∞∑

i=0

2
2i/2 = O

(n
ε

)
. J

Fix an attack B ⊆ P . The high-level idea is to show that if a point p ∈ P \ B is far
enough from the faulty set, then, with high probability, there exist monotone paths reaching
far from p in both directions.

I Definition 4.2 (Stairway). Let p ∈ P be an arbitrary point. The path p = p0, p1, . . . , pj

is a right (resp., left) stairway of p to level j, if

(i) p = p0 ≤ p1 ≤ · · · ≤ pj (resp., p ≥ p1 ≥ · · · ≥ pj),
(ii) if pi 6= pi+1, then pipi+1 ∈ E, for i = 0, 1, . . . , j − 1,
(iii) pi ∈ Pi, for i = 1, . . . , j.

Furthermore, a stairway is safe if none of its points are in the attack set B. A right (resp.,
left) stairway is usable, if [pj . . . n]∩Pj (resp., [1 . . . pj]∩Pj) forms a clique in G. Let T ⊆ P
denote the set of points that have a safe and usable stairway to both directions. Finally,
a point p is bad if it belongs to B, or it does not have safe and usable stairways to both
directions, that is, p ∈ P \ T .

Let p, q ∈ T be two points such that p < q. Intuitively, it is clear that the right stairway
of p and the left stairway of q must cross each other at some level. Combining these stairways,
with some care at the point where they cross, we obtain a monotone path between p and q.

K. Buchin, S. Har-Peled and D. Oláh 16:5

1 n

p p↑2i

2i2i2i

p↑2i + (∆i − 1) · 2iJi

Figure 4.1 The interval Ji =
[
p . . . p↑2i + (∆i − 1) · 2i

]
.

I Lemma 4.3. For any two points p, q ∈ T that are not bad, there is a monotone path
connecting p and q in the residual graph G \B.

Let αk = α/2k, for k = 0, 1, . . . , logn. Let Sk = S(αk, B) be the αk-shadow of B,
for k = 0, 1, . . . , logn. Observe that S0 ⊆ S1 ⊆ · · · ⊆ Slog n, and there is an index j such
that Sj = P , if B 6= ∅. A point is classified according to when it gets “buried” in the shadow.
A point p, for k ≥ 1, is a kth round point, if p ∈ Sk \ Sk−1. Intuitively, a kth round point
is more likely to have a safe stairway the larger the value of k is.

I Lemma 4.4. Assume that ϑ ∈ (0, 1/2) and let p ∈ Sk \Sk−1 be a kth round point for some
k ≥ 1. The probability that p is bad is at most (ϑ/2)k/32.

Proof (idea). By symmetry, it is enough to consider right stairways. We define a sequence of
intervals J1, J2, . . . , see Figure 4.1, such that each interval starts at p, their length increases
exponentially, and Ji ∩ Pi contains exactly ∆i or ∆i − 1 points. We set ∆i to ensure that
any pair of points pi ∈ Ji∩Pi and pi+1 ∈ Ji+1∩Pi+1 are connected. Thus, if the sets Ji∩Pi,
for all i ≥ 1, contain at least one point outside of B, then we have a possible candidate for
a safe and usable stairway. It is not hard to see that, for example, by choosing the leftmost
available point in each set, we obtain a monotone path. J

We obtain bounds on the expected number of bad kth round points by using Lemma 2.3
and Lemma 4.4 to bound the number of such points and the probability of a kth round
point being bad, respectively. Then, we sum up for all rounds to obtain the desired bound.

I Lemma 4.5. Let ϑ ∈ (0, 1/2) and B ⊆ P be an oblivious attack. Recall, that T c is the set
of bad points. Then, we have E[|T c|] ≤ (1 + ϑ) |B|.

I Theorem 4.6. Let ϑ ∈ (0, 1/2) and P = [n] be fixed. The graph G, constructed in
Section 3, has O

(
nϑ−1 log ϑ−1) edges, and it is a ϑ-reliable 1-spanner of P in expectation.

Formally, for any oblivious attack B, we have E[λ(G,B)] ≤ ϑ.

Proof. By Lemma 4.1, the size of G is O
(
nϑ−1 log ϑ−1). Let B ⊆ P be an oblivious attack

and consider the bad set P \T . By Lemma 4.3, for any two points outside the bad set, there is
a monotone path connecting them. Further, by Lemma 4.5, we have E[|P \ T |] ≤ (1+ϑ) |B|
for any oblivious attack. Thus, we obtain E[λ(G,B)] ≤ E[|T c \B| / |B|] ≤ ϑ. J

Using Theorem 4.6 and a result of Chan et al. [5] on orderings of a set of points in Rd, we
can construct spanners for higher dimensional point sets that are reliable in expectation.

I Theorem 4.7. Let ϑ, ε ∈ (0, 1) be fixed and P ⊆ Rd be a set of n points. We can construct a
(1 + ε)-spanner of P that is ϑ-reliable in expectation and has size O

(
n log log2 n log log logn

)
.

EuroCG’20

16:6 Sometimes Reliable Spanners of Almost Linear Size

References
1 P. Bose, P. Carmi, V. Dujmović, and P. Morin. Near-optimal O(k)-robust geomet-

ric spanners. CoRR, abs/1812.09913, 2018. URL: http://arxiv.org/abs/1812.09913,
arXiv:1812.09913.

2 P. Bose, V. Dujmović, P. Morin, and M. Smid. Robust geometric spanners. SIAM Journal
on Computing, 42(4):1720–1736, 2013. URL: https://doi.org/10.1137/120874473, doi:
10.1137/120874473.

3 K. Buchin, S. Har-Peled, and D. Oláh. Sometimes reliable spanners of almost linear size,
2019. arXiv:1912.01547.

4 K. Buchin, S. Har-Peled, and D. Oláh. A spanner for the day after. In Proc. 35th Int.
Annu. Sympos. Comput. Geom. (SoCG), pages 19:1–19:15, 2019. URL: https://doi.org/
10.4230/LIPIcs.SoCG.2019.19, doi:10.4230/LIPIcs.SoCG.2019.19.

5 T. M. Chan, S. Har-Peled, and M. Jones. On Locality-Sensitive Orderings and Their
Applications. In Proc. 34th Int. Annu. Sympos. Comput. Geom. (SoCG), pages 21:1–21:17,
2018. URL: http://drops.dagstuhl.de/opus/volltexte/2018/10114, doi:10.4230/
LIPIcs.ITCS.2019.21.

6 C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient algorithms for constructing
fault-tolerant geometric spanners. In Proc. 30th Annu. ACM Sympos. Theory Comput.
(STOC), pages 186–195, 1998. URL: http://doi.acm.org/10.1145/276698.276734,
doi:10.1145/276698.276734.

7 C. Levcopoulos, G. Narasimhan, and M. Smid. Improved algorithms for constructing fault-
tolerant spanners. Algorithmica, 32(1):144–156, 2002. URL: https://doi.org/10.1007/
s00453-001-0075-x, doi:10.1007/s00453-001-0075-x.

8 T. Lukovszki. New results of fault tolerant geometric spanners. In Proc. 6th Workshop
Algorithms Data Struct. (WADS), pages 193–204, 1999. URL: https://doi.org/10.1007/
3-540-48447-7_20, doi:10.1007/3-540-48447-7_20.

A polynomial-time partitioning algorithm for
weighted cactus graphs
Maike Buchin and Leonie Selbach

Ruhr-University Bochum
maike.buchin@rub.de, leonie.selbach@rub.de

Abstract
Some graph partitioning problems are known to be NP-hard for certain graph classes and poly-
nomially solvable for others. We study the problem of partitioning the vertex set of a weighted
cactus graph into clusters with bounded weights and present a polynomial-time algorithm that
solves the problem with the optimal as well as some fixed number of clusters.

1 Introduction

Let G = (V, E) be a cactus graph, that is a graph where every two simple cycles have at most
one vertex in common. Every vertex v in G is assigned a non-negative integer weight w(v).
A (vertex) partition of G is a partition of the vertex set V into pairwise disjoint clusters
such that the induced subgraphs are connected. Given two non-negative integers l and u

(with l ≤ u), we call a partition (l, u)-partition if the weight of each cluster is at least l

and at most u. We consider different variants of this problem: For the minimum/maximum
(l, u)-partition problem we want to find a (l, u)-partition of a graph with the minimal resp.
maximal number of clusters. And for the p-(l, u)-partition problem the goal is to find a
partition with exactly p clusters (see Fig. 1).

Dyer and Frieze studied the complexity of different graph partitioning problems [3]. They
showed that partitioning a general graph into connected components (or trees) of a given
size is NP-complete, even for planar bipartite graphs – but polynomially solvable for both
series-parallel graphs and trees. Cordone and Maffioli consider partitioning an edge-weighted
graph into trees with different optimization goals [2]. They proved that this problem is
NP-hard for all cases if the graph has additional vertex weights and a weight constraint –
as a lower and upper weight bound for each tree – is added. The related tree-equipartition
problem, where the partition should consist of clusters with weight as equal as possible,
proved to be NP-complete for trees as well as 2-spiders, but can be solved in polynomial
time for other graph classes, such as stars, worms and caterpillars [6]. Ito et al. showed that
the (l, u)-partition problems are NP-hard for series-parallel graphs, but pseudo-polynomial
algorithms exist [5]. Ito et al. proved that the decision variant of those problems can be
solved in polynomial time if the graph is a weighted tree [4]. In this paper we present a
(l, u)-partitioning algorithm for weighted cactus graphs whose runtime can be reduced to
solve the given problems in polynomial time. Because of length constraints we excluded the
proofs, these can be found in the full version of this paper [1].

7

2

5 1

2

44

3

3

2

8

7

2

5 1

2

44

3

3

2

8

Figure 1 Left: Minimum (3, 12)-partition. Right: 6-(3, 12)-partition.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

17:2 A polynomial-time partitioning algorithm for weighted cactus graphs

2 Preliminaries

Let G = (V, E, w) be a weighted cactus graph. We want to find a partition of G into clusters
Vi such that the weight of each cluster w(Vi) =

∑
v∈Vi

w(v) lies between the two given
bounds: l ≤ w(Vi) ≤ u. For our algorithm we represent the graph G as a tree TG using
depth first search (DFS) on an arbitrary vertex. This vertex becomes the root of the tree
(see. Fig. 2). Every vertex of G is a node in TG and every cycle degenerates to a path. We
store a cycle by its path 〈x, y〉 in TG and define x as the start node and y as the end node of
this cycle. We denote the cycle by C(x, y). If two cycles are adjacent, their common node is
part of both cycles. When building the tree TG, this node will become the start node of at
least one of them.

I Lemma 2.1. Let v be a node in TG. If v ∈ C(x, y) and v ∈ C(x′, y′) for (x′, y′) 6= (x, y),
then v equals either x or x′ (or both).

I Corollary 2.2. For each node v there exists at most one cycle in TG which contains v but
where v is not the start node.

Figure 2 Turning a cactus graph G into a tree TG by starting the DFS with the red vertex r.
The cycle containing the node r is represented as a path 〈r, x, y, z〉 = C(r, z) with start node r and
end node z.

I Remark. Let v be a node with s children v1, v2, . . . , vs and let v be part of a cycle C(x, y)
with v 6= x. Because of Cor. 2.2 there is at most one such cycle. If v 6= y, there exists a child
v′ of v with v′ ∈ C(x, y) as well. W.l.o.g. we sort the children of v such that v′ = vs. This
allows easier definitions for the algorithm since these nodes have to be treated differently.

Let us define some further notations. Let Tv be the subtree rooted in the node v. We
have T = Tr for r being the root of T . We define T i

v as the subtree with root v and its first i

children (see Fig. 3). If v has s children, we have T s
v = Tv. Consider a partition P of the

graph. Let |P | be the size of the partition, meaning the number of clusters in P . For a node
v we denote the cluster of P that contains v by Cv.

Let P be a (l, u)-partition of a general tree. If the lower weight bound l equals zero,
the partition P induces a feasible (0, u)-partition of any subtree Tv. This is not necessarily
the case for a general (l, u)-partition since the weight of the cluster containing the node v

might not exceed the lower weight bound l. We call such a partition of a subtree Tv– where
w(Cv) ≤ u and l ≤ w(C ′) ≤ u for every cluster C ′ 6= Cv – an extendable (l, u)-partition.

M. Buchin and L. Selbach 17:3

Figure 3 Definition of a subtree T i
v of a node v.

By adding further nodes to the cluster Cv we can extend such a partition to be a feasible
(l, u)-partition. For a subtree Tv (or resp. T i

v) we define a set S(Tv) as follows:

S(Tv) = {(x, k) | ∃ extendable (l, u)-partition P of Tv such that |P | = k ∧ w(Cv) = x}

Thus, a tuple (x, k) corresponds to a possible partition of Tv, where x is the weight of the
cluster containing the node v and k is the number of clusters.

I Lemma 2.3. A rooted tree T has a p-(l, u)-partition if and only if there exists a tuple
(x, p) ∈ S(T) such that l ≤ x ≤ u.

Ito et al. described a method for solving the partition problems for weighted trees by
computing the sets S for every subtree T i

v bottom-up. With an adjustment they can decide
the partition problem in time O(p4n). Cactus graphs, however, present the challenge of
having cycles and therefore considerably more partition possibilities. We show how to extend
their algorithm to cactus graphs while retaining polynomial time.

3 Partitioning Algorithms

First, let us consider the decision of the p-(l, u)-partition problem, that is deciding if there
exists a (l, u)-partition of a given cactus graph G into p clusters. Using the tree representation
of G described in Sec. 2, we follow the general idea of Ito et al. but include a procedure that
deals efficiently with cycles. Similary, we present a general algorithm which we adjust to
solve the problems in polynomial time.

For each subtree T i
v we compute all extendable (l, u)-partitions with at most p clusters.

This can be done by combining the computed partitions of T i−1
v and Tvi as follows. First, let

us consider the case that v and vi are not part of a cycle. For each combination of partitions
for the given subtrees we have two options: Either we merge the clusters containing v resp.
vi or we do not (see Fig. 4). Obviously, we keep only the generated partitions that are
extendable (l, u)-partitions with size less than p. We have to make sure that in option 1 (Fig.
4b) the weight of the new cluster Cv does not exceed the upper bound u. In option 2 (Fig.
4c) P ′′ has to be a feasible (l, u)-partition – not just an extendable one. Therefore, we have
to make sure that the weight of the cluster C ′′vi

fulfills the lower weight constraint.
We compute those partitions using the sets S as defined in the previous section. We use

a specific set-operation denoted by ⊕. For two sets A = S(T i−1
v) and B = S(Tvi) we define:

A⊕B = {(x1, k1 + k2) | l ≤ x2, k1 + k2 ≤ p, (x1, k1) ∈ A, (x2, k2) ∈ B} (1)
∪ {(x1 + x2, k1 + k2 − 1) | x1 + x2 ≤ u, k1 + k2 − 1 ≤ p, (x1, k1) ∈ A, (x2, k2) ∈ B} .

The second line of this definition corresponds to all feasible partitions we obtain by merging
the clusters and the first line corresponds to those we get without merging. We assume

EuroCG’20

17:4 A polynomial-time partitioning algorithm for weighted cactus graphs

(a) Partitions P ′ and P ′′. (b) Option 1: vi ∈ Cv. (c) Option 2: vi /∈ Cv.

Figure 4 Combining the two partitions P ′ of T i−1
v and P ′′ of Tvi into a partition P of T i

v.

that w(v) ≤ u for all nodes v – otherwise a (l, u)-partition of G would not exist. We set
S(T 0

v) = {(w(v), 1)} and compute S(T i
v) = S(T i−1

v) ⊕ S(Tvi) iteratively for all 1 ≤ i ≤ cv

where cv is the number of children of the node v.
Now, let us consider cycles. Deleting one edge of a cycle leads to a path which we can

partition. For a cycle of length m there are m different paths. If we take the union over all
partitions of these paths, we obtain all possible partitions of the cycle. This remains true
even if we declare one node of the cycle as the “root” and consider the paths as trees (see.
Fig. 5). We call these the different configurations of a cycle which we number from 1 to m.
To find all partitions the m-th configuration is not necessary.

Figure 5 Configurations in a cycle of length four.

Let C be a cycle in G of length m and C(w0, wm−1) = 〈w0, w1, . . . , wm−1〉 be the
corresponding cycle in TG. Let each node wi have ci children and let w1 be the k-th child
of w0. Remember that for all other nodes wi+1 is always the ci-th, i.e. the last, child of wi

(Rem. 2). Similarly, we consider different configurations of a cycle in our tree representation
(see. Fig 6). The first one is the original subtree as in TG. For the second configuration we
introduce the node wm−1 with its corresponding subtree as an additional child of w0 and
remove it from wm−2. We continue this procedure of removing and adding nodes and their
corresponding subtrees. Thus, in configuration j the node wm−j+1 is no longer the child of
wm−j but of wm−j+2.

I Lemma 3.1. Let C be a cycle in G and C(w0, wm−1) the corresponding cycle in TG. A
partition P of C can be found in one of the m− 1 configurations of C(w0, wm−1).

Let us transfer this to the sets S(T i
v) as computed by the algorithm. We introduce additional

sets Sj(Twi
) for each node w that is part of a cycle. Each set Sj(Tw) contains tuples (x, k)

corresponding to an extendable (l, u)-partition of Tw in its configuration j. As before, such a
tuple corresponds to a partition of size k where the cluster containing the node w has weight
x. We can define the different computations for S(Twi) using the ⊕-operation as above.
First, let us consider the case where i = m− 1. Until the third configuration its subtree (and

M. Buchin and L. Selbach 17:5

w1

w0

w2

w3

w1

w0

w2

w3 w1

w0

w2

w3

T c1−1
w1

T c2−1
w2

Tw3

T c1−1
w1

T c2−1
w2

Tw3
Tw3

T c2−1
w2

T c1−1
w1

T k−1
w0

T k−1
w0

T k−1
w0

Figure 6 The different considered configurations for a cycle of length four in the subtree of w0.

therefore the computation) stays the same. Then, the node obtains a additional child wm−2
whose subtree (and hence partition set) changes with each configuration.

Sj(Twm−1) =
{

S(Twm−1)⊕ Sj(Twm−2) for j > 2,

S(Twm−1) otherwise.
(2)

When 0 < i < m− 1, that is wi is neither the start nor end node of the given cycle, we have
to consider three cases: In configuration m − i and m − i + 1 the subtree Twi is equal to
T ci−1

wi
because the last (ci-th) child is removed. If j < m− i, wi still has wi+1 as a child but

with a different subtree. If j > m− i + 1, wi does not have wi+1 as its last child but wi−1
instead. This can be formalized in the following way:

Sj(Twi
) = Sj(T ci

wi
) =

S(T ci−1
wi

)⊕ Sj(Twi+1) for j < m− i,

S(T ci−1
wi

)⊕ Sj(Twi−1) for j > m− i + 1,

S(T ci−1
wi

) otherwise.
(3)

Now let us consider the start node w0 of the cycle. For the first configuration we have to
combine the partitions of the subtree T k−1

w0 with the partitions of the subtree rooting in w1.
In case j > 1 the subtree of w1 has changed and we treat wm−1 as an additional child of w0.

Sj(T k
w0) =

{
S(T k−1

w0)⊕ Sj(Tw1) for j = 1,(
S(T k−1

w0)⊕ Sj(Tw1)
)
⊕ Sj(Twm−1) otherwise.

(4)

To compute the set S(T k
w0) we take the union over all configurations: S(T k

w0) =
⋃m−1

j=1 Sj(T k
w0).

Note that the computations change only for nodes that are part of the cycle. In each
configuration we delete only one edge and include a new one. This has no effect on the
remaining subtrees of each wi, i.e. T ci−1

wi
, and neither on the computations for those subtrees.

For the algorithm we use the bottom-up approach, set S(T 0
v) as above and compute S(T i

v)
for every 1 ≤ i ≤ cv. If there is a cycle C(v, w) with v as the start node and its i-th child
vi ∈ C(v, w), we use (4) with v = w0, vi = w1 and w = wm−1 to compute S(T i

v), using (3)
resp. (2) recursively. In the case that either v is not the start node of a cycle or vi is not
part of it, we can compute S(T i

v) = S(T i−1
v)⊕ S(Tvi

) as described before.

I Theorem 3.2. Given a weighted cactus graph G, a positive integer p and two non-negative
integers l and u (with l ≤ u). The p-(l, u)-partition problem can be decided in time O(u2p2n2)
using Algorithm 1.

EuroCG’20

17:6 A polynomial-time partitioning algorithm for weighted cactus graphs

Proof sketch. Every set S resp Sj has size O(up) and therefore every ⊕-operation takes
O(u2p2) time. For each node v the set S(Tv) (resp. Sj(Tv)) contributes to exactly one
⊕-operation. Since the number j is in O(n), we have O(n2) ⊕-operations and hence an
overall runtime of O(u2p2n2). J

Algorithm 1: Algorithm for deciding the p-(l, u)-partition problem for a cactus
graph.

forall v ∈ V bottom up do
S(T 0

v) = {(w(v), 1)}
for 1 ≤ i ≤ cv do

if there is a cycle C(v, w) with vi ∈ C(v, w) then
m = length(C(v, w))
for 1 ≤ j ≤ m− 1 do

Compute Sj(T i
v) using (4) (with v = w0, v1 = w1, w = wm−1) and

recursively (2) and (3)
S(T i

v) =
⋃m−1

j=1 Sj(T i
v)

else
S(T i

v) = S(T i−1
v)⊕ S(Tvi

)

if (x, k) ∈ S(Tr) such that l ≤ x ≤ u and k = p then return yes

I Remark. If we store for each tuple in the partition sets how it was computed – meaning if
we did or did not merge and therefore did or did not delete an edge – we can use backtracking
to compute the actual p-(l, u)-partition of the graph (assuming there is one).

Polynomial-time Algorithm

Analogously to Ito et al. we can use intervals to reduce the size of computed sets S(Tv).
The idea is the following: Instead of storing partitions as tuples (x, k), we store them as
([a, b] , k). Each interval [a, b] is a maximal d-consecutive subset of weights, where d = u− l

is the difference between the upper and lower weight bound. If we adjust the ⊕-operation
and Alg. 1 to compute interval sets I(T i

v) (resp. Ij(T i
v)) instead of S(T i

v) (resp. Sj(T i
v)), we

obtain an algorithm with the same number of ⊕-operations as before. Since the size of a
set I(T i

v) is O(p2) (instead of O(up)), the overall runtime for solving the p-(l, u)-partition
problem for cactus graphs is reduced to O(p4n2). Ito et al.’s work is missing a convincing
polynomial-time method for the computation of a partition. See the full version of our paper
for details about the time reduction and a method for the computation which has polynomial
time and space and is applicable for both trees and cactus graphs [1].

Minimum and Maximum Partition Problem

We showed that for a given number p we can partition a cactus graph into p clusters such
that the weight of each cluster lies between the lower bound l and upper bound u. Now we
consider the problem of finding a (l, u)-partition with the minimal resp. maximal number of
clusters. Ito et al. showed that the minimal resp. maximal number of clusters can be found
in O(n5) for trees. Similar reasoning and our computation method leads us to the following
result for cactus graphs.

M. Buchin and L. Selbach 17:7

I Theorem 3.3. Given a weighted cactus graph G and l and u as above. The minimum and
maximum (l, u)-partition problem can be solved in time O(n6).

References
1 Maike Buchin and Leonie Selbach. A polynomial-time partitioning algorithm for weighted

cactus graphs, 2020. arXiv:2001.00204.
2 Roberto Cordone and Francesco Maffioli. On the complexity of graph tree partition prob-

lems. Discrete Applied Mathematics, 134:51–65, 01 2004. doi:10.1016/S0166-218X(03)
00340-8.

3 M.E. Dyer and A.M. Frieze. On the complexity of partitioning graphs into connected
subgraphs. Discrete Applied Mathematics, 10(2):139 – 153, 1985. doi:https://doi.org/
10.1016/0166-218X(85)90008-3.

4 Takehiro Ito, Takao Nishizeki, Michael Schröder, Takeaki Uno, and Xiao Zhou. Partitioning
a weighted tree into subtrees with weights in a given range. Algorithmica, 62(3-4):823–841,
April 2012. doi:10.1007/s00453-010-9485-y.

5 Takehiro Ito, Xiao Zhou, and Takao Nishizeki. Partitioning a graph of bounded tree-width
to connected subgraphs of almost uniform size. Journal of Discrete Algorithms, 4(1):142 –
154, 2006. doi:10.1016/j.jda.2005.01.005.

6 Caterina De Simone, Mario Lucertini, Stefano Pallottino, and Bruno Simeone. Fair
dissections of spiders, worms, and caterpillars. Networks, 20(3):323–344, 1990. doi:
10.1002/net.3230200305.

EuroCG’20

The topological correctness of the
PL-approximation of isomanifolds
Jean-Daniel Boissonnat1 and Mathijs Wintraecken2

1 Université Côte d’Azur, INRIA
Sophia-Antipolis, France
jean-daniel.boissonnat@inria.fr

2 IST Austria
Klosterneuburg, Austria
m.h.m.j.wintraecken@gmail.com

Abstract
Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e.
manifolds defined as the zero set of some multivariate multivalued function f : Rd → Rd−n.
A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear
(PL) approximation based on a triangulation T of the ambient space Rd. In this paper, we give
conditions under which the PL-approximation of an isomanifold is topologically equivalent to the
isomanifold. The conditions can always be met by taking a sufficiently fine triangulation T .

1 Introduction

Isosurfacing especially in low dimensions is used in many fields of application, such as CT
scans in medicine, biochemistry, biomedicine, deformable modeling, digital sculpting, en-
vironmental science, and mechanics and dynamics, see [29] and the references mentioned
there. The marching cube approach [26] being the most popular approach taken. However
the result of the marching cube algorithm is not necessarily topologically correct.

Some results on provable correctness were achieved within the computational geometry
community [7, 30] in three dimensions. In case the isosurfacing is based on simplices instead
of cubes, such as in the marching tetrahedra algorithm [19], some bounds can be given
[1, 2], on for example the one-sided Hausdorff distance. In general homeomorphism proofs
in higher dimensions rely on some perturbation scheme to prove that a triangulation is
correct [34, 5, 8, 9, 12]. This is a major difference with one and two dimensional surfaces
where no such requirements exist [21], [31, Section 10.2]. In this paper we shall see that no
perturbations are necessary for isomanifolds as well.

The techniques used here are also different from many of the standard tools. Manifold
triangulation/reconstruction algorithms use often Delaunay triangulations [32, 18, 14] and
use the closed ball property [23], see for example [3, 13]. Others use Whitney’s lemma [10] or
are based on collapses [4]. While the current paper mainly relies on the non-smooth implicit
function theorem [16] with some Morse theory.

We also emphasize that because we do not use a perturbation scheme, we cannot give
lower bounds on the quality of the linear pieces in the Piecewise-Linear (PL) approximation.
This is a clear difference with previous methods [34, 12, 11, 9] whose output is a thick
triangulation. Although thickness is an appealing property, it complicates the analysis
further and requires perturbation schemes that work fine in theory, but the constants are
miserable and the methods do not work in practice in high dimension.

A full version of this paper is available at https://hal.inria.fr/hal-02386193.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

18:2 Topologically correct PL-approximation of isomanifolds

2 Isomanifolds without boundary

Let f : Rd → Rd−n be a smooth function and suppose that 0 is a regular value of f , meaning
that at every point x such that f(x) = 0, the Jacobian of f is non-degenerate. Then the
zero set of f is a manifold as a direct consequence of the implicit function theorem, see for
example [20, Section 3.5]. We further assume that f−1(0) is compact. As in [1] we consider
a triangulation T of Rd. The function fPL is a linear interpolation of the values of f at the
vertices if restricted to a single simplex σ ∈ T . For any function g : Rd → Rd−n we write gi
for the components of g.

We prove that under certain conditions there is an isotopy from the zero set of f to
the zero set of fPL. The proof will be using the Piecewise-Linear (PL) map FPL(x, τ) =
(1−τ)f(x)+τfPL(x), which interpolates between f and fPL and is based on the generalized
implicit function theorem. The isotopy is in fact stronger than just the existence of a
homeomorphism from the zero set of f to that of fPL.

Our result in particular implies that the zero set fPL is a manifold. So this significantly
improves on the result of Allgower and Georg [2, Theorem 15.4.1]. The conditions are also
weaker, because we do not require that the zero set avoids simplices that have dimension
less than the codimension, see [2, Definition 12.2.2] and the text above [2, Theorem 15.4.1].
The idea to avoid these low dimensional simplices originates with Whitney [34], with whom
Allgower and George [2, 1] were apparently unfamiliar. Very heavy perturbation schemes
for the vertices of the ambient triangulation T are required for the manifold to be suffi-
ciently far from simplices in the ambient triangulations that have dimension less than the
codimension of the manifold [34, 12]. Various techniques have been developed to compute
such perturbations with guarantees. They typically consist in perturbing the position of the
sample points or in assigning weights to the points. Complexity bounds are then obtained
using volume arguments. See, for example [13, 11, 8, 6]. However, these techniques suffer
from several drawbacks.

We are, by definition, only interested in f−1(0) so we can ignore points that are suffi-
ciently far from this zero set. So,
I Remark. Write Σ0 for the set of all σ ∈ T , such that (f i)−1(0)∩ σ 6= ∅ for all i. Then for
all τ , {x | FPL(x, τ) = 0} ⊂ Σ0.

Now we define a few constants, depending only on f and the ambient triangulation T ,
which will be useful in the statements of the main results.

I Definition 2.1. We define:

γ0 = inf
x∈Σ0

| det(grad(f i) · grad(f j))i,j |,

γ1 = sup
x∈Σ0

max
i
|grad(f i)|,

where | · | denotes the Euclidean norm,

α = sup
x∈Σ0

max
i
‖Hes(f i)‖2 = sup

x
max
i
‖(∂k∂lf i)k,l‖2,

D is the longest edge length of a simplex in Σ0, T is the smallest thickness of a simplex in Σ0.
Here grad(f i) = (∂jfi)j denotes the gradient of component f i, det(grad(f i) · grad(f j))i,j
denotes the determinant of the matrix with entries grad(f i) · grad(f j), ‖ · ‖2 the operator
2-norm, and (∂k∂lfi)k,l the matrix of second order derivatives, that is the Hessian (Hes).
The thickness is the ratio of the height over the longest edge length. We recall the definition

J-D. Boissonnat and M. Wintraecken 18:3

of the operator norm: ‖A‖p = maxx∈Rn
|Ax|p
|x|p , with | · |p the p-norm on Rn. We will assume

that γ0, γ1, α,D, T ∈ (0,∞).

A good choice for T is the Coxeter triangulation of type Ad, see [17, 15], or the related
Freudenthal triangulations, see [24, 25, 22, 33], which can be defined for different values of
D while keeping T constant. In this paper, we will thus think of all the above quantities as
well as d and n as constants except D and our results will hold for D small enough.

The result
We are going to construct an ambient isotopy. The zero set of FPL(x, 0) (or f(x)) gives the
smooth isosurface, while the zero set of FPL(x, 1) (or fPL(x)) gives the PL approximation,
that is the triangulation of the isosurface after possible barycentric subdivision. The map
τ 7→ {x | FPL(x, τ) = 0} in fact gives an isotopy.

Figure 1 Similarly to Morse theory we find that f−1
P L(0) (top) and f−1(0) (bottom) are isotopic

if the function τ restricted to F−1
P L(0) does not encounter a Morse critical point.

Proving isotopy consists of two technical steps, as well as the use of a standard observation
from Morse theory/gradient flow in the third step. The technical steps are 1) Let σ ∈ T . In
Corollary 2.6 we show that {(x, τ) | FPL(x, τ) = 0} ∩ (σ × [0, 1]) is a smooth manifold. 2)
In Corollary 2.15 we prove that F−1

PL(0) is a manifold using nonsmooth analysis.
In Proposition 2.7 we also see that F−1

PL(0) is never tangent to the τ = c planes, where c is
a constant. So we find that the gradient field of τ restricted to F−1

PL(0), is piecewise smooth
and never vanishes.

Now we arrive at the third step, where we use gradient flows to find an isotopy. This is
similar to a standard observation in Morse theory [27, 28], with the exception that we now
consider piecewise-smooth instead of smooth vector fields. We refer to Milnor [27] for an
excellent introduction, see Lemma 2.4 and Theorem 3.1 in particular.

EuroCG’20

18:4 Topologically correct PL-approximation of isomanifolds

I Lemma 2.2 (Gradient flow induced isotopies). The flow of a non-vanishing piecewise-
smooth gradient vector field of a function τ on a compact manifold generates a isotopy from
τ = c1 to τ = c2, where c1 and c2 are constants.

2.1 Estimates for a single simplex
We now first concentrate on a single simplex σ and write fL for the linear function whose
values on the vertices of σ coincide with f .

2.1.1 Preliminaries and variations of know results
We need simple estimates similar to Propositions 2.1 and 2.2 of Allgower and Georg [1].

I Lemma 2.3. Let σ ⊂ Σ0 and let fL be as described above. Then |f iL(x)− f i(x)| ≤ 2D2α

for all x ∈ σ.

I Proposition 2.4. Let σ ⊂ Σ0 and let fL be as described above. Then, for all x ∈ σ = {vk},

|gradf iL − gradf i| =
√∑

j

(∂jf iL(x)− ∂jf i(x))2 ≤ 4dDα
T

.

2.1.2 Estimates on the gradient inside a single simplex
We write FL(x, τ) = (1 − τ)f(x) + τfL(x). We note that FL extends smoothly outside σ.
Here and throughout we restrict ourselves to the setting where τ ∈ [0, 1]. The function FL
has Rd−n as image.

We can now state the following

I Lemma 2.5. If we write grad(x,τ) for the gradient that includes the τ component, we have

| det(grad(x,τ)(F iL) · grad(x,τ)(F
j
L))i,j | > γ0 − g1(D), (1)

with g1(D) = O(D). See (2) in Appendix 3 for the exact expression of g1.

From the previous statement we immediately have that

I Corollary 2.6 (F−1
L (0) is a manifold in a neighbourhood of σ × [0, 1]). If γ0 > g1(D) the

implicit function theorem applies to FL(x, τ) inside σ × [0, 1]. (In fact it applies to an open
neighbourhood of this set). In particular, we have proven the first of our two technical steps,
{(x, τ) | FPL(x, τ) = 0} ∩ (σ × [0, 1]) is a smooth manifold.

2.1.3 Transversality with regard to the τ -direction
We will also prove the main result which we need for the third step, that is the gradient of
τ restricted to FPL(x, τ) = 0, is piecewise smooth and never vanishes. We now prove inside
each σ × [0, 1] the gradient of τ on FL = 0 is smooth and does not vanish.

I Proposition 2.7. Let v1, . . . , vd−n ∈ Rd, |vi| ≤ γ1, for all i, and assume that det(vi ·
vj)i,j > γ0. If γ0 > g1(D), and √γ0/γ

d−n−1
1 > 4dDα

T , then inside each σ × [0, 1] the
gradient of τ on F−1

L (0) is smooth and does not vanish.

J-D. Boissonnat and M. Wintraecken 18:5

2.2 Global result
We are now going to prove the global result. For this, we need to recall some definitions
and results from non-smooth analysis. We refer to [16] for an extensive introduction.

I Definition 2.8 (Generalized Jacobian, Definition 2.6.1 of [16]). Let F : Rd+1 → Rd−n,
where F is assumed to be just Lipschitz. The generalized Jacobian of F at x0 denoted by
JF (x0), is the convex hull of all (d − n) × (d + 1)-matrices B obtained as the limit of a
sequence of the form JF (xi), where xi → x0 and F is differentiable at xi.

I Definition 2.9 ([16, page 253]). The generalized Jacobian JF (x0) is said to be of maximal
rank provided every matrix in JF (x0) is of maximal rank.

Write Rd+1 = Rn+1 × Rd−n and denote the coordinates of Rd+1 by (x, y) accordingly.
Fix a point (a, b), with F (a, b) = 0 ∈ Rd−n. We now write:

I Notation 2.10 ([16, page 256]). JF (x0, y0)|y is the set of all (n+ 1)× (n+ 1)-matrices M
such that, for some (n+ 1)× (d− n)-matrix N , the (n+ 1)× (d+ 1)-matrix [N,M] belongs
to JF (x0, y0).

I Theorem 2.11 (The generalized implicit function theorem [16, page 256]). Suppose that
JF (a, b)|y is of maximal rank. Then there exists an open set U ⊂ Rn+1 containing a such
that there exists a Lipschitz function g : U → Rd−n, such that g(a) = b and F (x, g(x)) = 0
for all x ∈ U .

Because of the definition of α, see Definition 2.1, and Proposition 2.4, we have that
grad(x,τ)FPL(x, τ) and grad(x,τ)FPL(x̃, τ) are close if x and x̃ are. In particular,

I Lemma 2.12. Let v be a vertex in T , x1, x2 ∈ star(v), and τ1, τ2 ∈ [0, 1], such that
grad(x,τ)F

i
PL(x1, τ1) and grad(x,τ)F

i
PL(x2, τ2) are well defined, then

|grad(x,τ)F
i
PL(x1, τ1)− grad(x,τ)F

i
PL(x2, τ2)| ≤ 10d2Dα

T
+ 4γ1D + 4D2α.

We now immediately have the same bound on points in the convex hull of a number of
such vectors:

I Corollary 2.13. Suppose we are in the setting of Lemma 2.12 and x0, x1, . . . , xm ∈ star(v),
τ0, . . . , τm ∈ [0, 1], and suppose that µ1, . . . , µm are positive weights such that µ1 +· · ·+µm =
1 then,

∣∣∣grad(x,τ)F
i
PL(x0, τ0)−∑m

k=1 µkgrad(x,τ)F
i
PL(xk, τk)

∣∣∣ ≤ 10d2Dα
T + 4γ1D + 4D2α.

Using Lemma 2.5 we see

I Lemma 2.14. Let v be a vertex in T , x1, . . . , xm ∈ star(v), and τ1, . . . , τm ∈ [0, 1], such
that grad(x,τ)F

i
PL(xk, τk), k = 0, . . . ,m are well defined. If we moreover assume D ≤ 1, and

6dDα
T ≤ γ1 we have that
∣∣∣∣ det

((
m∑

k=1
µk grad(x,τ)F

i
PL(xk, τk)

)
·
(

m∑

k=1
µk grad(x,τ)FPL(xk, τk)

))

i,j

∣∣∣∣ ≥ γ0 − g2(D),

with g2(D) = O(D). See (3) in Appendix 3 for the exact expression of g2.

I Corollary 2.15 ({x | FPL(x, τ) = 0} is a manifold). If D ≤ 1, 6dDα
T ≤ γ1, and γ0 >

g2(D) the generalized implicit function theorem, Theorem 2.11, applies to FPL(x, τ) = 0. In
particular, {x | FPL(x, τ) = 0} is a manifold.

EuroCG’20

18:6 Topologically correct PL-approximation of isomanifolds

This bound is stronger than the one in Corollary 2.6. So, {x | FPL(x, τ) = 0} is a
Piecewise-Smooth manifold if the conditions of Corollary 2.15 hold. The fact that FL(x, τ) =
0 is a Piecewise-Smooth manifold and Proposition 2.7 give that the gradient of τ is a
Piecewise-Smooth vector field whose flow we can integrate to give an isotopy from the
zero set of f to that of fPL. Thus,

I Theorem 2.16. If, D ≤ 1, 6dDα
T ≤ γ1,

√
γ0/γ

d−n−1
1 > 4dDα

T , and γ0 > g2(D) then the
zero set of f is isotopic to the zero set of fPL.

We stress that one can satisfy all conditions by choosing D sufficiently small.

3 Overview of constants

We give an overview. We write Σ0 for the set of all σ ∈ T , such that (f i)−1(0)∩ σ 6= for all
i. We write

γ0 = inf
x∈Σ0

| det(grad(f i) · grad(f j))i,j |

γ1 = sup
x∈Σ0

max
i
|grad(f i)|

α = sup
x∈Σ0

max
i
‖Hes(f i)‖2 = sup

x
max
i
‖(∂k∂lf i)k,l‖2

D : the longest edge length of a simplex in Σ0

T : the smallest thickness of a simplex in Σ0.

Ξ = Rd ⊂ Rd+1 is the space spanned by the d basis vectors corresponding to the x-directions.
The precise expressions for the gi(D) are:

g1(D) =nn+1
(
γ1 + 6dDα

T

)2n−1
(

2γ1
4dDα
T

+
(

6dDα
T

)2
)

(2)

g2(D) =nn+1
(

22n−1γ2n
1

(
14dDα
T

)
+ 5n−1γ2n−1

1 (2d+ 5)
(

24d2Dα

T
+ 9γ1D

))
(3)

If 4dDα
T ≤ γ1, g1(D) can be replaced by the simpler 34 ·

(5
2
)2n−1

nn+1γ2n
1

dDα
T .

References
1 Eugene L. Allgower and Kurt Georg. Estimates for piecewise linear approximations of

implicitly defined manifolds. Applied Mathematics Letters, 2(2):111–115, 1989.
2 Eugene L. Allgower and Kurt Georg. Numerical continuation methods: an introduction,

volume 13. Springer Science & Business Media, 1990.
3 N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete and Com-

putational Geometry, 22(4):481–504, 1999.
4 Dominique Attali and André Lieutier. Geometry-driven collapses for converting a Čech

complex into a triangulation of a nicely triangulable shape. Discrete Comput. Geom.,
54(4):798–825, December 2015. URL: http://dx.doi.org/10.1007/s00454-015-9733-7,
doi:10.1007/s00454-015-9733-7.

5 J.-D. Boissonnat, R. Dyer, and A. Ghosh. The Stability of Delaunay Triangulations. Inter-
national Journal of Computional Geometry & Applications, 23(4-5):303–334, 2013. URL:
http://dx.doi.org/10.1142/S0218195913600078, doi:10.1142/S0218195913600078.

J-D. Boissonnat and M. Wintraecken 18:7

6 Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. Geometric and Topological
Inference. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2018.
doi:10.1017/9781108297806.

7 Jean-Daniel Boissonnat, David Cohen-Steiner, and Gert Vegter. Isotopic implicit surface
meshing. Discrete & Computational Geometry, 39(1):138–157, Mar 2008. URL: https:
//doi.org/10.1007/s00454-007-9011-4, doi:10.1007/s00454-007-9011-4.

8 Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. Delaunay stability via perturba-
tions. International Journal of Computational Geometry & Applications, 24(02):125–152,
2014.

9 Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. Delaunay Triangulation of
Manifolds. Foundations of Computational Mathematics, 45:38, 2017. URL: https:
//hal.inria.fr/hal-01509888, doi:10.1007/s10208-017-9344-1.

10 Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, André Lieutier, and Mathijs Win-
traecken. Local conditions for triangulating submanifolds of Euclidean space. Accepted
for Discrete and Computational Geometry with minor revision, July 2019. URL: https:
//hal.inria.fr/hal-02267620.

11 Jean-Daniel Boissonnat and Arijit Ghosh. Manifold reconstruction using tangential Delau-
nay complexes. Discrete & Computational Geometry, 51(1):221–267, 2014.

12 Jean-Daniel Boissonnat, Siargey Kachanovich, and Mathijs Wintraecken. Triangulating
submanifolds: An elementary and quantified version of Whitney’s method. Preprint, De-
cember 2018. URL: https://hal.inria.fr/hal-01950149.

13 S-W. Cheng, T. K. Dey, and E. A. Ramos. Manifold reconstruction from point samples.
In Proc. 16th ACM-SIAM Symp. Discrete Algorithms, pages 1018–1027, 2005.

14 S.-W. Cheng, T. K. Dey, and J. R. Shewchuk. Delaunay Mesh Generation. Computer and
information science series. CRC Press, 2013.

15 Aruni Choudhary, Siargey Kachanovich, and Mathijs Wintraecken. Coxeter triangu-
lations have good quality. Preprint, December 2017. URL: https://hal.inria.fr/
hal-01667404.

16 Frank H. Clarke. Optimization and Nonsmooth Analysis, volume 5 of Classics in applied
mathematics. SIAM, 1990.

17 Harold SM Coxeter. Discrete groups generated by reflections. Annals of Mathematics,
pages 588–621, 1934.

18 T. K. Dey. Curve and Surface Reconstruction; Algorithms with Mathematical Analysis.
Cambridge University Press, 2007.

19 Akio Doi and Akio Koide. An efficient method of triangulating equi-valued surfaces by
using tetrahedral cells. IEICE TRANSACTIONS on Information and Systems, E74-D,
1991.

20 J. J. Duistermaat and J. A. C. Kolk. Multidimensional Real Analysis I: Differentiation.
Number 86 in Cambridge Studies in Advanced Mathematics. Cambridge University Press,
2004.

21 R. Dyer, H. Zhang, and T. Möller. Surface sampling and the intrinsic Voronoi diagram.
Computer Graphics Forum (Special Issue of Symp. Geometry Processing), 27(5):1393–1402,
2008.

22 B Curtis Eaves. A course in triangulations for solving equations with deformations, volume
234. Lecture Notes in Economics and Mathematical Systems, 1984.

23 Herbert Edelsbrunner and Nimish R. Shah. Triangulating topological spaces. International
Journal of Computational Geometry & Applications, 7(04):365–378, 1997.

24 Hans Freudenthal. Simplizialzerlegungen von beschrankter flachheit. Annals of Mathemat-
ics, pages 580–582, 1942.

EuroCG’20

18:8 Topologically correct PL-approximation of isomanifolds

25 Harold W Kuhn. Some combinatorial lemmas in topology. IBM Journal of research and
development, 4(5):518–524, 1960.

26 William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In ACM siggraph computer graphics, volume 21, pages 163–169.
ACM, 1987.

27 J. Milnor. Morse Theory. Princeton University Press, 1969.
28 John Milnor. Lectures on the H-Cobordism Theorem. Princeton University Press, 1965.

URL: http://www.jstor.org/stable/j.ctt183psc9.
29 Timothy S. Newman and Hong Yi. A survey of the marching cubes al-

gorithm. Computers & Graphics, 30(5):854 – 879, 2006. URL: http:
//www.sciencedirect.com/science/article/pii/S0097849306001336, doi:https://
doi.org/10.1016/j.cag.2006.07.021.

30 Simon Plantinga and Gert Vegter. Isotopic meshing of implicit surfaces. The Visual Com-
puter, 23(1):45–58, 2007.

31 Mael Rouxel-Labbé, Mathijs Wintraecken, and Jean-Daniel Boissonnat. Discretized Rie-
mannian Delaunay Triangulations. Research Report RR-9103, INRIA Sophia Antipolis -
Méditerranée, October 2017. URL: https://hal.inria.fr/hal-01612924.

32 Jonathan Richard Shewchuk. Lecture notes on Delaunay mesh generation, 1999.
33 Michael J Todd. The computation of fixed points and applications, volume 124. Lecture

Notes inEconomics and Mathematical Systems, 1976.
34 H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.

Holes and islands in random point sets∗

Martin Balko1, Manfred Scheucher2, and Pavel Valtr1

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic,
{balko}@kam.mff.cuni.cz

2 Institut für Mathematik, Technische Universität Berlin, Germany,
{scheucher}@math.tu-berlin.de

Abstract
For d ∈ N, let S be a finite set of points in Rd in general position. A set H of k points from S is
a k-hole in S if all points from H lie on the boundary of the convex hull conv(H) of H and the
interior of conv(H) does not contain any point from S. A set I of k points from S is a k-island
in S if conv(I) ∩ S = I. Note that each k-hole in S is a k-island in S.

For fixed positive integers d, k and a convex body K in Rd with d-dimensional Lebesgue
measure 1, let S be a set of n points chosen uniformly and independently at random from K.
We show that the expected number of k-islands in S is in O(nd). In the case k = d+ 1, we prove
that the expected number of empty simplices (that is, (d+ 1)-holes) in S is at most 2d−1 ·d! ·

(
n
d

)
.

Our results improve and generalize previous bounds by Bárány and Füredi (1987), Valtr (1995),
Fabila-Monroy and Huemer (2012), and Fabila-Monroy, Huemer, and Mitsche (2015).

1 Introduction

For d ∈ N, let S be a finite set of points in Rd. The set S is in general position if, for every
k = 1, . . . , d − 1, no k + 2 points of S lie in an affine k-dimensional subspace. A set H of
k points from S is a k-hole in S if H is in convex position and the interior of the convex
hull conv(H) of H does not contain any point from S; see Figure 1 for an illustration in the
plane. We say that a subset of S is a hole in S if it is a k-hole in S for some integer k.

(a) (b) (c)

Figure 1 (a) A 6-tuple of points in convex position in a planar set S of 10 points. (b) A 6-hole
in S. (c) A 6-island in S whose points are not in convex position.

Let h(k) be the smallest positive integer N such that every set of N points in general
position in the plane contains a k-hole. In the 1970s, Erdős [7] asked whether the number h(k)

∗ M. Balko was supported by the grant no. 18-19158S of the Czech Science Foundation (GAČR), by the
Center for Foundations of Modern Computer Science (Charles University project UNCE/SCI/004), and
by the PRIMUS/17/SCI/3 project of Charles University. M. Scheucher was supported by DFG Grant
FE 340/12-1. P. Valtr was supported by the grant no. 18-19158S of the Czech Science Foundation
(GAČR) and by the PRIMUS/17/SCI/3 project of Charles University. This article is part of a project
that has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 810115).

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

19:2 Holes and islands in random point sets

exists for every k ∈ N. It was shown in the 1970s and 1980s that h(4) = 5, h(5) = 10 [12],
and that h(k) does not exist for every k ≥ 7 [13]. That is, while every sufficiently large set
contains a 4-hole and a 5-hole, Horton constructed arbitrarily large sets with no 7-holes.
His construction was generalized to so-called Horton sets by Valtr [18]. The existence of
6-holes in every sufficiently large point set remained open until 2007, when Gerken [11] and
Nicolas [16] independently showed that h(6) exists; see also [20].

These problems were also considered in higher dimensions. For d ≥ 2, let hd(k) be the
smallest positive integer N such that every set of N points in general position in Rd contains
a k-hole. In particular, h2(k) = h(k) for every k. Valtr [18] showed that hd(k) exists for
k ≤ 2d + 1 but it does not exist for k > 2d−1(P (d − 1) + 1), where P (d − 1) denotes the
product of the first d − 1 prime numbers. The latter result was obtained by constructing
multidimensional analogues of the Horton sets.

After the existence of k-holes was settled, counting the minimum number Hk(n) of k-holes
in any set of n points in the plane in general position attracted a lot of attention. It is known,
and not difficult to show, that H3(n) and H4(n) are in Ω(n2). The currently best known
lower bounds on H3(n) and H4(n) were proved in [1]. The best known upper bounds are
due to Bárány and Valtr [6]. Altogether, these estimates are

n2 + Ω(n log2/3 n) ≤ H3(n) ≤ 1.6196n2 + o(n2)

and
n2

2 + Ω(n log3/4 n) ≤ H4(n) ≤ 1.9397n2 + o(n2).

For H5(n) and H6(n), the best quadratic upper bounds can be found in [6]. The best lower
bounds, however, are only H5(n) ≥ Ω(n log4/5 n) [1] and H6(n) ≥ Ω(n) [21]. For more
details, we also refer to the second author’s dissertation [17].

The quadratic upper bound on H3(n) can be also obtained using random point sets. For
d ∈ N, a convex body in Rd is a compact convex set in Rd with a nonempty interior. Let k be
a positive integer and let K ⊆ Rd be a convex body with d-dimensional Lebesgue measure
λd(K) = 1. We use EHK

d,k(n) to denote the expected number of k-holes in sets of n points
chosen independently and uniformly at random from K. The quadratic upper bound on
H3(n) then also follows from the following bound of Bárány and Füredi [5] on the expected
number of (d+ 1)-holes:

EHK
d,d+1(n) ≤ (2d)2d2 ·

(
n

d

)
(1)

for any d and K. In the plane, Bárány and Füredi [5] proved EHK
2,3(n) ≤ 2n2 +O(n logn) for

every K. This bound was later slightly improved by Valtr [19], who showed EHK
2,3(n) ≤ 4

(
n
2
)

for any K. In the other direction, every set of n points in Rd in general position contains at
least

(
n−1

d

)
(d+ 1)-holes [5, 14].

The expected number EHK
2,4(n) of 4-holes in random sets of n points in the plane was

considered by Fabila-Monroy, Huemer, and Mitsche [10], who showed

EHK
2,4(n) ≤ 18πD2n2 + o(n2) (2)

for any K, where D = D(K) is the diameter of K. Since we have D ≥ 2/
√
π, by the

Isodiametric inequality [8], the leading constant in (2) is at least 72 for any K.
In this paper, we study the number of k-holes in random point sets in Rd. In particular,

we obtain results that imply quadratic upper bounds on Hk(n) for any fixed k and that both
strengthen and generalize the bounds by Bárány and Füredi [5], Valtr [19], and Fabila-Monroy,
Huemer, and Mitsche [10].

M. Balko, M. Scheucher, and P. Valtr 19:3

2 Our results

Throughout the whole paper we only consider point sets in Rd that are finite and in general
position.

2.1 Islands and holes in random point sets
First, we prove a result that gives the estimate O(nd) on the minimum number of k-holes in
a set of n points in Rd for any fixed d and k. In fact, we prove the upper bound O(nd) even
for so-called k-islands, which are also frequently studied in discrete geometry. A set I of k
points from a point set S ⊆ Rd is a k-island in S if conv(I) ∩ S = I; see part (c) of Figure 1.
Note that k-holes in S are exactly those k-islands in S that are in convex position. A subset
of S is an island in S if it is a k-island in S for some integer k.

I Theorem 2.1. Let d ≥ 2 and k ≥ d+ 1 be integers and let K be a convex body in Rd with
λd(K) = 1. If S is a set of n ≥ k points chosen uniformly and independently at random
from K, then the expected number of k-islands in S is at most

2d−1 ·
(

2d2d−1
(

k

bd/2c

))k−d−1
· (k − d) · n(n− 1) · · · (n− k + 2)

(n− k + 1)k−d−1 ,

which is in O(nd) for any fixed d and k.

The bound in Theorem 2.1 is tight up to a constant multiplicative factor that depends
on d and k, as, for any fixed k ≥ d, every set S of n points in Rd in general position contains
at least Ω(nd) k-islands. To see this, observe that any d-tuple T of points from S determines
a k-island with k − d closest points to the hyperplane spanned by T (ties can be broken by,
for example, taking points with lexicographically smallest coordinates), as S is in general
position and thus T is a d-hole in S. Any such k-tuple of points from S contains

(
k
d

)
d-tuples

of points from S and thus we have at least
(

n
d

)
/
(

k
d

)
∈ Ω(nd) k-islands in S.

Thus, by Theorem 2.1, random point sets in Rd asymptotically achieve the minimum
number of k-islands. This is in contrast with the fact that, unlike Horton sets, they contain
arbitrarily large holes. Quite recently, Balogh, González-Aguilar, and Salazar [3] showed
that the expected number of vertices of the largest hole in a set of n random points chosen
independently and uniformly over a convex body in the plane is in Θ(logn/(log logn)).

For k-holes, we modify the proof of Theorem 2.1 to obtain a slightly better estimate.

I Theorem 2.2. Let d ≥ 2 and k ≥ d+ 1 be integers and let K be a convex body in Rd with
λd(K) = 1. If S is a set of n ≥ k points chosen uniformly and independently at random
from K, then the expected number EHK

d,k(n) of k-holes in S is in O(nd) for any fixed d and
k. More precisely,

EHK
d,k(n) ≤ 2d−1 ·

(
2d2d−1

(
k

bd/2c

))k−d−1
· n(n− 1) · · · (n− k + 2)

(k − d− 1)! · (n− k + 1)k−d−1 .

For d = 2 and k = 4, Theorem 2.2 implies EHK
2,4(n) ≤ 128 · n2 + o(n2) for any K, which

is a worse estimate than (2) if the diameter of K is at most 8/(3
√
π) ' 1.5. However, the

proof of Theorem 2.2 can be modified to give EHK
2,4(n) ≤ 12n2 + o(n2) for any K, which is

always better than (2). We believe that the leading constant in EHK
2,4(n) can be estimated

even more precisely and we hope to discuss this direction in future work.
In the case k = d+ 1, the bound in Theorem 2.2 simplifies to the following estimate on

the expected number of (d+ 1)-holes (also called empty simplices) in random sets of n points
in Rd.

EuroCG’20

19:4 Holes and islands in random point sets

I Corollary 2.3. Let d ≥ 2 be an integer and let K be a convex body in Rd with λd(K) = 1.
If S is a set of n points chosen uniformly and independently at random from K, then the
expected number of (d+ 1)-holes in S satisfies

EHK
d,d+1(n) ≤ 2d−1 · d! ·

(
n

d

)
.

Corollary 2.3 is stronger than the bound (1) by Bárány and Füredi [5] and, in the planar
case, coincides with the bound EHK

2,3(n) ≤ 4
(

n
2
)
by Valtr [19]. In fact, the bound in the

plane seems to be tight up to a smaller order term. Again, we hope to discuss this direction
in future work.

We also consider islands of all possible sizes and show that their expected number is in
2Θ(n(d−1)/(d+1)).

I Theorem 2.4. Let d ≥ 2 be an integer and let K be a convex body in Rd with λd(K) = 1.
Then there are constants C1 = C1(d), C2 = C2(d), and n0 = n0(d) such that for every set S
of n ≥ n0 points chosen uniformly and independently at random from K the expected number
E[X] of islands in S satisfies

2C1·n(d−1)/(d+1) ≤ E[X] ≤ 2C2·n(d−1)/(d+1)
.

Since each island in S has at most n points, there is a k ∈ {1, . . . , n} such that the
expected number of k-islands in S is at least (1/n)-fraction of the expected number of all
islands, which is still in 2Ω(n(d−1)/(d+1)). This shows that the expected number of k-islands
can become asymptotically much larger than O(nd) if k is not fixed.

2.2 Islands and holes in d-Horton sets
To our knowledge, Theorem 2.1 is the first nontrivial upper bound on the minimum number
of k-islands a point set in Rd with d > 2 can have. For d = 2, Fabila-Monroy and Huemer [9]
showed that, for every fixed k ∈ N, the Horton sets with n points contain only O(n2)
k-islands. For d > 2, Valtr [18] introduced a d-dimensional analogue of Horton sets. Perhaps
surprisingly, these sets contain asymptotically more than O(nd) k-islands for k ≥ d+ 1. For
each k with d+ 1 ≤ k ≤ 3 · 2d−1, they even contain asymptotically more than O(nd) k-holes.

I Theorem 2.5. Let d ≥ 2 and k be fixed positive integers. Then every d-dimensional Horton
set H with n points contains at least Ω(nmin{2d−1,k}) k-islands in H. If k ≤ 3 · 2d−1, then H
even contains at least Ω(nmin{2d−1,k}) k-holes in H.

3 Idea of the proof of Theorem 2.1

Let d and k be fixed integers with k > d ≥ 2. To show that the number of k-islands in a set
S of n points chosen uniformly and independently at random from the convex body K ⊂ Rd

is of order O(nd), we prove an O(1/nk−d) bound on the probability that an ordered k-tuple
I = (p1, . . . , pk) of points from S determines a k-island in S with the following two additional
properties:

(P1) The points p1, . . . , pd+1 determine the largest volume simplex 4 with vertices in I.
(P2) For some a ∈ {0, . . . , k − d− 1}, the points pd+2, . . . , pd+1+a lie inside 4 and the points

pd+2+a, . . . , pk lie outside 4. Moreover, roughly speaking, the points pd+2+a, . . . , pk have
increasing distance to 4 as their index increases.

M. Balko, M. Scheucher, and P. Valtr 19:5

First, we prove an O(1/na+1) bound on the probability that 4 contains precisely the
points pd+2, . . . , pd+1+a from S, which means that the points p1, . . . , pd+1+a determine an
island in S.

Next, for i = d+ 2 + a, . . . , k, we show that, conditioned on the fact that the (i− 1)-tuple
(p1, . . . , pi−1) determines an island in S satisfying (P1) and (P2), the i-tuple (p1, . . . , pi)
determines an island in S satisfying (P1) and (P2) with probability O(1/n).

Then it immediately follows that the probability that I determines a k-island in S with
the desired properties is at most

O
(

1/na+1 · (1/n)k−(d+1+a)
)

= O(1/nk−d).

Since there are n · (n− 1) · · · (n−k+ 1) = O(nk) possibilities to select such an ordered subset
I and each k-island in S is counted at most k! times, we obtain the desired bound

O
(
nk · nd−k · k!

)
= O(nd)

on the expected number of k-islands in S.
To be more precise: to get rid of technical difficulties and also to obtain better multi-

plicative constants, we consider a so-called canonical labeling of the points p1, . . . , pk which
requires more conditions on I than properties (P1) and (P2). This labeling is unique and
therefore we avoid the above mentioned overcounting and get rid of the factor k!.

References
1 O. Aichholzer, M. Balko, T. Hackl, J. Kynčl, I. Parada, M. Scheucher, P. Valtr, and

B. Vogtenhuber. A Superlinear Lower Bound on the Number of 5-Holes. In 33rd In-
ternational Symposium on Computational Geometry (SoCG 2017), volume 77 of Leib-
niz International Proceedings in Informatics, pages 8:1–8:16, 2017. Full version: http:
//arXiv.org/abs/1703.05253.

2 G. E. Andrews, R. Askey, and R. Roy. Special functions, volume 71 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1999.

3 J. Balogh, H. González-Aguilar, and G. Salazar. Large convex holes in random point sets.
Computational Geometry, 46(6):725–733, 2013.

4 I. Bárány. A note on Sylvester’s four-point problem. Studia Scientiarum Mathematicarum
Hungarica. A Quarterly of the Hungarian Academy of Sciences, 38:73–77, 2001.

5 I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canadian Mathematical
Bulletin, 30(4):436–445, 1987.

6 I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons.
Studia Scientiarum Mathematicarum Hungarica, 41(2):243–266, 2004.

7 P. Erdős. Some more problems on elementary geometry. Australian Mathematical Society
Gazette, 5:52–54, 1978.

8 L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks
in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015.

9 R. Fabila-Monroy and C. Huemer. Covering Islands in Plane Point Sets. In Computational
Geometry: XIV Spanish Meeting on Computational Geometry, EGC 2011, volume 7579 of
Lecture Notes in Computer Science, pages 220–225. Springer, 2012.

10 R. Fabila-Monroy, C. Huemer, and D. Mitsche. Empty non-convex and convex four-gons
in random point sets. Studia Scientiarum Mathematicarum Hungarica. A Quarterly of the
Hungarian Academy of Sciences, 52(1):52–64, 2015.

11 T. Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete & Computational
Geometry, 39(1):239–272, 2008.

EuroCG’20

19:6 Holes and islands in random point sets

12 H. Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathematik,
33:116–118, 1978. In German.

13 J. D. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin, 26:482–
484, 1983.

14 M. Katchalski and A. Meir. On empty triangles determined by points in the plane. Acta
Mathematica Hungarica, 51(3-4):323–328, 1988.

15 J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002.

16 M. C. Nicolas. The Empty Hexagon Theorem. Discrete & Computational Geometry,
38(2):389–397, 2007.

17 M. Scheucher. Points, Lines, and Circles: Some Contributions to Combinatorial Geometry.
PhD thesis, Technische Universität Berlin, Institut für Mathematik, 2019.

18 P. Valtr. Sets in Rd with no large empty convex subsets. Discrete Mathematics, 108(1):115–
124, 1992.

19 P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Scien-
tiarum Mathematicarum Hungarica, pages 155–163, 1995.

20 P. Valtr. On empty hexagons. In Surveys on Discrete and Computational Geometry:
Twenty Years Later, volume 453 of Contemporary Mathematics, pages 433–441. American
Mathematical Society, 2008.

21 P. Valtr. On empty pentagons and hexagons in planar point sets. In Proceedings of
Computing: The Eighteenth Australasian Theory Symposium (CATS 2012), pages 47–48,
Melbourne, Australia, 2012.

Computing Area-Optimal Simple
Polygonalizations
Sándor P. Fekete1, Andreas Haas1, Phillip Keldenich1, Michael
Perk1, and Arne Schmidt1

1 Department of Computer Science, TU Braunschweig, Germany
{s.fekete, a.haas, p.keldenich, m.perk, arne.schmidt}@tu-bs.de

Abstract
We consider methods for finding a simple polygon of minimum (Min-Area) or maximum (Max-
Area) possible area for a given set of points in the plane. Both problems are known to be
NP-hard; at the center of the recent CG Challenge, practical methods have received considerable
attention. However, previous methods focused on heuristic methods, with no proof of optimality.
We develop exact methods, based on a combination of geometry and integer programming. As
a result, we are able to solve instances of up to n = 25 points to provable optimality. While this
extends the range of solvable instances by a considerable amount, it also illustrates the practical
difficulty of both problem variants.

1 Introduction

While the classic geometric Traveling Salesman Problem (TSP) is to find a (simple) polygon
with a given set of vertices that has shortest perimeter, it is natural to look for a simple
polygon with a given set of vertices that minimizes another basic geometric measure: the
enclosed area. The problem Min-Area asks for a simple polygon with minimum enclosed
area, while Max-Area demands one of maximum area; see Figure 1 for an illustration.

Both problem variants were shown to be NP -complete by Fekete [2,3,6], who also showed
that no polynomial-time approximation scheme (PTAS) exists for Min-Area problem and
gave a 1

2 -approximation algorithm for Max-Area.

1.1 Related Work
Most previous practical work has focused on finding heuristics for both problems. Taranilla
et al. [11] proposed three different heuristics. Peethambaran [9,10] later proposed randomized
and greedy algorithms on solving Min-Area as well as the d-dimensional variant of both
Min-Area and Max-Area. Considerable recent attention and progress was triggered by the
2019 CG Challenge, which asked contestants to find good solutions for a wide spectrum of
benchmark instances with up to 1,000,000 points; details will be described in a forthcoming
special issue of the Journal of Experimental Algorithms [1].

Despite this focus, there has only been a limited amount of work on computing provably
optimal solutions for instances of interesting size. The only notable exception is by Fekete et
al. [4], who were able to solve all instances of Min-Area with up to n = 14 and some with up
to n = 16 points, as well as all instances of Max-Area with up to n = 17 and some with up
to n = 19 points. This illustrates the inherent practical difficulty, which differs considerably
from the closely related TSP, for which even straightforward IP-based approaches can yield
provably optimal solutions for instances with hundreds of points, and sophisticated methods
can solve instances with tens of thousands of points.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

20:2 Computing Area-Optimal Simple Polygonalizations

Figure 1 (Top) A set of 20 points. (Bottom Left) Min-Area solution. (Bottom Right) Max-Area
solution.

1.2 Our Results
We present a systematic study of exact methods for Min-Area and Max-Area polygo-
nizations. We show that a number of careful enhancements can help to extend the range of
instances that can be solved to provable optimality, with different approaches working better
for the two problem variants. On the other hand, our work shows that the problems appear
to be practically harder than other geometric optimization problems such as the Euclidean
TSP.

2 Tools

We considered two models based on integer programming: an edge-based formulation (de-
scribed in Section 2.1) and a triangle-based formulation (described in Section 2.2). In addition,
we developed a number of further refinements and improvements (described in Section 2.3).

2.1 Edge-Based Formulation
The first formulation is based on considering directed edges of the polygon boundary. As
shown in Figure 2, the area AP of a polygon P can be computed by adding the (signed)
triangle areas fe that are formed by edges e and an arbitrary, fixed reference point r.

This gives rise to an integer program in which the choice of half-edges e = (i, j) is modeled
by 0-1 variables ze = zij . In contrast to Euclidean TSP, intersections between edges must be
prevented with intersection constraints (5). The slab inequalities (6) ensure that the polygon
is oriented in a counterclockwise manner and thus the area calculation yields the correct
result. A slab D is a vertical strip bounded by the x-coordinates of two consecutive points in
the order of x-coordinates of points. The edges of slab D get ordered by the y-coordinate at
the intersection with the (centered) halving line between the points. Now the bottommost
chosen edge has to be oriented from left to right and the topmost one from right to left,

S.P. Fekete, A. Haas, P. Keldenich, M. Perk, A. Schmidt 20:3

r

(a) Triangles of the polygon
r

(b) Positive edge triangles

r

(c) Negative edge triangles
r

(d) Calculated difference between (b) and (c)

Figure 2 Area computation of a polygon using a reference point r

while chosen edges inbetween have to alternate in their direction. Furthermore, we introduce
subtour constraints (7) that enforce a polygonization that visits all points in S.

{min, max}
∑

e+∈Er

ze+ · fe −
∑

e−∈Er

ze− · fe (1)

∀si ∈ S :
∑

(j,i)∈δ+(si)

zji = 1 (2)

∀si ∈ S :
∑

(i,j)∈δ−(si)

zij = 1 (3)

∀e = {i, j} ∈ E : zij + zji ≤ 1 (4)

∀ intersecting {i, j}, {k, l} ∈ E : zij + zji + zkl + zlk ≤ 1 (5)

(∀ slabs D)(∀m = 1, . . . , |D|) :
m∑

i=1
zelr

iD

− zerl
iD

(6)

∀D (S, D 6= ∅ :
∑

(k,l)∈δ−(D) zkl ≥ 1∑
(k,l)∈δ+(D) zkl ≥ 1 (7)

∀e = {i, j} ∈ E : zij , zji ∈ {0, 1} (8)

As there are Θ(n2) possible edges, the number of intersection constraints may be as big
as Θ(n4). Moreover, the number of subtour constraints (7) may be exponential, so they are
only added when necessary in an incremental fashion.

EuroCG’20

20:4 Computing Area-Optimal Simple Polygonalizations

Figure 3 A set of five points and its ten empty triangles.

2.2 Triangle-Based Formulation

An alternative is the triangle-based formulation, which considers the set T (P) of possibly(
n
3
)
many empty triangles of a point set P ; see Figure 3 for an illustration. Making use

of the fact that a simple polygon with n vertices consists of (n − 2) empty triangles with
non-intersection interiors, we get the following IP formulation, in which the presence of an
empty triangle 4 is described by a 0-1 variable x4.

The objective function (9) is the sum over the chosen triangles areas. Triangle con-
straint (10) ensures that we choose exactly n− 2 triangles, which is the number of triangles
in a triangulation of a simple polygon. Furthermore, point constraints (11) guarantee that
a solution has at least one adjacent triangle at each point si ∈ S. Moreover, intersection
constraints (12) ensure that we only select triangles with disjoint interiors. Finally, the
subtour constraints (13) ensure that the set of selected triangles forms a simple polygon.

{min, max}
∑

4∈T
f4 · x4 (9)

∑

4∈T
x4 = n− 2 (10)

∀si ∈ S :
∑

4∈δ(si)

x4 ≥ 1 (11)

∀intersecting 4i,4j ∈ T : x4i
+ x4j

≤ 1 (12)

∀D (T, D 6= ∅, |D| ≤ n− 3 :
∑

4∈D
x4 ≤

∑

4∈δ(D)

x4 + |D| − 1 (13)

∀4 ∈ T : x4 ∈ {0, 1} (14)

As there are Θ(n3) possible empty triangles, the number of intersection constraints may
be as big as Θ(n6). Again, the number of subtour constraints (13) may be exponential, so
they are only added when necessary in an incremental fashion.

S.P. Fekete, A. Haas, P. Keldenich, M. Perk, A. Schmidt 20:5

2.3 Enhancing the Integer Programs
Given the considerable size of the described IP formulations, we developed a number
of enhancements to improve efficiency. For points on the convex hull, only a reduced
number of neighbors need to be considered. Employing good initial solutions improves the
performance in branch-and-bound searching; we used a number of greedy heuristics, as well
as the 1

2 -approximation of Fekete. The large number of corresponding inequalities made it
particularly important to deal with intersections in an efficient manner: we condensed the
constraints for cliques of intersecting objects into single inequalities, and introduced special
halfspace inequalities for the triangle-based approach. Further increases in efficiency were
obtained by careful choices of how to branch on variables and careful maintenance of
subtour constraints.

3 Experiments

Based on the described approaches, we ran experiments on some machines with some
specifications and parameters. We used CPLEX on an Intel(R) Core(TM) i7-6700K CPU
4.00GHz with four cores and 8 threads utilizing an L3 Cache with 8MB. The solver was able
to use a maximum amount of 64GB RAM.

3.1 Edge-Based Solvers
EdgeV1 is a basic integer program of the edge-based approach. It adds all intersection
constraints before starting the solving process and adds subtour constraints in every integer
solution. This integer program is an improvement to the edge-based MinArea integer
program presented by Papenberg et al. [4, 8]. In the former approach cycle based subtour
constraints were added after an optimal solution has been found. This resulted in poor
computing times even for small point sets. EdgeV2 extends the previous version by adding
intersection constraints at interim solutions. Moreover, this version includes a branching
extension where branching on a variable ze results in intersecting edges getting branched to
zero. We also utilize properties of the convex hull to exclude certain variables, i.e., edges
that connect two non-adjacent points on the convex hull, from the computation. EdgeV2
makes use of this concept by setting these variables to zero. Fekete et al. [4] introduced the
concept of a boundary index. Their results indicate small improvements in computation time
when adding the constraints. EdgeBIV2 extends the previous version by adding boundary
index constraints. The upcoming sections will show that the boundary index constraints
will increase the computation time of our integer program. Because of this, we removed
the concept in favor of version three. In EdgeV3 we additionally search for subtours in
fractional interim solutions and add slab constraints during the solving process. Furthermore,
we pass a start solution to the solver which was generated by an abstraction of the Greedy
Min-Area heuristic of Taranilla et al. [11].

3.2 Triangle-Based Solvers
TriangulationV1 is the first version of the triangle-based approach. Compared to the
basic triangulation approach of Papenberg [8], we have fewer variables and different subtour
constraints (13). Similar to the edge-based approaches, we pass a start solution obtained
from Greedy Min-Area as an input to the solver. We added further halfspace inequalities
as well as equalities for edges which connect non-adjacent vertices of the convex hull.

EuroCG’20

20:6 Computing Area-Optimal Simple Polygonalizations

In TriangulationV1 we add subtour constraints and intersection constraints in every
integer solution. TriangulationV2 extends the first version with so-called subtour angle
constraints. These are added at every integer solution. We are able to reuse the connected
components we need to compute along the way. This allows us to add constraints (13) without
much additional computation time. TriangulationV3 makes use of additional results on
ineffective subtour constraints. In addition to the constraints of TriangulationV2, we add
point-based subtour constraints to every intermediate integer solution.

3.3 Results for Minimization

As Figure 4a shows, our various enhancements result in a considerable reduction of the
computation times, compared to the approach by Papenberg et al. [4, 8]. Furthermore, it
turned out that the triangle-based approach was able to compute optimal solutions for larger
instances, as shown in Figure 5.

5 6 7 8 9 10 11 12 13 14 15
instance size

10−2

10−1

100

101

102

103

tim
e

(s
)

EdgeV1
EdgeBIV2
EdgeV2
EdgeV3
TriangulationV1
TriangulationV2
TriangulationV3
MinArea

(a)

15 16 17 18 19
instance size

101

102

103

104
tim

e
(s

)
EdgeV2
EdgeV3
TriangulationV1
TriangulationV3

(b)

Figure 4 Computation times of Min-Area of the implemented solver versions. The computing
time values are the average over 5 instances for each size. (a) Comparison with the MinArea version
of Papenberg [8] for random instances of size 5 − 15. MinArea operated on different instances than
the rest. (b) Comparison of the best solver versions of both approaches for random instances of
size 16 − 19.

19 20 21 22 23 24
instance size

0

20000

40000

60000

80000

tim
e

(s
)

TriangulationV1

Figure 5 Computation time of TriangulationV1 of both approaches for random instances of
size 19 − 24. Shown are the minimum and maximum computation time needed to optimality.

S.P. Fekete, A. Haas, P. Keldenich, M. Perk, A. Schmidt 20:7

3.4 Results for Maximization
For Max-Area, the edge-based approach turned out to be more useful: As Figure 6a
shows, the runtime for the triangle-based solvers grew significantly faster. This seems to be
mostly due to the fact that for the maximization version, intersections of “fat” intermediate
subpolygons occur more frequently than for the “skinny” ones in the minimization version.
Furthermore, we were able to expand the size of solvable instances in reasonable time to 23,
as shown in Figure 7b.

5 6 7 8 9 10 11 12 13 14 15
instance size

10−2

10−1

100

101

102

103

tim
e

(s
)

EdgeV1
EdgeV2
EdgeV3
TriangulationV1
TriangulationV2
TriangulationV3

(a)

5 6 7 8 9 10 11 12 13 14 15
instance size

10−2

10−1

100

101

tim
e

(s
)

EdgeV1
EdgeV2
EdgeV3

(b)

Figure 6 Computation times of all solver versions of Max-Area using both approaches for
random instances of size 5 − 15. The computing time values are the average over 10 instances for
each size. (a) Comparison of solver version from both approaches. (b) Comparison of all edge-based
solver versions

16 17 18 19
instance size

0

500

1000

1500

2000

2500

tim
e

(s
)

EdgeV1
EdgeV2
EdgeV3

(a)

20 21 22 23 24 25
instance size

0

20000

40000

60000

80000

tim
e

(s
)

EdgeV1

(b)

Figure 7 Computation time of Max-Area using different edge-based solver versions. (a) The
computing time of all edge-based solver versions on random instances of size 16 − 19. The values are
the average over 5 instances for each size. (b) Range of computation time for EdgeV1 for random
instances of size 20 − 25.

4 Conclusions

While our work shows that with some amount of algorithm engineering, it is possible to
extend the range of instances that can be solved to provable optimality, it also illustrates the
practical difficulty of the problem. This reflects the limitations of such IP-based methods:

EuroCG’20

20:8 Computing Area-Optimal Simple Polygonalizations

The edge-based approach makes use of an asymmetric variant of the TSP, which is known
to be harder than the symmetric TSP, while the triangle-based approach suffers from its
inherently large number of variables and constraints. Furthermore, the non-local nature
of Min-Area and Max-Area polygons (which may contain edges that connect far-away
points) makes it difficult to reduce the set of candidate edges.

As a result, Min-Area and Max-Area turn out to be prototypes of geometric optimiza-
tion problems that are difficult both in theory and practice. This differs fundamentally from
a problem such as Minimum Weight Triangulation, for which provably optimal solutions
to huge point sets can be found [7], and practically difficult instances seem elusive [5].

References
1 Erik D. Demaine, Sándor P. Fekete, and Joseph S.B. Mitchell. The 2019 CG Challenge:

Area-optimal polygonalizations. Manuscript, 2020.
2 Sándor P. Fekete. Geometry and the Travelling Salesman Problem. Ph.D. thesis, Depart-

ment of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, 1992.
3 Sándor P. Fekete. On simple polygonizations with optimal area. Discrete & Computational

Geometry, 23(1):73–110, 2000.
4 Sándor P. Fekete, Stephan Friedrichs, Michael Hemmer, Melanie Papenberg, Arne Schmidt,

and Julian Troegel. Area-and boundary-optimal polygonalization of planar point sets. In
European Workshop on Computational Geometry (EuroCG), pages 133–136, 2015.

5 Sándor P. Fekete, Andreas Haas, Dominik Krupke, Yannic Lieder, Eike Niehs, Michael Perk,
Victoria Sack, and Christian Scheffer. Hard instances of the minimum-weight triangulation
problem. Submitted to European Workshop on Computational Geometry (EuroCG 2020).

6 Sándor P. Fekete and William R. Pulleyblank. Area optimization of simple polygons. In
Symposium on Computational Geometry (SoCG), pages 173–182, 1993.

7 Andreas Haas. Solving large-scale minimum-weight triangulation instances to provable
optimality. In Symposium on Computational Geometry (SoCG), pages 44:1–44:14, 2018.

8 Melanie Papenberg. Exact Methods for area-optimal Polygons. Master’s thesis, University
of Technology Braunschweig, 2014.

9 Jiju Peethambaran, Amal Dev Parakkat, and Ramanathan Muthuganapathy. A random-
ized approach to volume constrained polyhedronization problem. Journal of Computing
and Information Science in Engineering, 15(1):011009, 2015.

10 Jiju Peethambaran, Amal Dev Parakkat, and Ramanathan Muthuganapathy. An empir-
ical study on randomized optimal area polygonization of planar point sets. Journal of
Experimental Algorithmics (JEA), 21:1–10, 2016.

11 Maria Teresa Taranilla, Edilma Olinda Gagliardi, and Gregorio Hernández Peñalver. Ap-
proaching minimum area polygonization. In Congreso Argentino de Ciencias de la Com-
putación (CACIC), pages 161–170, 2011.

Weighted ε-Nets
Daniel Bertschinger1 and Patrick Schnider2

1 Department of Computer Science, ETH Zürich, Switzerland
daniel.bertschinger@inf.ethz.ch

2 Department of Computer Science, ETH Zürich, Switzerland
patrick.schnider@inf.ethz.ch

Abstract
Motivated by recent work of Bukh and Nivasch [4] on one-sided ε-approximants, we introduce the
notion of weighted ε-nets. It is a geometric notion of approximation for point sets in Rd similar
to ε-nets and ε-approximations, where it is stronger than the former and weaker than the latter.
The main idea is that small sets can contain many points, whereas large sets must contain many
points of the weighted ε-net.

In this paper, we analyze weak weighted ε-nets with respect to convex sets and axis-parallel
boxes and give upper and lower bounds on ε for weighted ε-nets of size two and three. Some of
these bounds apply to classical ε-nets as well.

1 Introduction

Representing large, complicated objects by smaller, simpler ones is a common theme in
mathematics. For one-dimensional data sets this is realized by the notions of medians, means
and quantiles. One fundamental difference between medians and quantiles on the one side
and the mean on the other side is the robustness of the former against outliners of the data.

Centerpoint. Medians and quantiles are one-dimensional concepts, whereas modern data
sets are often multidimensional. Hence, many generalizations of medians and quantiles
to higher dimensions have been introduced and studied. One example is the notion of a
centerpoint, that is, a point c such that for every closed halfspace h containing c we know
that h contains at least a 1

d+1 -fraction of the whole data, where d denotes the dimension.
The Centerpoint Theorem ensures that for any point set in Rd there always exists such a
centerpoint [11].

Instead of representing a data set by a single point, one could take a different point set
as a representative. This is exactly the idea of an ε-net.

I Definition 1.1. Given any range space (X,R), an ε-net on a point set P ⊆ X is a subset
N ⊆ P such that every R ∈ R with |R∩P | ≥ ε|P | has nonempty intersection with N . If the
condition that an ε-net needs to be a subset of P is dropped, then N is called a weak ε-net.

In this language, a centerpoint is a weak d
d+1 -net for the range space of halfspaces. The

concept of ε-nets has been studied in a huge variety; first, there are statements on the
existence and the size of ε-nets, if ε is given beforehand. On the other hand, one can fix the
size of the ε-net a priori and try to bound the range of ε in which there always exists an
ε-net. For the former, it is known that every range space of VC-dimension δ has an ε-net of
size at most O(δε log 1

ε) [7].

ε-Approximations. For some applications though, ε-nets may not retain enough information.
For every range we only know that it has a nonempty intersection with the net; however, we
do not know anything about the size of this intersection. Hence, the following definition of
ε-approximations comes naturally.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

21:2 Weighted ε-Nets

I Definition 1.2. Given any range space (X,R) and any parameter 0 ≤ ε ≤ 1, an ε-
approximation on a point set P ⊂ X is a subset A ⊂ P such that for every R ∈ R we have∣∣∣ |R∩P ||P | −

|R∩A|
|A|

∣∣∣ ≤ ε.

Initiated by the work of Vapnik and Chervonenkis [13], one general idea is to construct
ε-approximations by uniformly sampling a random subset A ⊆ X of large enough size.
This results in statements about the existence of ε-approximations depending on the VC-
dimension of the range space. In particular every range space of VC-dimension δ allows an
ε-approximation of size O(δε2 log 1

ε) [5, 6, 8].

Convex Sets. It is well-known that the range space of convex sets has unbounded VC-
dimension; therefore, none of the results mentioned above can be applied. While constant
size weak ε-nets still exist for the range space of convex sets [1, 12], the same cannot be said
for weak ε-approximations (Proposition 1 in [4]). Motivated by this, Bukh and Nivasch [4]
introduced the notion of one-sided weak ε-approximants. The main idea is that small sets
can contain many points, whereas large sets must contain many points of the approximation.
Bukh and Nivasch show that constant size one-sided weak ε-approximants exist for the range
space of convex sets. In this work, we define a similar concept, called weighted ε-nets. In
contrast to one-sided weak ε-approximants, our focus is to understand what bounds can be
achieved for a fixed small value of k, which is given a priori. In this sense our approach is
similar to the one taken by Aronov et al. [2] (for standard ε-nets).

IDefinition 1.3. Given any point set P ⊂ Rd of size n, a weighted ε-net of size k (with respect
to some range space) is defined as a set of points p1, . . . , pk and some values ε = (ε1, . . . , εk)
such that every set in the range space containing more than εin points of P contains at least
i of the points p1, . . . , pk.

Following historic conventions, we denote a weighted ε-net as strong if p1, . . . , pk ∈ P
and as weak otherwise. In this work, we focus on weak weighted ε-nets of small size for the
range space of convex sets and axis-parallel boxes.

2 Weighted ε-nets for the range space of convex sets

Weighted ε-nets for the range space of halfspaces were already studied by Pilz and Schnider
[10]. In this section we generalize one of their results to the range space of convex sets.

I Theorem 2.1. Let P be a set of n points in general position in Rd. Let 0 < ε1 ≤ ε2 < 1
be arbitrary constants with (i) dε1 + ε2 ≥ d and (ii) ε1 ≥ 2d−1

2d+1 . Then there are two points p1
and p2 in Rd such that
1. every convex set containing more than ε1n points of P contains at least one of the points

p1 or p2, and
2. every convex set containing more than ε2n points of P contains both p1 and p2.

In the following we briefly sketch the proof. For a full proof, we refer the interested reader
to the full version of this paper [3].

Sketch of Proof. The main idea is to create two classes A and B, containing convex subsets
of Rd. We put every convex subset of Rd containing more than ε2n points of P (denoted as
big sets) into both classes A and B. Further, we put every convex subset of Rd containing
more than ε1n points of P (called the small sets) into one of the classes A or B. To this
end we halve P with a (d− 1)-dimensional hyperplane H. Every small set containing more

D. Bertschinger and P. Schnider 21:3

points of P below H than above H is put into B. Every small set which is not in B, is put
into A. It can now be shown that A as well as B satisfies the Helly property. We then define
p1 and p2 as the two Helly points. J

3 Lower Bounds on ε

Having seen an existential result for weighted ε-nets with respect to convex sets, we are
interested in the best possible value for ε. In this chapter we present some lower bounds on
ε. First, an example given in [10] can be adapted to show that inequality (i) of Theorem 2.1
is needed in the following sense: In the plane we cannot simultaneously have ε1 >

3
5 and

ε2 >
4
5 . To see this, consider the point set in Figure 1. Note that one of the two points needs

to lie in l+a,d ∩ l−a,d. The same is true for all intersections depicted in the right part of Figure
1. However, these five intersections cannot be stabbed using only two points.

b

c

l+a,d

e

a

d

l−a,d

b

c

e

d

a

Figure 1 A point set of five regions in convex position, each containing exactly k points. Two
particular regions containing four (three, respectively) of the regions. The intersections of interest
are drawn on the right side.

3.1 Lower bounds on ε1

On the other hand, one can give lower bounds on ε1, independently of the value of ε2. This
setting is exactly the same as giving lower bounds on ε for any ε-net. Hence, any bound
given in this chapter is also a lower bound on ε for ε-nets as well. Mustafa and Ray [9] have
studied this in dimension 2, showing that there exist point sets P in R2 such that for every
two points p1 and p2, not necessarily in P , we can find a convex set containing at least 4n

7
points of P but neither p1 nor p2.

For higher dimension, to our knowledge the bounds given here are among the first and
currently the best lower bounds for the range space of convex sets.

I Lemma 3.1. There are point sets P ⊂ R3, such that for any two points p1 and p2 in R3

we can always find a compact convex set containing at least 5n
8 points of P , but neither p1

nor p2.

Sketch of Proof. Consider a point set in three dimensions consisting of eight points. There
is a hexagon in the xy-plane, one point above the hexagon (denoted as u1), and one point
below the hexagon (denoted as u2), see Figure 2.

It can be observed that every set of four points of the hexagon and every set of three
points together with the center of the hexagon (indicated by the cross) should contain one
of p1 and p2 for the Lemma to be wrong. However, it is not possible to place p1 and p2
accordingly. For more detail we again refer to [3]. J

EuroCG’20

21:4 Weighted ε-Nets

a2 a1

b1
b2

c1
c2

xy-plane

c1
c2

u1

b2

b1

Figure 2 A point set in three dimensions, with six points in the xy-plane arranged in a hexagon,
one point above the xy-plane and one point below the xy-plane.

For general dimensions a lower bound on ε1 is given in the following Lemma. The
corresponding examples for the proof consist of a (d− 1)-dimensional simplex S in Rd with
exactly one point in every 0-face of the simplex. There are two additional points, one above
and one below the simplex, where above and below refer to the dimension not used for S. A
detailed discussion of the arguments can be found in [3].

I Lemma 3.2. There are point sets P in Rd such that for any two points p1, p2 ∈ Rd there
is a compact convex set containing d

d+2 of the points of P , but neither p1 nor p2.

4 The range space of axis-parallel boxes

In this section, we study weighted ε-nets of size 2 and 3 for the range space of axis-parallel
boxes. Axis-parallel boxes have the property that they allow a much stronger Helly-type
result.

I Observation 4.1. Let F be a family of compact, axis-parallel boxes in Rd such that any two
of them have a common intersection. Then the whole collection has a nonempty intersection.

As a direct consequence of this observation we note that for any point set P in Rd, there
always exists a (weighted) 1

2 -net of size 1 for the range space of axis-parallel boxes. For
weighted ε-nets of larger size we find the following.

I Theorem 4.2. Let P be a set of n points in general position in Rd. Let 0 < ε1 ≤ ε2 < 1 be
arbitrary constants with (i) ε1 ≥ 3d−1

2·3d−1+1 and (ii) ε1 + ε2 ≥ 1. Then there exist two points
p1 and p2 such that
1. every axis-parallel box containing more than ε1n points of P contains at least one of the

points p1 and p2, and
2. every axis-parallel box containing more than ε2n points of P contains both, p1 and p2.

Sketch of Proof. For the sake of simplicity, we only present a proof in R2 with fixed values
ε1 = 3

7 and ε2 = 4
7 . For other values the proof works analogously. First, divide the point

set with a horizontal line l1, such that there are 3n
7 points below l1 and 4n

7 points above l1.
Then add two lines l′, l′′ perpendicular to l1 splitting the point set below l1 into three parts
containing the same number of points, see Figure 3 (left).

Now one of the two outside areas above l1, without loss of generality B1, contains at
most 2n

7 points of P . We then move l′ slightly towards l′′, until we have the same number of
points in B′1 as in A′. We now define p1 := l1 ∩ l2.

As the area left of l2 and the area below l1 contain 3n
7 of the points of P every big box

contains p1 for sure. On the other hand every small box not containing p1 lies completely

D. Bertschinger and P. Schnider 21:5

e1

e2

l1

l+1

l−1

l′ l′′

e1

e2

l1

l′ l′′

A1 A2 A3 e1

e2

l1

l′ l′′

B1 B2

e1

e2

l1
l2

A′

B′1

l′

Figure 3 An example of the construction of p1. First the point set P is split by a line l1. Then
the lines l′ and l′′ split the point set below l1 into three disjoint parts containing the same number
of points, namely A1, A2 and A3. One of B1 and B2 has to contain ”few” points of P , without loss
of generality B1, and by slightly changing l′ we can ensure that B′

1 and A′ contain the same number
of points of P . The resulting lines define p1 := l1 ∩ l2.

above l1 or completely right of l2. By a simple counting argument, any two small boxes not
containing p1 intersect. Any small box intersects any big box as a consequence of inequality
(i); hence, applying Observation 4.1 we find p2 satisfying the conditions of the Theorem.

For higher dimensions, we use hyperplanes instead of lines and we repeat the second step
d− 1 times (once in every direction except the first). J

A similar spitting idea works for weighted ε-nets of size 3: Let l1 be a horizontal halving
line and let l2 be a vertical halving line. Let A and B be the areas above and below l1 and let
L and R be the areas left and right of l2. The lines define four quadrants, where two opposite
ones, say L ∩ A and R ∩ B, both contain at least n

4 points of P . Define p1 := l1 ∩ l2. For
every relevant box �, assign � to the area X ∈ {A,B,L,R} for which |�∩X| is maximized.
Put every box assigned to A and L into A and every box assigned to B and U into B.
Choosing the right values for ε1, ε2 and ε3, we can apply Observation 4.1 to A and B to get
the following:

I Theorem 4.3. Let P be a set of n points in the plane. Let 0 < ε1 ≤ ε2 ≤ ε3 < 1 be
arbitrary constants with (i) ε1 ≥ 3

8 , (ii) ε2 ≥ 1
2 , and (iii) ε1 + ε3 ≥ 1. Then there exist three

points p1, p2 and p3 in R2 such that every axis-parallel box containing more than εin points
of P contains at least i of the points p1, p2 and p3.

5 Conclusion

We have given bounds for weak weighted ε-nets of size 2 for convex sets and axis-parallel
boxes. It remains an interesting question to find bounds for larger sizes. For axis-parallel
boxes, we gave a construction for weighted ε-nets of size 3 in the plane. Unfortunately our
construction does not generalize to higher dimensions. It is a natural question whether a
similar statement in higher dimensions can be shown using a different construction.

EuroCG’20

21:6 Weighted ε-Nets

References
1 N. Alon, I. Bárány, Z. Füredi, and D. J. Kleitman. Point Selections and Weak ε-Nets

for Convex Hulls. Combinatorics, Probability and Computing, 1(3):189–200, 1992. URL:
https://doi.org/10.1017/S0963548300000225.

2 B. Aronov, F. Aurenhammer, F. Hurtado, S. Langerman, D. Rappaport, C. Seara, and
S. Smorodinsky. Small weak epsilon-nets. Computational Geometry, 42(5):455 – 462, 2009.
URL: https://doi.org/10.1016/j.comgeo.2008.02.005.

3 Daniel Bertschinger and Patrick Schnider. Weighted epsilon-nets, 2020. arXiv:2002.
08693.

4 B. Bukh and G. Nivasch. One-Sided Epsilon-Approximants. In A Journey Through Discrete
Mathematics: A Tribute to Jiří Matoušek, pages 343–356. Springer, 2017. URL: https:
//doi.org/10.1007/978-3-319-44479-6_12.

5 S. Har-Peled. Geometric Approximation Algorithms. American Mathematical Society, 2011.
URL: https://dlnext.acm.org/doi/10.5555/2031416.

6 S. Har-Peled and M. Sharir. Relative (p,ε)-Approximations in Geometry. Discrete
& Computational Geometry, 45(3):462–496, 2011. URL: https://doi.org/10.1007/
s00454-010-9248-1.

7 D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete & Computational
Geometry, 2(2):127–151, 1987. URL: https://doi.org/10.1007/BF02187876.

8 J. Matoušek, E. Welzl, and L. Wernisch. Discrepancy and approximations for bounded
VC-dimension. Combinatorica, 13(4):455–466, 1993. URL: https://doi.org/10.1007/
BF01303517.

9 N. H. Mustafa and S. Ray. An optimal extension of the centerpoint theorem. Computational
Geometry, 42(6):505 – 510, 2009. URL: https://doi.org/10.1016/j.comgeo.2007.10.
004.

10 A. Pilz and P. Schnider. Extending the Centerpoint Theorem to Multiple Points. In
29th International Symposium on Algorithms and Computation (ISAAC 2018), volume 123,
pages 53:1–53:13, 2018. URL: http://drops.dagstuhl.de/opus/volltexte/2018/10001.

11 R. Rado. A Theorem on General Measure. Journal of the London Mathematical Society,
s1-21(4):291–300, 10 1946. URL: https://dx.doi.org/10.1112/jlms/s1-21.4.291.

12 N. Rubin. An Improved Bound for Weak Epsilon-Nets in the Plane. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), 2018. URL: https:
//doi.org/10.1109/FOCS.2018.00030.

13 V. Vapnik and A. Chervonenkis. On the Uniform Convergence of Relative Frequencies
of Events to Their Probabilities. Theory of Probability & Its Applications, 16(2):264–280,
1971. URL: https://doi.org/10.1137/1116025.

Homotopic Curve Shortening and the Affine
Curve-Shortening Flow∗

Sergey Avvakumov1 and Gabriel Nivasch2

1 Institute of Science and Technology Austria (IST Austria), Am Campus 1,
3400 Klosterneuburg, Austria
sergey.avvakumov@ist.ac.at

2 Ariel University, Ariel, Israel
gabrieln@ariel.ac.il

Abstract
We define and study a discrete process that generalizes the convex-layer decomposition of a
planar point set. Our process, which we call homotopic curve shortening (HCS), starts with a
closed curve (which might self-intersect) in the presence of a set P ⊂ R2 of point obstacles, and
evolves in discrete steps, where each step consists of (1) taking shortcuts around the obstacles,
and (2) reducing the curve to its shortest homotopic equivalent.

We find experimentally that, if the initial curve is held fixed and P is chosen to be either a
very fine regular grid or a uniformly random point set, then HCS behaves at the limit like the
affine curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the
link between “grid peeling” and the ACSF observed by Eppstein et al. (2017), which applied only
to convex curves, and which was studied only for regular grids.

We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant
under affine transformations, preserves convexity, and does not increase the total absolute cur-
vature. Furthermore, the number of self-intersections of a curve, or intersections between two
curves (appropriately defined), does not increase. Finally, if the initial curve is simple, then the
number of inflection points (appropriately defined) does not increase.

1 Introduction

Let S1 be the unit circle. In this paper we call a piecewise-smooth function γ : [0, 1]→ R2 a
path, and a piecewise-smooth function γ : S1 → R2 a closed curve, or simply a curve. If γ is
injective then the curve or path is said to be simple. We say that two paths or curves γ, δ are
ε-close to each other if their Fréchet distance is at most ε, i.e. if they can be re-parametrized
such that for every t, the Euclidean distance between the points γ(t), δ(t) is at most ε.

1.1 Shortest Homotopic Curves
Let P be a finite set of points in the plane, which we regard as obstacles. Two curves γ, δ
that avoid P are said to be homotopic if there exists a way to continuously transform γ

into δ while avoiding P at all times. And two paths γ, δ that avoid P (except possibly at
the endpoints) and satisfy γ(0) = δ(0), γ(1) = δ(1) are said to be homotopic if there exists
a way to continuously transform γ into δ, without moving their endpoints, while avoiding
P at all times (except possibly at the endpoints). We extend these definitions to the case
where γ avoids obstacles but δ does not, by requiring the continuous transformation of γ
into δ to avoid obstacles at all times except possibly at the last moment.

∗ Sergey Avvakumov was supported by the Austrian Science Fund (FWF), Project P31312-N35.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

22:2 Homotopic Curve Shortening and the ACSF

Figure 1 ACSF. Arrows indicate instantaneous velocity of points at the shown moment.

Then, for every curve (resp. path) γ in the presence of obstacles there exists a unique
shortest curve (resp. path) δ that is homotopic to γ. The problem of computing the shortest
path or curve homotopic to a given piecewise-linear path or curve, under the presence of
polygonal or point obstacles, has been studied extensively [6, 8, 11, 17, 25, 26].

1.2 The Affine Curve-Shortening Flow
In the affine curve-shortening flow, a smooth curve γ ⊂ R2 varies with time in the following
way. At each moment in time, each point of γ moves perpendicularly to the curve, towards
its local center of curvature, with instantaneous velocity r−1/3, where r is that point’s radius
of curvature at that time. See Figure 1.

The ACSF was first studied by Alvarez et al. [2] and Sapiro and Tannenbaum [27].
It differs from the more usual curve-shortening flow (CSF) [9, 13], in which each point
is given instantaneous velocity r−1. Unlike the CSF, the ACSF is invariant under affine
transformations. It has applications in computer vision [9].

Under either the CSF or the ACSF, a simple curve remains simple, and its length de-
creases strictly with time ([13], [27], resp.). Furthermore, a pair of disjoint curves, run
simultaneously, remain disjoint at all times ([28], [4], resp.). More generally, the number of
intersections between two curves never increases ([3], [4], resp.). The total absolute curva-
ture of a curve decreases strictly with time and tends to 2π ([20, 21], [4], resp.). The number
of inflection points of a simple curve does not increase with time ([3], [4], resp.). Under the
CSF, a simple curve eventually becomes convex and then converges to a circle as it collapses
to a point [20, 21]. Correspondingly, under the ACSF, a simple curve becomes convex and
then converges to an ellipse as it collapses to a point [4].

When the initial curve is not simple, a self-intersection might collapse and form a sin-
gularity that lasts for an instant. Unfortunately, unlike for the case of the CSF, for the
ACSF no rigorous results have been obtained for self-intersecting curves [4]. Still, ACSF
computer simulations can be run on curves that have self-intersections or singularities with
little difficulty.

1.3 Relation to Grid Peeling
Let P be a finite set of points in the plane. The convex-layer decomposition (also called the
onion decomposition) of P is the partition of P into sets P1, P2, P3, . . . obtained as follows:
Let Q0 = P . Then, for each i ≥ 1 for which Qi−1 6= ∅, let Pi be the set of vertices of the

S. Avvakumov and G. Nivasch 22:3

convex hull of Qi−1, and let Qi = Qi−1 \ Pi. In other words, we repeatedly remove from P

the set of vertices of its convex hull. See [5, 12, 15, 16].
Eppstein et al. [18], following Har-Peled and Lidický [23], studied grid peeling, which is

the convex-layer decomposition of subsets of the integer grid Z2. Eppstein et al. found an
experimental connection between ACSF for convex curves and grid peeling. Specifically, let
γ be a fixed convex curve. Let n be large, let (Z/n)2 be the uniform grid with spacing 1/n,
and let Pn(γ) be the set of points of (Z/n)2 that are contained in the region bounded by γ.
Then, as n→∞, the convex-layer decomposition of Pn(γ) seems experimentally to converge
to the ACSF evolution of γ, after the time scale is adjusted appropriately. They raised the
question whether there is a way to generalize the grid peeling process so as to approximate
ACSF for non-convex curves as well.

1.4 Our Contribution
In this paper we describe a generalization of the convex-layer decomposition to non-convex,
and even non-simple, curves. We call our process homotopic curve shortening, or HCS.
Under HCS, an initial curve evolves in discrete steps in the presence of point obstacles.
We find that, if the obstacles form a uniform grid, then HCS shares the same experimental
connection to ACSF that grid peeling does. Hence, HCS is the desired generalization sought
by Eppstein et al. [18]. We also find that the same experimental connection between ACSF
and HCS (and in particular, between ACSF and the convex-layer decomposition) holds
when the obstacles are distributed uniformly at random, with the sole difference being in
the constant of proportionality.

Although the experimental connection between HCS and ACSF seems hard to prove,
we do prove that HCS satisfies some simple properties analogous to those of ACSF: HCS is
invariant under affine transformations, preserves convexity, and does not increase the total
absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections
between two curves (appropriately defined), does not increase. Finally, if the initial curve is
simple, then the number of inflection points (appropriately defined) does not increase.

2 Homotopic Curve Shortening

Let P be a finite set of obstacle points. A P -curve (resp. P -path) is a curve (resp. path)
that is composed of straight-line segments, where each segment starts and ends at obstacle
points.

Homotopic curve shortening (HCS) is a discrete process that starts with an initial P -
curve γ0 (which might self-intersect), and at each step, the current P -curve γn is turned
into a new P -curve γn+1 = HCSP (γn).

The definition of γ′ = HCSP (γ) for a given P -curve γ is as follows. Let (p0, . . . , pm−1)
be the circular list of obstacle points visited by γ. Call pi nailed if γ goes straight through
pi, i.e. if ∠pi−1pipi+1 = π.1 Let (q0, . . . , qk−1) be the circular list of nailed vertices of γ.
Suppose first that k ≥ 1. Then γ′ is obtained through the following three substeps:
1. Splitting. We split γ into k P -paths δ0, . . . , δk−1 at the nailed vertices, where each δi

goes from qi to qi+1.
2. Shortcutting. For each non-endpoint vertex pi of each δi, we make the curve avoid pi

by taking a small shortcut. Specifically, let ε > 0 be sufficiently small, and let Cpi
be a

1 All indices in circular sequences are modulo the length of the sequence.

EuroCG’20

22:4 Homotopic Curve Shortening and the ACSF

Figure 2 Computation of a single step of HCS: Given a P -curve γ (blue), we first identify its
nailed vertices (purple). In this case, the two nailed vertices split γ into two paths δ0, δ1. In each
δi we take a small shortcut around each intermediate vertex (red). Then we replace each δi by the
shortest path homotopic to it, obtaining the new P -curve γ′ = HCSP (γ) (green).

circle of radius ε centered at pi. Let ei be the segment pi−1pi of δi. Let xi = ei ∩ Cpi

and yi = ei+1∩Cpi
. Then we make the path go straight from xi to yi instead of through

pi. Call the resulting path ρi, and let ρ be the curve obtained by concatenating all the
paths ρi.

3. Shortening. Each ρi in ρ is replaced by the shortest P -path homotopic to it. The
resulting curve is γ′.

If γ has no nailed vertices (k = 0) then γ′ is obtained by performing the shortcutting and
shortening steps on the single closed curve γ. Figure 2 illustrates one HCS step on a sample
curve.

The process terminates when the curve collapses to a point. If the initial curve γ0 is
the boundary of the convex hull of P , then the HCS evolution of γ0 is equivalent to the
convex-layer decomposition of P .

3 Experimental Connection Between ACSF and HCS

Our experiments on a variety of curves show that HCS, using P = (Z/n)2 as the obstacle
set, approximates ACSF at the limit as n → ∞, just as grid peeling approximates ACSF
for convex curves. Furthermore, we find that the connection between ACSF and HCS also
holds if the uniform grid (Z/n)2 is replaced by a random point set, though with a different
constant of time proportionality. See Figure 3 for an example.

4 Properties of Homotopic Curve Shortening

We prove that HCS satisfies some properties analogous to those of ACSF.

I Theorem 4.1. HCS is invariant under affine transformations.

I Theorem 4.2. Under HCS, once a curve becomes the boundary of a convex polygon, it
stays that way.

The total absolute curvature of a piecewise-linear curve γ with vertices (p0, . . . , pm−1) is
the sum of the exterior angles

∑m−1
i=0 (π − |∠pi−1pipi+1|).

S. Avvakumov and G. Nivasch 22:5

Figure 3 Left: Initial curve (blue) and simulated ACSF result after the curve’s length reduced
to 70% of its original length (red). Right: Comparison between ACSF approximation (red), HCS
with n = 107 uniform-grid obstacles (green), and HCS with n = 107 random obstacles (yellow) on
a small portion of the curve.

Figure 4 HCS might cause disjoint curves to intersect, or a simple curve to self-intersect.

I Theorem 4.3. Under HCS, the total absolute curvature of a curve never increases.

If γ, δ are disjoint P -curves, then HCSP (γ),HCSP (δ) are not necessarily disjoint. Simi-
larly, if γ is a simple P -curve, then HCSP (γ) is not necessarily simple. See Figure 4.

Curves γ, δ are called disjoinable if they can be made into disjoint curves by peforming
on them an arbitrarily small perturbation. Similarly, a curve γ is called self-disjoinable if it
can be turned into a simple curve by an arbitrarily small perturbation. (Akitaya et al. [1]
recently found an O(n logn)-time algorithm that can decide, in particular, whether a given
curve is self-disjoinable.)

An intersection between two curves, or between two portions of one curve, is called
transversal, if at the point of intersection both curves are differentiable and their nor-
mal vectors are not parallel at that point. If all intersections between curves γ1 and γ2
are transversal, then we say that γ1, γ2 are themselves transversal. Similarly, if all self-
intersections of γ are transversal, then we say that γ is self-transversal. (Transversal and
self-transversal curves are sometimes called generic, see e.g. [10].)

EuroCG’20

22:6 Homotopic Curve Shortening and the ACSF

If γ is self-transversal, we denote by χ(γ) the number of self-intersections of γ. If γ is
not self-transversal, then we define χ(γ) as the minimum of χ(γ̂) among all self-transversal
curves γ̂ that are ε-close to γ, for all small enough ε > 0. Hence, χ(γ) = 0 if and only if
γ is self-disjoinable. We define similarly the number of intersections χ(γ1, γ2) between two
curves. Then, γ1 and γ2 are disjoinable if and only if χ(γ1, γ2) = 0. (Fulek and Tóth recently
proved that the problem of computing χ(γ) is NP-hard [19].)

I Theorem 4.4. Under HCS, the intersection and self-intersection numbers never increase.

We say that an obstacle set P is in general position if no three points of P lie on a line.
Note that if P is in general position then there are no nailed vertices in HCS.

I Theorem 4.5. Under HCS with obstacles in general position, a simple curve stays simple,
and a pair of disjoint curves stay disjoint.

Let γ be a simple piecewise-linear curve with vertices (v0, . . . , vn−1). An inflection edge
of γ is an edge vivi+1 such that the previous and next vertices vi−1, vi+2 lie on opposite sides
of the line through vi, vi+1. Let ϕ(γ) be the number of inflection edges of γ. Note that ϕ(γ)
is always even, since every inflection edge lies either after a sequence of clockwise vertices
and before a sequence of counterclockwise vertices, or vice versa.

If γ is not simple but self-disjoinable, then we define ϕ(γ) as the minimum of ϕ(γ′) over
all simple piecewise-linear curves γ′ that are ε-close to γ, for all sufficiently small ε > 0.

I Theorem 4.6. Under HCS on a self-disjoinable curve, the curve’s number of inflection
edges never increases.

5 Discussion

One of the reasons continuous curve-shortening flows were introduced and studied was to
overcome the shortcomings of the Birkhoff curve-shortening process ([7], see also e.g. [14]),
specifically the fact that it might cause the number of curve intersections to increase [22, 24].
As we have shown, HCS is a discrete process that overcomes this flaw without introducing
analytical difficulties, at least in the plane. It would be interesting to check whether HCS
can be applied on more general surfaces.

For more details see our full paper at [arXiv:1909.00263].

Acknowledgements. Thanks to Arseniy Akopyan, Imre Bárány, Jeff Erickson, Radoslav
Fulek, Jeremy Schiff, Arkadiy Skopenkov, and Peter Synak for useful discussions. Thanks
also to the referees for their useful comments.

References
1 Hugo A. Akitaya, Radoslav Fulek, and Csaba D. Tóth. Recognizing weak embeddings of

graphs. In Proc. 29th Symp. on Discrete Algorithms, pages 274–292, 2018. doi:10.1137/
1.9781611975031.20.

2 Luis Alvarez, Frédéric Guichard, Pierre-Luis Lions, and Jean-Michel Morel. Axioms and
fundamental equations of image processing. Arch. Rational Mech. Anal., 123(3):199–257,
1993. doi:10.1007/BF00375127.

3 Sigurd Angenent. Parabolic equations for curves on surfaces: Part II. Intersections, blow-
up and generalized solutions. Annals of Mathematics, 133(1):171–215, 1991. doi:10.2307/
2944327.

S. Avvakumov and G. Nivasch 22:7

4 Sigurd Angenent, Guillermo Sapiro, and Allen Tannenbaum. On the affine heat equa-
tion for non-convex curves. J. Amer. Math. Soc., 11(3):601–634, 1998. doi:10.1090/
S0894-0347-98-00262-8.

5 Vic Barnett. The ordering of multivariate data. J. Roy. Statist. Soc. Ser. A, 139(3):318–355,
1976. doi:10.2307/2344839.

6 Sergei Bespamyatnikh. Computing homotopic shortest paths in the plane. Journal of Algo-
rithms, 49(2):284–303, 2003. doi:https://doi.org/10.1016/S0196-6774(03)00090-7.

7 George D. Birkhoff. Dynamical systems with two degrees of freedom. Trans. Amer. Math.
Soc., 18:199–300, 1917.

8 Sergio Cabello, Yuanxin Liu, Andrea Mantler, and Jack Snoeyink. Testing homotopy
for paths in the plane. Discrete & Computational Geometry, 31(1):61–81, 2004. doi:
10.1007/s00454-003-2949-y.

9 Frédéric Cao. Geometric Curve Evolution and Image Processing, volume 1805 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 2003. doi:10.1007/b10404.

10 Hsien-Chih Chang and Jeff Erickson. Untangling planar curves. Discrete & Computational
Geometry, 58:889–920, 2017. doi:10.1007/s00454-017-9907-6.

11 Bernard Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annual
Symposium on Foundations of Computer Science (FOCS 1982), pages 339–349, 1982. doi:
10.1109/SFCS.1982.58.

12 Bernard Chazelle. On the convex layers of a planar set. IEEE Trans. Inform. Theory,
31(4):509–517, 1985. doi:10.1109/TIT.1985.1057060.

13 Kai-Seng Chou and Xi-Ping Zhu. The Curve Shortening Problem. Chapman & Hall/CRC,
Boca Raton, FL, 2001. doi:10.1201/9781420035704.

14 Cristopher B. Croke. Area and the length of the shortest closed geodesic. J. Differential
Geometry, 27:1–21, 1988.

15 Ketan Dalal. Counting the onion. Random Struct. Algor., 24(2):155–165, 2004. doi:
10.1002/rsa.10114.

16 William F. Eddy. Convex Hull Peeling. In COMPSTAT 1982 5th Symposium held at
Toulouse 1982, pages 42–47. Physica-Verlag, 1982. doi:10.1007/978-3-642-51461-6_4.

17 Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. Computing homotopic shortest paths
efficiently. Computational Geometry, 35(3):162–172, 2006. doi:https://doi.org/10.
1016/j.comgeo.2006.03.003.

18 David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve-
shortening flow. Experimental Mathematics, page to appear, 2018. https://doi.org/10.
1080/10586458.2018.1466379. doi:10.1080/10586458.2018.1466379.

19 Radoslav Fulek and Csaba D. Tóth. Crossing minimization in perturbed drawings. In
T. Biedl and A. Kerren, editors, Proc. 26th Symp. Graph Drawing and Network Visualiza-
tion, pages 229–241. Springer, 2018. doi:10.1007/978-3-030-04414-5_16.

20 Michael Gage and Richard S. Hamilton. The heat equation shrinking convex plane curves.
J. Differential Geom., 23(1):69–96, 1986. doi:10.4310/jdg/1214439902.

21 Matthew A. Grayson. The heat equation shrinks embedded plane curves to round points.
J. Differential Geom., 26(2):285–314, 1987. doi:10.4310/jdg/1214441371.

22 Matthew A. Grayson. Shortening embedded curves. Annals of Mathematics, 129(1):79–111,
1989.

23 Sariel Har-Peled and Bernard Lidický. Peeling the grid. SIAM J. Discrete Math., 27(2):650–
655, 2013. doi:10.1137/120892660.

24 Joel Hass and Peter Scott. Shortening curves on surfaces. Topology, 33:25–43, 1994. doi:
10.1016/0040-9383(94)90033-7.

EuroCG’20

22:8 Homotopic Curve Shortening and the ACSF

25 John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homo-
topy class. Computational Geometry, 4(2):63–97, 1994. doi:https://doi.org/10.1016/
0925-7721(94)90010-8.

26 Der-Tsai Lee and Franco P. Preparata. Euclidean shortest paths in the presence of recti-
linear barriers. Networks, 14(3):393–410, 1984. doi:10.1002/net.3230140304.

27 Guillermo Sapiro and Allen Tannenbaum. Affine invariant scale-space. Int. J. Comput.
Vision, 11(1):25–44, 1993. doi:10.1007/bf01420591.

28 Brian White. Evolution of curves and surfaces by mean curvature. In Proceedings of the
International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 525–538, 2002.
URL: https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2002.1/ICM2002.
1.ocr.pdf.

Applications of Concatenation Arguments to
Polyominoes and Polycubes∗

Gill Barequet1, Gil Ben-Shachar1, and Martha Carolina Osegueda2

1 Dept. of Computer Science
The Technion—Israel Inst. of Technology
Haifa 3200003, Israel
{barequet,gilbe}@cs.technion.ac.il

2 Dept. of Computer Science
Univ. of California, Irvine, CA 92717.
mosegued@uci.edu

Abstract
We present several concatenation arguments for polyominoes and polycubes, and show their
applications to setting lower and upper bounds on the growth constants of some of their families,
whose enumerating sequences are pseudo sub- or super-multiplicative. Inter alia, we provide
bounds on the growth constants of general and tree polyominoes, and general polycubes.

1 Introduction

A polycube of size n is a connected set of n cells on Zd, where connectivity is through
(d − 1)-dimensional facets. Two-dimensional polycubes are also called polyominoes. Two
fixed polycubes are equivalent if one can be translated into the other. We consider only
fixed polycubes, hence we simply call them “polycubes.” The study of polycubes began
in statistical physics [4, 14], where they are called lattice animals. Counting polyominoes
and polycubes is a long-standing problem. Let Ad(n) denote the number of d-dimensional
polycubes of size (area) n. Values of A2(n) are currently known up to n = 56 [8]. The
growth constant of polyominoes also attracted much attention. Klarner [9] showed that
λd := limn→∞ n

√
Ad(n) exists. The convergence of Ad(n+1)

Ad(n) to λd (n→∞) was proven much
later [11]. The best known lower [1] and upper [10] bounds on λ2 are 4.0025 and 4.6496,
respectively.

In this paper, we develop methods for deriving bounds on the growth constants of families
of polyominoes and polycubes, for which the enumerating sequences are pseudo sub- or super-
multiplicative. Such a property can be derived from a generalized polyomino-concatenation
argument, as we show below. We demonstrate various applications of this method to general
polyominoes and polycubes, as well as to specific families, such as tree polycubes.

2 Preliminaries

2.1 Concatenation and Sub-/Super-multiplicative Sequences
A sequence (Z(n)) is super-multiplicative (resp., sub-multiplicative) if Z(m)Z(n) ≤ Z(m+ n)
(resp., Z(m)Z(n) ≥ Z(m+n)) ∀m,n ∈ N. It is known [13, p. 171] that a super-multiplicative
(resp., sub-multiplicative) sequence Z(n), with the property that Z ′(n) = n

√
Z(n) is bounded

from above (resp., below), has a growth constant. That is, the quantity limn→∞ Z ′(n) exists.

∗ Work on this paper by the first and second authors has been supported in part by ISF Grant 575/15.
Work on this paper by the first author has also been supported in part by BSF Grant 2017684. Work
on this paper by the third author has been supported in part by NSF Grant 1815073.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

23:2 Applications of Concatenation Arguments to Polyominoes and Polycubes

(a) Two polyominoes (b) Vertical concatenation (c) Horizontal concatenation

Figure 1 Concatenations of two polyominoes.

Let us define a total order on cells of the cubical lattice: First by x1 (x in two dimensions),
then by x2 (y in two dimensions), and so on. Thus, in two dimensions, the smallest (resp.,
largest) square of a polyomino P is the lowest (resp., highest) cell in the leftmost (resp., right-
most) column of P . The vertical (resp., horizontal) concatenation of two polyominoes P1, P2
is the positioning of P2 such that its smallest cell lies immediately above (resp., to the right
of) the largest cell of P1 (see Figure 1).

Similarly, two d-dimensional polycubes can be concatenated in d ways. Concatenating
two polycubes always yields a valid polycube (connected and with no overlapping cells), and
two different pairs of polycubes of sizes m,n always yield by concatenation two different
polycubes of size m+n. Many polycubes, however, can be represented as the concatenations
of several pairs of polycubes, whereas others cannot be represented at all as concatenations
of smaller polycubes.

The following is a folklore concatenation argument for polyominoes, setting a rather
weak lower bound on their growth constant. A direct consequence of the discussion above is
that A2

2(n) < A2(2n). That is, n
√
A2(n) < 2n

√
A2(2n). Hence, a sequence of the form A∗ =(

n02i
√
A2(n02i)

)∞
i=0

is monotone increasing for any natural number n0. Since the entire

sequence A = (A2(n)) is super-multiplicative, and the sequence A′ =
(

n
√
A2(n)

)
is bounded

from above [6], the sequence A has a growth constant λ2. Obviously, every subsequence of A′
also converges to λ2. In addition, since any such subsequence A∗ is monotone increasing,
any element of it, n0

√
A2(n0), is a lower bound on λ2. Empirically, the best (largest) lower

bound is obtained this way by setting n0 = 56 (the largest value of n for which A2(n) is
known), yielding the bound λ2 > 3.7031.
Remarks. 1. Although A∗ is a subsequence of A′, the upward monotonicity of the former
does not imply the monotonicity of the latter. Nevertheless, the known values of Ad(n) (in
all dimensions) suggest that A′ be also monotone increasing. We later refer to this as “the
unproven monotonicity of the root sequence” (“

√
UM,” in short).

2. A stronger observed phenomenon is the upward monotonicity of the ratio sequence, i.e.,
Ad(n)/Ad(n− 1) < Ad(n+ 1)/Ad(n) (for n ≥ 2). Equivalently, A2

d(n) < Ad(n+ 1)Ad(n− 1),
and in a more general form, A2

d(n) < Ad(n+ k)Ad(n− k) (for n > k ≥ 1).
3. Yet another observation is that n

√
Ad(n) < Ad(n)

Ad(n−1) for all n > 1, and in a more general
form (using the convention A(0) = 1), n

√
Ad(k)Ad(n− k) < Ad(n−k)

Ad(n−1−k) (for n > k ≥ 0).
4. Property (2) implies Properties (1) and (3). If all are true, then the ratio sequence (n

√
Ad(n))

converges to λd faster than the root sequence (Ad(n+1)
Ad(n)), as is widely believed to be case.

Similarly, for any sub-multiplicative sequence (B(n)), for which B′(n) = n
√
B(n) is

bounded from below, and for which we can show that B′(n) ≥ B′(2n) for any n ∈ N, any
known value B(n0) sets the upper bound B′(n0) on the growth constant of (B(n)).

G. Barequet, G. Ben-Shachar, and M.C. Osegueda 23:3

2.2 Pseudo Super- and Sub-Multiplicativity
A sequence (Z(n)) is pseudo super-multiplicative (resp., pseudo sub-multiplicative) if P (m+
n)Z(m)Z(n) ≤ Z(m + n) (resp., Z(m)Z(n) ≥ P (m + n)Z(m + n)), for all m,n ∈ N and
for a positive subexponential function P (·). (Hereafter, we will consider cases in which this
function is polynomial.) In such cases, we use the fact that limn→∞ n

√
P (n) = 1 and obtain

bounds on the growth constant of Z(n) from known values of Z(n).

I Theorem 2.1. Assume that for a sequence (Z(n)), the limit µ := limn→∞ n
√
Z(n) exists.

Let ci (c1 6= 0) be some constants, and � ∈ {‘≤’, ‘≥’}. Then:
(a) (multiplicative polynomial) If c1n

c2Z2(n)�Z(2n) ∀n ∈ N, then n
√
c1(2n)c2Z(n)�µ ∀n ∈ N.

(b) (index shift) If c1Z
2(n+c3)�Z(2n) ∀n ∈ N, then n

√
c1Z(n+ 2c3)�µ ∀n ∈ N. Equivalently,

if c1Z
2(n) � Z(2n+ c3) ∀n ∈ N, then n

√
c1Z(n− c3) � µ ∀n > c3.

Proof. In both cases, we manipulate the given relation and reach a relation of the form ζ(n)�
ζ(2n). Then, we follow closely the logic of the basic argument given in the introduction.

(a) Simple manipulations of the given relation show that n
√
c1(2n)c2Z(n) � 2n

√
c1(4n)c2Z(2n).

Then, by setting ζ(n) = n
√
c1(2n)c2Z(n), we see that ζ(n) � ζ(2n). It follows that the

subsequence (ζ(2i+1n0))∞i=0 is monotone increasing (if � = ‘≤’) or monotone decreasing
(if � = ‘≥’), and converging to µ, for any natural number n0. The claim follows.

(b) In this case, we substitute n := m+c3 in the given relation and manipulate as above, obtain-
ing that c2

1Z
2(m+2c3)�c1Z(2m+2c3). Hence, m

√
c1Z(m+ 2c3)� 2m

√
c1Z(2m+ 2c3). Ele-

mentary calculus shows that the limits of the sequences
(

m
√
c1Z(m)

)
and

(
m
√
c1Z(m+ 2c3)

)
,

as m → ∞, are equal. Finally, we fix ζ(m) = m
√
c1Z(m+ 2c3) and continue as above.

The equivalent case, where the shift is in the right side of the relation, is treated similarly.
J

3 Methods of Concatenation

We now list a few concatenation methods. For ease of exposition, we use relations that yield
lower bounds on the growth constants. The sequence and its growth constant are denoted
by Z(n) and λZ , respectively. Polycubes P1, P2 are to be concatenated, and the largest
(resp., smallest) cell of P1 (P2) is a1 (a2). Consistently with

√
UM, we observed that the

best (largest) lower bounds on λd were obtained by using the largest known Ad(n).

[E] The most elementary method of concatenation attaches cell a1 to cell a2 in a single way.
This leads to the relation Z2(n) ≤ Z(2n), which implies that λZ ≥ n

√
Z(n) for all n ∈ N.

[C] A simple improvement on Method [E] is achieved by considering all possible (lattice
dependent) c ways of attaching a1 to a2, s.t. a1 is smaller than a2. This leads to the
relation cZ2(n)≤Z(2n), which, by Theorem 2.1(a), implies that λZ≥ n

√
cZ(n) ∀n ∈ N.

[M] A possible improvement on Method [C] can be obtained by considering all possible
polycubes of size k concatenated in between P1 and P2. As in Method [C], there are c
ways of attachments. This leads to the relation c2Z(k)Z2(n) ≤ Z(2n + k), which, by
Theorem 2.1(b), implies that λZ ≥ n

√
c2Z(k)Z(n− k) for all k, n ∈ N, such that n > k.

[O1] One can also overlap cells a1 and a2. This always yields a valid polycube, and different pairs
of polycubes generate by this method different polycubes. This leads to Z2(n) ≤ Z(2n−1),
which, by Theorem 2.1(b), implies that λZ ≥ n

√
Z(n+ 1) for all n ∈ N.

[MO] One can also concatenate P1 and P2 through all possible polycubes of size k, using 1-cell
overlaps in the middle concatenations. This leads to Z(k)Z2(n) ≤ Z(2n+ k − 2), which,
by Thm. 2.1(b), implies that λZ ≥ n

√
Z(k)Z(n− k + 2) for all k, n ∈ N, s.t. n > k − 2.

EuroCG’20

23:4 Applications of Concatenation Arguments to Polyominoes and Polycubes

Known OEIS Concatenation Methods Other
Dimensions Values Sequence [E] [C] [O1] Methods

2 56 A001168 3.703120 3.749241 3.792324 4.00253 [1]
3 19 A001931 6.021134 6.379548 6.652636 —
4 16 A151830 8.462728 9.228670 9.757631 —
5 15 A151831 10.909365 12.144998 12.939813 —
6 15 A151832 13.523756 15.239618 16.288833 —
7 14 A151833 15.598535 17.924538 19.269014 —
8 12 A151834 16.647767 19.797643 21.497519 —
9 12 A151835 18.841772 22.627780 24.606050 —

Table 1 Lower bounds on the growth constants of polycubes, obtained by different methods.
(Best previously-published lower bounds appear in boldface.)

T1 T2

(a) Two dimensions (b) Three dimensions

Figure 2 Concatenating trees.

4 Simple Applications

4.1 General
We applied methods [E], [C], and [O1] to polyominoes and polycubes, and found lower
bounds on λd (for 2 ≤ d ≤ 9). Table 1 summarizes our findings. (In two dimensions, the
bounds are inferior to the bound 4.00253 obtained by the much stronger twisted cylinders
method [1], which, unfortunately, cannot be generalized efficiently to higher dimensions
because it becomes computationally intractable.) We show in Section 5 how to improve all
known bounds in d ≥ 3 dimensions.

4.2 Trees
A polycube is a tree if its cell-adjacency graph is acyclic. Tree polycubes and their respective
growth constants also attracted interest in the literature (see, e.g., [5]). In order to preserve the
tree property, special restrictions must be enforced while concatenating them. Figures 2(a,b)
show two tree polycubes T1, T2, having cells c1, c2 as their largest and smallest cells, resp.,
concatenated by Method [E]. To remain a tree, the only valid concatenation is the one in
which c1 and c2 are aligned with the most dominant axis of the lexicographic order. This
leaves a (d−1)-dimensional buffer that prevents cycles in the concatenation of T1 and T2.

Let Ad;T (n) and λd;T denote the number of n-cell tree polycubes in d dimensions,
and their growth constant, respectively. As in similar examples, we obtain the relation
A2

d;T (n) ≤ Ad;T (2n), which, by Theorem 2.1(b), implies that λd;T ≥ n
√
Ad;T (n) for all n ∈ N.

Table 2 shows the best lower bounds obtained this way in dimensions 2–8, in all cases using
the largest known values of the respective sequences.

G. Barequet, G. Ben-Shachar, and M.C. Osegueda 23:5

Known OEIS Method
Dimensions Values Sequence [E]

2 44 A066158 3.4045
3 17 A118356 5.5592
4 10 A191094 6.7698
5 10 A191095 8.8035
6 8 A191096 9.4576
7 7 A191097 10.0909
8 7 A191098 11.4891

Table 2 Lower bounds on the growth constants of tree polycubes of various dimensions.

x2

x1

x2

x1

h− 1 n− h− 1

++

h− 2 n− h

++

(a) (b) (c) (d)

Figure 3 Constructions for the proof of Theorem 5.1.

5 Recursive Bounding

We now present a recursive scheme for improving bounds obtained by all methods described
above. Let us demonstrate the scheme by a concrete example of setting lower bounds on the
growth constants of polycubes. As observed earlier, the sequence enumerating d-dimensional
polycubes is super-multiplicative and it has a growth constant, hence, by concatenation
Method [O1], any term of the form n−1

√
Ad(n) is a lower bound on λd. In practice, we can

prove relations which are tighter than the super-multiplicativity condition, for example:

I Theorem 5.1. Let h = b(n+ 1)/2c. Then, for every n ≥ 4, we have that

Ad(n) ≥ Ad(h)Ad(n−h+1)+ d(d− 1)2

2 (Ad(h−1)Ad(n−h−1)+Ad(h−2)Ad(n−h)). (1)

Proof. The term on the left side of Relation 1 is the number of all d-dimensional polycubes
of size n, whereas the terms on the right count a subset of these polycubes.

We distinguish between three types of polycubes by the connectedness of their cells.
The first term, Ad(h)Ad(n− h+ 1), counts d-dimensional polycubes obtained by concate-

nating two polycubes of sizes h and n−h+1 with a 1-cell overlap. In these combinations, the
lower h cells, as well the upper n−h+1 cells, form valid polycubes which share the hth cell.

The second factor of the second term, Ad(h−1)Ad(n−h−1) +Ad(h−2)Ad(n−h), counts
two types of constructions. In both types, we place 3-cell L-shapes (Figures 3(a,b)) in the
middle in order to force the hth cell to be disconnected from either the upper n−h cells or
the lower h−1 cells (Figures 3(c,d)). The largest (smallest) cell of the lower (upper) polycube
is marked by an empty circle, and the hth cell of the resulting polycube is marked by an
asterisk. The trick is to mix between no-overlap and 1-overlap on the two sides of the L. To
this aim, the L-shape in Figure 3(a) is overlapped with the lower polycube of size h−1, and
concatenated to the upper polycube of size n−h−1 (Figure 3(c)). Similarly, the L-shape in
Figure 3(b) is concatenated to the lower polycube of size h−2 and overlapped with the upper
polycube of size n−h (Figure 3(d)).

EuroCG’20

23:6 Applications of Concatenation Arguments to Polyominoes and Polycubes

d Bound
2 3.7944
3 6.6621
4 9.7714
5 12.9569
6 16.3087
7 19.2927
8 21.5298
9 24.6416

Table 3 Improved lower bounds on λd for 3 ≤ d ≤ 9.

Let us finally explain the first factor of the second term. First, there are
(

d
2
)
options for

choosing the orientation of L. (Directions are denoted by x1 and x2, where x1 has precedence
over x2 in the lexicographic order.) Second, the no-overlap concatenation (on one of the
sides) can be done in d−1 ways: All directions are valid except direction x2, the direction
which would cover the forbidden cell (marked with an “×” in Figures 3(a,b)). This constraint
avoids multiple counting; otherwise, we would have in the middle a 2×2 square which can be
created in more than one way. Overall, we have a factor of

(
d
2
)
(d− 1) = d(d− 1)2/2.

It is easy to see that all resulting polycubes are different by construction. J

Unfortunately, we cannot derive from Relation (1) “chains” of lower bounds. However,
we can apply a recursive procedure for bounding from below any value of Ad(n). Since
we know values of Ad(n) up to some n = n0, we can construct a sequence B(n), such
that B(n) ≤ Ad(n) for every n: For 1 ≤ n ≤ n0, let B(n) = Ad(n); and for n > n0, set B(n)
recursively to the value calculated from the right side of Relation 1.

One can apply this method for large values of n ad infinitum, or, more practically, until
the available computing resources are exhausted, and choose the best value encountered. We
ran this procedure up to n ≈ 12,000,000 for 2 ≤ d ≤ 9. This improved the lower bounds
on λd in all of 3 ≤ d ≤ 9 dimensions. Table 3 summarizes the obtained bounds.

6 Conclusion

We explore concatenation arguments and their applications to setting lower bounds on the
growth constants of polycubes and tree polycubes. In the full version of the paper, we also
provide a much more complex application of the method to setting an upper bound on the
growth constant of convex polyominoes.

A possible direction for future work is analyzing the quality of our lower bounds. It was
conjectured [2] that λd behaves asymptotically like (2d− 3)e+O(1/d) (as d→∞); see the
blue line in the graph shown in Figure 4. Bounds obtained by the recursive-bounding method
also exhibit a linear dependence on d, surprisingly similar to 3.13d−2.63 (obtained with
Rvalue=0.9998, using Python’s linear least-squares regression tool scipy.stats.linregress);
see the orange line in the same figure. Are the approximate slope π and intercept −e a
coincidence, or are they inherently related to the concatenation method?

Acknowledgment

The authors would like to thank Günter Rote and Vuong Bui for many helpful comments on
a preliminary draft of this paper.

G. Barequet, G. Ben-Shachar, and M.C. Osegueda 23:7

2 3 4 5 6 7 8 9
Dimension of the d-Dimensional Cubical Lattice (d)

5

10

15

20

25

30

35

40

Gr
ow

th
 C

on
st

an
t V

al
ue

 (
d)

Conjectured
Recursive Bounding

Figure 4 Conjectured growth constants (blue), and lower bounds we obtained (orange).

References
1 G. Barequet, M. Shalah, and G. Rote, λ > 4: An improved lower bound on the

growth constant of polyominoes, Comm. of the ACM, 59 (2016), 88–95.
2 R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-

dimensional polycubes, Combinatorica, 30 (2010), 257–275.
3 G. Barequet, M. Shalah, and Y. Zheng, An improved lower bound on the growth

constant of polyiamonds, J. of Combinatorial Optimization, 37 (2019), 424–438.
4 S.R. Broadbent and J.M. Hammersley, Percolation processes: I. Crystals and mazes,

Proc. Cambridge Philosophical Society, 53 (1957), 629–641.
5 J.A.M.S. Duarte and H.J. Ruskin, The branching of real lattice trees as dilute poly-

mers, J. de Physique, 42 (1981), 1585–1590.
6 M. Eden, A two-dimensional growth process, Proc. 4th Berkeley Symp. on Mathematical

Statistics and Probability, IV, Berkeley, CA, 223–239, 1961.
7 I. Jensen, Enumerations of Lattice Animals and Trees, J. of Statistical Physics,

102 (2001), 865–881.
8 I. Jensen, Counting polyominoes: A parallel implementation for cluster computing, Proc.

Int. Conf. on Computational Science, III (Melbourne, Australia and St. Petersburg, Russia,
2003), Lecture Notes in Computer Science, 2659, Springer, 203–212.

9 D.A. Klarner, Cell growth problems, Canadian J. of Mathematics, 19 (1967), 851–863.
10 D.A. Klarner and R.L. Rivest, A procedure for improving the upper bound for the

number of n-ominoes, Canadian J. of Mathematics, 25 (1973), 585–602.
11 N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999),

357–384.
12 The on-line encyclopedia of integer sequences (OEIS), available at

http://www.oeis.org .
13 G. Pólya and G. Szego, Aufgaben und Lehrsätze aus der Analysis, vol. 1, Julius

Springer, Berlin, 1925.
14 H.N.V. Temperley, Combinatorial problems suggested by the statistical mechanics of

domains and of rubber-like molecules, Physical Review 2, 103 (1956), 1–16.

EuroCG’20

Scheduling drones to cover outdoor events
O. Aichholzer1, L. E. Caraballo2, J.M. Díaz-Báñez2, R.
Fabila-Monroy3, I. Parada1, I. Ventura2, and B. Vogtenhuber1

1 Graz University of Technology
oaich@ist.tugraz.at,iparada@ist.tugraz.at,bvogt@ist.tugraz.at

2 University of Seville
lcaraballo@us.es,dbanez@us.es,iventura@us.es

3 Cinvestav
ruyfabila@math.cinvestav.edu.mx

Abstract
Task allocation is an important aspect of many multi-robot systems. In this paper, we consider a
new task allocation problem that appears in multi-robot aerial cinematography. The main goal
is to distribute a set of tasks (shooting actions) among the team members optimizing a certain
objective function. The tasks are given as sequences of waypoints with associated time intervals
(scenes). We prove that the task allocation problem maximizing the total filmed time by k aerial
robots (drones) can be solved in polynomial time when the drones do not require battery recharge.
We also consider the problem in which the drones have a limited battery endurance and must
periodically go to a static base station. For this version, we show how to solve the problem in
polynomial time when only one drone is available.

1 Introduction

In the last twenty years, the use of aerial robots and aerial multi-robot systems in monitoring,
surveillance, delivery of goods, network coverage, etc. [8], has brought several challenges that
have attracted the attention of both, robotics and mathematics research communities. For
example, the Vehicle Routing Problem (VRP) and Traveling Salesman Problem (TSP) are
classical problems in the area of operations research that have got renewed attention with
these applications; see [1] for a survey on VRP instances with applications to multi-objective
unmanned aerial vehicle operations and [2, 4, 5] for studies in commercial scenarios that
consider a combination of trucks and drones to perform the so-called last-mile delivery. Also,
task allocation problems have been widely addressed in the interplay of aerial robotics and
operations research. See [7] for a review on multi-robot task allocation.

The problems studied in this paper are inspired by the use of unmanned aerial vehicles
(drones, also called UAVs) for autonomous cinematography planning, aimed at filming outdoor
events (e.g., sport events such as cycling); see [9]. Drones are ideal to cover outdoor events
in large spaces, as they do not require the existence of previous infrastructure and they can
operate in places of difficult access. The input is provided by the media production director,
who specifies multiple shots that should be executed to film different scenes of the event.
These are basically time intervals associated with waypoints on the terrain. Each shot may
require one or multiple cameras, but in the end, all information can be translated into a set

This research has been supported by the projects GALGO (Spanish Ministry of Economy
and Competitiveness and MTM2016-76272-R AEI/FEDER,UE, MULTIDRONE, Grant
Agreement number: 731667-H2020-ICT-2016-2017), by the Austrian Science Fund within the
collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35, and
by the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 734922.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

24:2 Scheduling drones to cover outdoor events

of filming tasks with temporal and spatial constraints to be accomplished by the team. The
goal is to schedule the drones optimally in order to cover the filming tasks.

Problem statement

Consider a scenario in which an outdoor event is filmed by a set of drones. In the model
we assume that all drones fly at unit speed and start at a point p∗ in the plane called the
base. The production director specifies certain locations and time intervals at which the
filming of certain scenes is desired. We represent the input as a set F of n tuples (pi, Ii)
with i ∈ {1, . . . , n}, where pi is a point in space and Ii is a time interval. We call F the film
plan and each (pi, Ii) a scene. A scene (pi, Ii), or part of it, can be filmed by one or multiple
drones located at pi during (part of) the time interval Ii. A flight plan P is a sequence of
tuples (q1, J1), . . . , (qm, Jm) such that for every j, qj is equal to some pi and Jj ⊆ Ii. The
flight plan is assumed to be realizable by a drone starting at the base. The goal is to assign
flight plans to all drones in order to film as much as possible of the film plan. The filming
time of a flight plan assignment M is the sum of the lengths of the subintervals of Ii covered
by the flight plans. Formally, it is defined as

n∑

i=1

∣∣∣∣∣∣∣∣

⋃

P∈M
(pi,Jj)∈P

(Ii ∩ Jj)

∣∣∣∣∣∣∣∣
.

In this paper we study the following algorithmic problems in the above scenario.
I Problem 1. Find a flight plan maximizing the filming time for a single drone.
I Problem 2. Find a flight plan assignment maximizing the filming time for k ≥ 2 drones.
I Problem 3. Find the minimum number of drones needed to capture the complete film plan,
plus an according flight plan assignment.

Typically, drones have limited battery endurance and periodically return to a base station
to recharge or change their batteries. Let L > 0 be a real number and assume that each
drone can fly for time at most L before it must be at the base for a battery change. We call
L the battery life. In our model, a battery change is assumed to be instantaneous and the
drone can resume its flight plan immediately after arriving at the base. The drone can also
wait at the base for an arbitrary amount of time without consuming its battery.

Results

We present the following results. In the case of unlimited battery life, Problem 1 can be
solved in O(n5/3 + |E|) time and O(|E|) space for n time intervals. Here, |E| is the size
of a graph that in the worst case is quadratic in n but it is linear in realistic inputs for
cycling events [9]. For the general case in which k drones are available, we show how to solve
Problem 2 in O(n2(log n+k)+n|E|) time, while Problem 3 can be solved in O(n5/3 +

√
n|E′|)

time, where |E′| < |E|. All according proofs are constructive in the sense that they also
provide a flight plan that attains the computed maximum time/minimum number of drones.

The case of limited battery life is more challenging. Note that the complexity of an
explicit flight plan not only depends on the number of intervals, but also on the ratio between
the total time T of the film plan and the battery life L. We show that Problem 1 can still
be solved in polynomial time by augmenting the drone’s model so that repeated identical
instructions can be formulated in a compact way. We conjecture the general case for k drones
with limited battery life to be NP-hard.

Aichholzer, Caraballo, Díaz-Báñez, Fabila-Monroy, Parada, Ventura, Vogtenhuber 24:3

2 Unlimited battery life

In this section we consider the scenario where the drones do not require to recharge their
batteries. We first state a lemma that allows us to discretize the solution space for Prob-
lems 1, 2, and 3 in this setting. The intuition behind Lemma 2.1 is the following. In an
optimal solution, there is no reason for a drone at a point pi to leave its current filming
position before the corresponding interval Ii ends. Moreover, there is no reason for two
drones to be filming at the same location at the same time. The proof of Lemma 2.1 is
technical and it is based on applying the following two operations on flight plans.

Let P := (q1, J1), . . . , (qm, Jm) be a flight plan, t a real number, and 1 ≤ i ≤ m.
Informally, our first operation yields the flight plan obtained from P by staying additional
time t at position qi and thus arriving at the subsequent intervals at later times. We formalize
this definition. For a time interval [a, b] we define

extend([a, b], t) := [a, b + t]

delay([a, b], t) :=

[a, b] if t ≤ 0
[a + t, b] if 0 < t < b− a,

∅ if t ≥ b− a.

Consider the sequence P ′ := (q1, J1), . . . , (qi−1, Ji−1), (qi, extend(Ji, t)), (qi+1, delay(Ji+1, t)),
(qi+2, delay(Ji+2, t − |Ji+1|)), (qi+3, delay(Ji+3, t − |Ji+1| − |Ji+2|)), . . . , (qm, delay(Jm, t −∑m−1

j=i+1 |Jj |)). Let P ′′ be the flight plan obtained from P ′ by removing every tuple whose
time interval is empty. We call P ′′ the flight plan obtained from P by shifting P at interval
Ji by time t; see Figure 1.

Ji︷ ︸︸ ︷

︸ ︷︷ ︸
Ji+1

Ji+2︷ ︸︸ ︷ extend(Ji,4)︷ ︸︸ ︷
delay(Ji+2,4−|Ji+1|)︷ ︸︸ ︷

︸ ︷︷ ︸
delay(Ji+1,4) = ∅

Figure 1 Example of a shifting operation.

Our second operation involves two drones that meet at some point pi at the same time.
Informally, the operation makes the drones swap their flight plans at the point of contact.
Let P1 := (q1, J1), . . . , (qm, Jm) and P2 := (r1, K1), . . . , (rs, Ks) be two flight plans such that
for some pair of indices 1 ≤ i ≤ m and 1 ≤ j ≤ s the following holds. The point qi equals
the point rj and the last point of interval Ji := [a, b] is contained in the interval Kj := [c, d].
We call the operation of replacing P1 and P2 with the flight plans

P ′1 :=
{

(q1, J1), . . . , (qi−1, Ji−1), (qi, [a, d]), (rj+1, Kj+1), . . . , (rs, Ks) if a < c,

(q1, J1), . . . , (qi−1, Ji−1), (qi+1, Ji+1), . . . , (qm, Jm) if a ≥ c.

P ′2 :=
{

(r1, K1), . . . , (rj−1, Kj−1), (qi+1, Ji+1), . . . , (qm, Jm) if a < c,

P2 if a ≥ c.

swapping P1 with P2 at interval Ji; see Figure 2.
Note that any shifting or swapping operation maintains both realizability and total filming

time of the involved flight plan(s).

EuroCG’20

24:4 Scheduling drones to cover outdoor events

a c b dKj−1︷ ︸︸ ︷
Kj︷ ︸︸ ︷

Kj+1︷ ︸︸ ︷

︸ ︷︷ ︸
Ji︸ ︷︷ ︸

Ji−1
︸ ︷︷ ︸

Ji+1

a c b dKj−1︷ ︸︸ ︷ Kj+1︷ ︸︸ ︷

︸ ︷︷ ︸
J ′i︸ ︷︷ ︸

Ji−1
︸ ︷︷ ︸

Ji+1

Figure 2 Example of a swapping operation.

I Lemma 2.1. For every film plan there exists a flight plan of maximum filming time where
1) no drone leaves a point pi before the interval Ii ends; and
2) no two drones are at the same point pi at the same time.

By Lemma 2.1, we may assume that in an optimal solution to Problems 1, 2, or 3 a drone
never leaves a point pi before the interval Ii ends. We can use this property to translate
these problems into problems of covering directed weighted acyclic graphs with directed
paths. We construct a directed graph G = (V, E). The vertex set V consists of p∗ and the
points pi. A pair (pi, pj) is an edge in the edge set E whenever a drone at a point pi can
leave at the end of Ii and arrive at pj at a time t ∈ Ij := [a, b]. In such a case, (pi, pj) is
assigned weight b− t. Every pair (p∗, pi) is an edge in E with weight |Ii|. Due to geographic
and time constrains, not all pairs (pi, pj) might be edges of E. We can compute E efficiently,
in an output sensitive manner.

I Lemma 2.2. The edge set E can be computed in O(n5/3 + |E|) time.

By Lemma 2.1, a flight plan for one drone that maximizes the filming time corresponds
to a directed path starting at p∗ of maximum weight. Since G is acyclic, such a path can
be computed in O(|E|+ n) time by first doing a topological sort of G and then finding the
desired path via dynamic programming. This solves Problem 1.

I Theorem 2.3. Problem 1 with unlimited battery life can be solved in O(n5/3 + |E|) time.

Suppose that k ≥ 2 drones are available. By Lemma 2.1, a flight plan assignment for
these drones that maximizes the filming time corresponds to a set of k internally disjoint
paths of G, all starting starting at p∗ maximizing the sum of its weights. It is known that the
problem of finding k disjoint paths of maximum total weight all starting at a given vertex in
a general directed graph is NP-complete [6]. However, since G is acyclic, we can prove the
following result.

I Theorem 2.4. Problem 2 with unlimited battery life can be solved in O(n2(log n+k)+n|E|)
time.

Now, let G′ = (V, E′) be the following subgraph of G. The set E′ is the subset of E of
edges (p∗, pj) and the edges (pi, pj) of weight equal to |Ij |. This corresponds to the cases in
which a drone at pi leaving when Ii ends can arrive at pj just when Ij starts. In a similar
way to Lemma 2.2, E′ can be computed in O(n5/4 + |E′|) time. By Lemma 2.1, an optimal
solution to Problem 3 corresponds to a set of minimum cardinality of vertex disjoint paths
that covers every vertex of G′. Such a set is called a minimum path cover. The problem
of finding a minimum path cover for general directed graphs is NP-hard. However, if the
digraph is acyclic then a minimum path cover can be computed in O(

√
nm) time [3], where n

is the number of vertices and m is the number of edges of the digraph.

I Theorem 2.5. Problem 3 with unlimited battery life can be solved in O(n5/3 +
√

n|E′|)
time.

Aichholzer, Caraballo, Díaz-Báñez, Fabila-Monroy, Parada, Ventura, Vogtenhuber 24:5

3 Limited battery life for one drone

With bounded battery for each drone, the problem of selecting and scheduling drones
optimally to shoot the provided time intervals is a challenging problem. It is not difficult to
build an example for two drones in which, for an optimal solution, the leaving time for a
drone is not necessarily the end of an interval. We conjecture the problem is NP-hard in
general. In this section, we consider the problem for one drone and battery life L. This
implies that the drone must return to the base at latest after time L for a battery change. We
refer to the subsequence of a flight plan between two consecutive visits to the base as a round.
Let T = |⋃n

i=1 Ii|. Note that the number of rounds of any flight plan of maximum filming
time for one drone is at least bT/Lc (it could be exponential in n). As in the unlimited
battery case, we can discretize the solution space.

I Lemma 3.1. For every film plan there exists a flight plan of maximum filming time for
one drone with limited battery life such that:
1) If (pj , Ji) and (p′j , Ji+1) are consecutive tuples in the flight plan, then the last point of Ji

is equal to the last point of Ii.
2) If (p∗, Ji) and (pj , Ji+1) are consecutive tuples in the flight plan and |Ji| > 0, then the

first point of Ji is equal to the first point of Ij

3) If (pj , Ji) and (p∗, Ji+1) are consecutive tuples in the flight plan, then the last point of Ji

is equal to the last point of Ij or the drone is running out of battery at the last point of Ji.

Lemma 3.1 implies that the set of theoretically relevant event-times for some optimal
solution is discrete rather than continuous. Figure 3 shows an example scenario with an
optimal flight plan.

1

2 3
4

5

�

0

7

10

17

20 30 40 51 61 71 80.5

28 38 47 59 67 70 80 87

Figure 3 Scenario with 5 scenes represented by solid black lines. The dashed black line represents
the base. The red solid stroke represents the movement of the drone following an optimal solution.
The battery lasts 10 units of time. Closed in gray circles are the time instants associated to the
drone’s moves.

We can show that the problem can be solved in polynomial time if we augment the
computational model of the drone. More precisely, our drone operates from a set of driving
instructions of the type “go to the base” and “go to interval Ii”. In the augmented model,
the drone acts by default according to an internal protocol that allows the drone to perform
several moves between two consecutive instructions. In this model, “go to interval Ii” means
“repeatedly go to interval Ii, film as long as possible, and return to the base station, until
the next instruction comes”. Thus, an optimal scheduling can be encoded by a polynomial
sequence of driving instructions. A crucial result is the following.

I Lemma 3.2. An optimal solution for Problem 1 with limited battery life can be encoded
using a linear number of driving instructions.

EuroCG’20

24:6 Scheduling drones to cover outdoor events

The results above allow us to apply dynamic programming to compute an optimal
sequence of instructions in polynomial time.

I Theorem 3.3. Problem 1 with limited battery life can be solved in polynomial time.

References
1 M. Adbelhafiz, A. Mostafa, and A. Girard. Vehicle routing problem instances: Application

to multi-UAV mission planning. In AIAA Guidance, Navigation, and Control Conference,
2010. doi:10.2514/6.2010-8435.

2 N. Agatz, P. Bouman, and M. Schmidt. Optimization approaches for the traveling salesman
problem with drone. Transportation Science, 52(4):965–981, 2018. doi:10.1287/trsc.
2017.0791.

3 F. T. Boesch and J. F. Gimpel. Covering points of a digraph with point-disjoint paths
and its application to code optimization. Journal of the ACM, 24(2):192–198, 1977. doi:
10.1145/322003.322005.

4 John Gunnar Carlsson and Siyuan Song. Coordinated logistics with a truck and a drone.
Management Science, 64(9):4052–4069, 2018. doi:10.1287/mnsc.2017.2824.

5 C. C. Murray and A. G. Chu. The flying sidekick traveling salesman problem: Optimization
of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies,
54:86–109, 2015. doi:10.1016/j.trc.2015.03.005.

6 G. Naves, N. Sonnerat, and A. Vetta. Maximum flows on disjoint paths. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques. 13th
International Workshop, pages 326–337, 2010. doi:10.1007/978-3-642-15369-3_25.

7 E. Nunes, M. Manner, H. Mitiche, and M. Gini. A taxonomy for task allocation problems
with temporal and ordering constraints. Robotics and Autonomous Systems, 90:55–70, 2017.
doi:10.1016/j.robot.2016.10.008.

8 H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman,
A. Khreishah, and M. Guizani. Unmanned aerial vehicles (UAVs): A survey on civil
applications and key research challenges. IEEE Access, 7:48572–48634, 2019. doi:10.
1109/ACCESS.2019.2909530.

9 A. Torres-González, J. Capitán, R. Cunha, A. Ollero, and I. Mademlis. A multidrone
approach for autonomous cinematography planning. In Iberian Robotics Conference, pages
337–349, 2017.

Edge Guarding Plane Graphs
Paul Jungeblut1 and Torsten Ueckerdt2

1 Karlsruhe Institute of Technology, Germany
paul.jungeblut@kit.edu

2 Karlsruhe Institute of Technology, Germany
torsten.ueckerdt@kit.edu

Abstract
Let G = (V,E) be a plane graph. We say that a face f of G is guarded by an edge vw ∈ E if at
least one vertex from {v, w} is on the boundary of f . For a planar graph class G we ask for the
minimal number of edges needed to guard all faces of any n-vertex graph in G. In this extended
abstract we provide new bounds for two planar graph classes, namely the quadrangulations and
the stacked triangulations.

1 Introduction

In 1975, Chvátal [4] laid the foundation for the widely studied field of art gallery problems
by answering how many guards are needed to observe all interior points of any given n-sided
polygon P . Here a guard is a point p in P and it can observe any other point q in P , if the
line segment pq is fully contained in P . He shows that bn/3c guards are sometimes necessary
and always sufficient. Fisk [7] revisited Chvátal’s Theorem in 1978 and gave a very short
and elegant new proof by introducing diagonals into the polygon P to obtain a triangulated,
outerplanar graph. Such graphs are 3-colorable and in each 3-coloring all faces are incident
to vertices of all three colors, so the vertices of the smallest color class can be used as guard
positions. Bose et al. [3] studied the problem to guard the faces of a plane graph instead of a
polygon. A plane graph is a graph G = (V,E) with an embedding in R2 with not necessarily
straight edges and no crossings in the interior of any two edges. Here a face f is guarded
by a vertex v, if v is on the boundary of f . They show that bn/2c vertices (so called vertex
guards) are sometimes necessary and always sufficient for n-vertex plane graphs.

We consider a variant of this problem introduced by O’Rourke [9]. He shows that
only bn/4c guards are necessary in Chvátal’s original setting if each guard is assigned to
an edge of the polygon that he can patrol along instead of being fixed to a single point.
Considering plane graphs again, an edge guard is an edge vw ∈ E and guards all faces
having v and/or w on their boundary. For a given planar graph class G, we ask for the
minimal number of edge guards needed to guard all faces of every plane n-vertex graph in G.

General (not necessarily triangulated) n-vertex plane graphs might need at least bn/3c
edge guards, even when requiring 2-connectedness [3]. The best known upper bounds have
recently be presented by Biniaz et al. [1] and come in two different fashions: First, any n-
vertex plane graph can be guarded by b3n/8c edge guards found in an iterative process.
Second, a coloring approach yields an upper bound of bn/3 + α/9c edge guards where α
counts the number of quadrangular faces in G. Looking at n-vertex triangulations, Bose et
al. [3] provide a lower bound of b(4n− 8)/13c edge guards. A corresponding upper bound
of bn/3c edge guards was published earlier in the same year by Everett and Rivera-Campo [6].

This note is based on the master’s thesis of the first author [8] and we present our results
on quadrangulations and stacked triangulations. For both planar graph classes we give a
lower and an upper bound for the number of edge guards. All graphs considered below are
assumed to be plane, i.e. given with a fixed plane embedding.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

25:2 Edge Guarding Plane Graphs

a1 c1

d1

b1

a2 c2

d2

b2

ak ck

dk

bk

. . .

t

s

(a) A quadrangulation with 4k + 2 vertices
needing k edge guards (drawn thick and red).

(b) A quadrangulation G (black edges) and its
dual G∗ (purple edges) with a 2-factor (thick
edges). The vertex coloring is a guard coloring.

Figure 1 Lower and upper bound for quadrangulations.

2 Main Results

2.1 Quadrangulations
Quadrangulations are the maximal plane bipartite graphs and every face is bounded by
exactly four edges. All coloring approaches developed previously [1, 6] fail on graphs
containing quadrangular faces. The previously best known upper bounds are the ones given
by Biniaz et al. [1] for general plane graphs, b3n/8c respectively bn/3 + α/9c, where α
is the number of quadrilateral faces. For n-vertex quadrangulations we have α = n − 2,
so bn/3 + (n− 2)/9c = b(4n− 2)/9c > b3n/8c for n ≥ 4. In this section we provide a better
upper and a not yet matching lower bound. Closing the gap remains an open problem.

I Theorem 2.1. For k ∈ N there exists a quadrangulation Qk with n = 4k + 2 vertices
needing k = (n− 2)/4 edge guards.

Proof. Define Qk = (V,E) with V := {s, t}∪⋃k
i=1{ai, bi, ci, di} and E :=

⋃k
i=1{sai, sci, tai,

tci, aibi, aidi, cibi, cidi} as the union of k vertex disjoint 4-cycles and two extra vertices
connecting them. Figure 1a shows this and a planar embedding. Now for any two distinct i, j ∈
{1, . . . , k} the two quadrilateral faces (ai, bi, ci, di) and (aj , bj , cj , dj) are only connected via
paths through s or t. Therefore, no edge can guard two or more of them and we need at
least k edge guards for Qk. On the other hand it is easy to see that {sa1, . . . , sak} is an edge
guard set of size k, so Qk needs exactly k edge guards. J

The following Lemma is from Bose et al. [2] and we cite it using the terminology of Biniaz
et al. [1]. A guard coloring of a plane graph G is a non-proper 2-coloring of its vertex set,
such that each face f of G has at least one boundary vertex of each color and at least one
monochromatic edge (i.e. an edge where both endpoints receive the same color). They prove
that a guard coloring exists for all graphs without any quadrangular faces.

I Lemma 2.2 ([2, Lemma 3.1]). If there is a guard coloring for an n-vertex plane graph G,
then G can be guarded by bn/3c edge guards.

I Theorem 2.3. Every quadrangulation can be guarded by bn/3c edge guards.

Proof. Let G be a quadrangulation. We show that there is a guard coloring for G, which
is sufficient by Lemma 2.2. Consider the dual graph G∗ = (V ∗, E∗) of G with its inherited
plane embedding, so each vertex f∗ ∈ V ∗ is placed inside the face f of G corresponding to
it. Since every face of G is of degree four, its dual graph G∗ is 4-regular. Using Petersen’s

P. Jungeblut and T. Ueckerdt 25:3

2-Factor Theorem [10]1 we get that G∗ contains a 2-factor H (a spanning 2-regular subgraph).
Any vertex of H is of degree 2, so H is a set of vertex-disjoint cycles that can be nested inside
each other. Now define a 2-coloring col : V → {0, 1} for the vertices of G: For each v ∈ V
let cv be the number of cycles C of H such that v belongs to the region of the embedding
surrounded by C. The color of v is determined by the parity of cv as col(v) := cv mod 2.

We claim that this yields a guard coloring of G: Any edge e = ab ∈ E has a corresponding
dual edge e∗. If e∗ ∈ E(H), then e crosses exactly one cycle edge, so |ca − cb| = 1 and
therefore col(a) 6= col(b). Otherwise e 6∈ E(H), so its two endpoints are in the same cycles,
thus col(a) = col(b) and e is monochromatic. Because H is a 2-factor, each face has exactly
two monochromatic edges. J

Figure 1b shows an example quadrangulation with a 2-factor in its dual graph. From
here it is easy to color the vertices in green and orange to obtain a guard coloring.

In order to bridge the gap between the lower (b(n− 2)/4c) and the upper bound (bn/3c),
we also consider the subclass of 2-degenerate quadrangulations in the master’s thesis [8,
Theorem 5.9]:

I Theorem 2.4. Every n-vertex 2-degenerate quadrangulation can be guarded by bn/4c edge
guards.

Note that this bound is best possible, as the quadrangulations constructed in Theorem 2.1
are 2-degenerate.

2.2 Stacked Triangulations
The stacked triangulations (also known as Apollonian networks or planar 3-trees) are
a subclass of the triangulations that can recursively be formed by the following rules:
(i) A triangle is a stacked triangulation and (ii) if G is a stacked triangulation and f an
inner face, then the graph obtained by placing a new vertex into f and connecting it with all
three boundary vertices is again a stacked triangulation. We shall prove that the stacked
triangulations are a non-trivial subclass of the triangulations that need strictly less than bn/3c
edge guards (which is the best known upper bound for general triangulations).

I Theorem 2.5. For even k ∈ N there is a stacked triangulation G with n = (7k + 4)/2
vertices needing at least k = (2n− 4)/7 edge guards.

Proof. Let S be a stacked triangulation with k faces and therefore (k + 4)/2 vertices (by
Euler’s formula). Subdivide each face f of S with three new vertices af , bf , cf such that the
resulting graph is a stacked triangulation and these three vertices form a new triangular
face tf , i.e. f and tf do not share any boundary vertices. This subdivision is shown in
Figure 2a for a single face f . Then G has n = (k + 4)/2 + 3k = (7k + 4)/2 vertices. For any
two distinct faces f, g of S the shortest path between any two boundary vertices of the new
faces tf and tg has length at least 2, so no edge can guard both of them. Therefore G needs
at least k edge guards. J

I Theorem 2.6. Every n-vertex stacked triangulation can be guarded by b2n/7c edge guards.

1 Diestel [5, Corollary 2.1.5] gives a very short and elegant proof of this theorem in his book. He
only considers simple graphs there, but all steps in the proof (including the given proof of Hall’s
Theorem [5, 11, Theorem 2.1.2]) also work for multigraphs like G∗ that have at most two edges between
any pair of vertices.

EuroCG’20

25:4 Edge Guarding Plane Graphs

af
bf

cf

tf

z

x y

(a) Face f = (x, y, z)
gets subdivided by three
vertices af , bf , cf forming
a new face tf .

z

x y

(b) If x, y are guarded,
one additional edge
suffices to guard all
inner faces.

z

x y

a

b

(c) Subdividing with two
vertices allows to assume
that x, y ∈ V (Γ), where Γ is
an edge guard set of minimum
cardinality.

Figure 2 Lower and upper bound for stacked triangulations.

A proof of Theorem 2.6 is given in the master’s thesis [8, Theorem 4.14] but it is too long
for this extended abstract. We restrict ourselves to briefly describing the main idea: We do
induction on n, the number of vertices. Given any n-vertex stacked triangulation, we find a
triangle 4 := {x, y, z} ⊆ V (G) containing at least k− ≥ 4 vertices inside of it but among all
possible candidates one where k− is minimal. Let V − ⊆ V be the vertices in the interior
of 4. We remove V − from G, so 4 becomes a face and we subdivide it with k+ < k− new
vertices V +. Call the resulting graph G′. Applying the induction hypothesis on G′ provides
us with an edge guard set Γ′ of size at most b2|V (G′)|/7c. We show that Γ′ can be augmented
to and edge guard set Γ for G with size |Γ| = |Γ′|+ `, such that `/(k−− k+) ≤ 2/7, so that Γ
has size at most b2n/7c.

For example consider a stacked triangulation G with a separating triangle 4 = {x, y, z}
as shown in Figure 2b with k− = 6 vertices V − inside (the figure only shows the separating
triangle and its interior vertices). Assume for now that V + = ∅, so 4 is a face in G′. An edge
guard set Γ′ of G′ guards 4, for example we could have x ∈ V (Γ′) and y, z 6∈ V (Γ′). But
then – after reinserting the vertices of V − – no single edge can guard all the remaining faces.
So in this situation it is impossible to extend Γ′ by a single edge to and edge guard set Γ
for G. The following lemma tells us how to choose V + instead, such that such a situation
cannot arise.

I Lemma 2.7. Let {x, y, z} be a face of a stacked triangulation G. By stacking two new
vertices into {x, y, z} we can obtain a stacked triangulation H such that for each edge guard
set Γ of H there is an edge guard set Γ′ with x, y ∈ V (Γ′) and |Γ′| ≤ |Γ|.

Proof. Add vertex a with edges xa, ya, za and then vertex b with edges ab, xb, yb to obtain H
(see Figure 2c). Now let Γ be any edge guard set for H not yet fulfilling the requirements,
so |{x, y} ∩ V (Γ)| ≤ 1. If b ∈ V (Γ) as part of an edge vb, we can set Γ′ := (Γ \ {vb}) ∪ {xy}.
This is possible, because for any possible neighbor v of b, edge xy guards a superset of the faces
that vb guards. If otherwise b 6∈ V (Γ), we assume without loss of generality that x ∈ V (Γ)
and y 6∈ V (Γ). Note that |{x, y} ∩ V (Γ)| ≥ 1, because face {x, y, b} must be guarded.
Face {a, b, y} can then only be guarded by edge va where v ∈ {x, z}. Since N(a) ⊆ N(y) we
can set Γ′ := (Γ \ {va}) ∪ {vy}. In both cases x, y ∈ V (Γ′) and |Γ′| ≤ |Γ|. J

Let us go back to the example in Figure 2b: Using Lemma 2.7, we can now remove the
six vertices in V −, add two new ones V + := {a, b} as in Figure 2c and assume that the

P. Jungeblut and T. Ueckerdt 25:5

induction hypothesis gives us an edge guard set Γ′ with x, y ∈ V (Γ′). Then one additional
edge is enough to guard the remaining inner faces and `/(|V −| − |V +|) = 1/(6− 2) ≤ 2/7 as
desired. This guard set is shown in Figure 2b in red.

In addition to Lemma 2.7, we prove two more of this kind in the master’s thesis [8]
and which we list here without a proof. Like the lemma above, they describe how to
add new vertices V + into a stacked triangulation, such that the resulting graph is still a
stacked triangulation and that we can assume certain properties of minimal edge guard sets.
Combining them, allows to handle all possible ways how the vertices V − inside 4 can be
connected.

I Lemma 2.8. Let G be a stacked triangulation, v be a vertex of degree 3 and x, y, z its
neighbors in G. Then for any edge guard set Γ guarding G we have |{v, x, y, z} ∩ V (Γ)| ≥ 2.

I Lemma 2.9. Let (x, y, z) be a face of a stacked triangulation G. By stacking three new
vertices into (x, y, z) we can obtain a stacked triangulation H such that for each edge guard
set Γ of H there is an edge guard set Γ′ with x ∈ V (Γ′) and an edge vw ∈ Γ′ with v ∈ {x, y, z}
and w inside (x, y, z). Further |Γ′| ≤ |Γ|.

We conclude this note with the following open problems:

I Open Problems. How many edge guards are sometimes necessary and always sufficient
for quadrangulations, (4-connected) triangulations and general plane graphs?

Acknowledgments

We thank Kolja Knauer for interesting discussions on the topic.

References
1 Ahmad Biniaz, Prosenjit Bose, Aurélien Ooms, and Sander Verdonschot. Improved

Bounds for Guarding Plane Graphs with Edges. Graphs and Combinatorics, 35(2):437–
450, 3 2019. URL: https://doi.org/10.1007/s00373-018-02004-z, doi:10.1007/
s00373-018-02004-z.

2 Prosenjit Bose, David Kirkpatrick, and Zaiqing Li. Worst-Case-Optimal Algorithms
for Guarding Planar Graphs and Polyhedral Surfaces. Computational Geometry,
26(3):209 – 219, 2003. URL: http://www.sciencedirect.com/science/article/pii/
S0925772103000270, doi:https://doi.org/10.1016/S0925-7721(03)00027-0.

3 Prosenjit Bose, Thomas Shermer, Godfried Toussaint, and Binhai Zhu. Guarding Poly-
hedral Terrains. Computational Geometry, 7(3):173 – 185, 1997. URL: http://www.
sciencedirect.com/science/article/pii/0925772195000348, doi:https://doi.org/
10.1016/0925-7721(95)00034-8.

4 Vasek Chvátal. A Combinatorial Theorem in Plane Geometry. Journal of Combinatorial
Theory, Series B, 18(1):39–41, 1975.

5 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, Heidelberg, 5 edition, 8 2016.

6 Hazel Everett and Eduardo Rivera-Campo. Edge Guarding Polyhedral Ter-
rains. Computational Geometry, 7(3):201 – 203, 1997. URL: http://www.
sciencedirect.com/science/article/pii/0925772195000518, doi:https://doi.org/
10.1016/0925-7721(95)00051-8.

7 Steve Fisk. A Short Proof of Chvátal’s Watchman Theorem. Journal of Combinatorial The-
ory, Series B, 24(3):374, 1978. URL: http://www.sciencedirect.com/science/article/
pii/009589567890059X, doi:https://doi.org/10.1016/0095-8956(78)90059-X.

EuroCG’20

25:6 Edge Guarding Plane Graphs

8 Paul Jungeblut. Edge Guarding Plane Graphs. Master’s thesis, Karlsruhe Institute of Tech-
nology, 10 2019. URL: https://i11www.iti.kit.edu/extra/publications/j-egpg-19.
pdf.

9 Joseph O’Rourke. Galleries Need Fewer Mobile Guards: A Variation on Chvátal’s The-
orem. Geometriae Dedicata, 14(3):273–283, 9 1983. URL: https://doi.org/10.1007/
BF00146907, doi:10.1007/BF00146907.

10 Julius Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15(1):193–220, 1891.
11 Hall Philip. On Representatives of Subsets. J. London Math. Soc, 10(1):26–30, 1935.

Geometric bistellar moves relate triangulations of
Euclidean, hyperbolic and spherical manifolds
Tejas Kalelkar∗1 and Advait Phanse†2

1 Indian Institute of Science Education and Research Pune
tejas@iiserpune.ac.in

2 Indian Institute of Science Education and Research Pune
advait.phanse@students.iiserpune.ac.in

Abstract
A geometric triangulation of a Riemannian manifold is a triangulation where the interior of
each simplex is totally geodesic. Bistellar moves are local changes to the triangulation which
are higher dimensional versions of the flip operation of triangulations in a plane. We show
that geometric triangulations of a compact hyperbolic, spherical or Euclidean n-dimensional
manifold are connected by geometric bistellar moves (possibly adding or removing vertices), after
taking sufficiently many derived subdivisions. For dimension 2 and 3, we show that geometric
triangulations of such manifolds are directly related by geometric bistellar moves.

1 Introduction and Notations

If we do not allow adding or removing vertices, it is known that the flip graph of Euclidean
triangulations of 2-dimensional polytopes is connected. This forms the basis for the Lawson
edge flip algorithm to obtain a Delaunay triangulation. For 5-dimensional polytopes, Santos
[7] has given examples of triangulated polytopes with disconnected flip graphs. The problem
of connectedness of such a flip graph for 3-dimensional polytopes is still open.

In this article we show that if we allow bistellar moves which add or remove vertices
then the flip graph is connected in dimension 3 not just for polytopes but also for geometric
triangulations of any compact Euclidean, spherical or hyperbolic manifold. This can be used
to show that any quantity calculated from a geometric triangulation which is invariant under
geometric Pachner moves is in fact an invariant of the manifold. Furthermore in dimension
greater than 3, any two such triangulations are related by bistellar moves after taking suitably
many derived subdivisions.

In [4] we give an alternate approach using shellings to relate geometric triangulations via
topological bistellar moves (so intermediate triangulations may not be geometric). This gives
a tighter bound on the number of such flips required to relate the geometric triangulations,
than the one which can be calculated from the algorithm in this article.

A geometric triangulation of a Riemannian manifold is a finite triangulation where the
interior of each simplex is a totally geodesic disk. Every constant curvature manifold has a
geometric triangulation. A common subcomplex of simplicial triangulations K1 and K2 of M
is a simplicial complex structure L on a subspace of M such that K1||L| = K2||L| = L. The
main result in this article is the following:

I Theorem 1.1. Let K1 and K2 be geometric simplicial triangulations of a compact constant
curvature manifold M with a (possibly empty) common subcomplex L with |L| ⊃ ∂M . When
M is spherical we assume that the diameter of the star of each simplex is less than π. Then

∗ Supported by MATRICS grant of SERB, GoI
† Supported by NBHM fellowship, GoI

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

26:2 Geometric bistellar moves relate geometric triangulations

for some s ∈ N, the s-th derived subdivisions βsK1 and βsK2 are related by geometric
bistellar moves which keep βsL fixed.

In dimension 2 and 3, every internal stellar move can be realised by geometric bistellar
moves (see for example Lemma 2.11 of [3]), so we get the following immediate corollary:

I Corollary 1.2. Let K1 and K2 be geometric simplicial triangulations of a closed constant
curvature 2 or 3-manifold M . When M is spherical we assume that the diameter of the star
of each simplex is less than π. Then K1 is related to K2 by geometric bistellar moves.

An abstract simplicial complex consists of a finite set K0 (the vertices) and a family K of
subsets of K0 (the simplexes) such that if B ⊂ A ∈ K then B ∈ K. A simplicial isomorphism
between simplicial complexes is a bijection between their vertices which induces a bijection
between their simplexes. A realisation of a simplicial complex K is a subspace |K| of some
RN , where K0 is represented by a finite subset of RN and vertices of each simplex are in
general position and represented by the linear simplex which is their convex hull. Every
simplicial complex has a realisation in RN where N is the size of K0, by representing K0 as
a basis of RN . Any two realisations of a simplicial complex are simplicially isomorphic. For
A a simplex of K, we denote by ∂A the boundary complex of A. When the context is clear,
we shall use the same symbol A to denote the simplex and the simplicial complex A ∪ ∂A.
We call K a simplicial triangulation of a manifold M if there exists a homeomorphism from
a realisation |K| of K to M . The simplexes of this triangulation are the images of simplexes
of |K| under this homeomorphism.

I Definition 1.3. For A and B simplexes of a simplicial complex K, we denote their join
A ? B as the simplex A ∪ B. As the join of totally geodesic disks in a constant curvature
manifold gives a totally geodesic disk, operations involving joins are well-defined in the class
of geometric triangulations of a constant curvature manifold.

The link of a simplex A in a simplicial complex K is the simplicial complex defined by
lk(A,K) = {B ∈ K : A ? B ∈ K}. The (closed) star of A in K is the simplicial complex
defined by st(A,K) = A ? lk(A,K).

I Definition 1.4. Suppose that A is an r-simplex in a simplicial complex K of dimension
n then a stellar subdivision on A gives the geometric triangulation (A, a)K by replacing
st(A,K) with a ? ∂A ? lk(A,K) for a ∈ int(A). The inverse of this operation (A, a)−1K is
called a stellar weld and they both are together called stellar moves. When lk(A,K) = ∂B

for some (n − r)-dimensional geometric simplex B /∈ K, then the bistellar move κ(A,B)
consists of changing K by replacing A ? ∂B with ∂A ? B. It is the composition of a stellar
subdivision and a stellar weld, namely (B, a)−1(A, a). Another way of defining this is to take
a disk subcomplex D of K which is simplicially isomorphic to a disk D′ in ∂∆n+1 and the
flip consists of replacing it with the disk ∂∆n+1 \ int(D′).

The derived subdivision βK of K is obtained from K by performing a stellar subdivision
on all r-simplexes, and ranging r inductively from n down to 1.

All stellar and bistellar moves we shall consider are geometric in nature. See Fig 1 for a
combinatorial bistellar move which is not geometric.

As the supports in RN of two triangulations of a manifold may be different so when the
manifold is not a polytope we can not take a linear cobordism between them. A subtle point
here is that even if we obtain a common geometric refinement of two geometric triangulations,
the refinement may not be a simplicial subdivision of the corresponding simplicial complexes.
To see a topological subdivision which is not a simplicial subdivision, observe that there

T. Kalelkar and A. Phanse 26:3

Figure 1 A 2-2 combinatorial bistellar move which is not geometric.

exists a simplicial triangulation K of a 3-simplex ∆ which contains in its 1-skeleton a trefoil
with just 3 edges [5]. If K were a simplicial subdivision of ∆ there would exist a linear
embedding of ∆ in some RN which takes simplexes of K to linear simplexes in RN . As
the stick number of a trefoil is 6, there can exist no such embedding. While there may not
exist such a global embedding of a geometric triangulation K as a simplicial complex in RN
which takes geometric subdivisions to linear (simplicial) subdivisions, for constant curvature
manifolds there does exist such a local embedding on stars of simplexes of K. This is the
property we exploit in this note.

2 Star-convex flat polyhedra

I Definition 2.1. We define a flat polyhedron P in Rn to be the realisation of a simplicial
complex in Rn which is homeomorphic to an n-dimensional closed ball. We call a flat
polyhedron P in Rn strictly star-convex with respect to a point x in its interior if for any
y ∈ P , the interior of the segment [x, y] lies in the interior of P .

We call a triangulation K of P regular if there is a function h : |K| → R that is linear on
each simplex of K and strictly convex across codimension one simplexes of K, i.e., if points
x and y are in neighboring top-dimensional simplexes of K then the segment connecting h(x)
and h(y) is above the graph of h (except at the end points).

In their proof of the weak Oda conjecture, Morelli [6] and Wlodarczyk [8] proved that
any two triangulations of a convex polyhedron are related by a sequence of stellar moves. As
interior stellar moves can be given by bistellar moves in dimension 3, Izmestiev and Schlenker
[3] have improved on this result to show the following:

I Theorem 2.2 (Lemma 2.11 of [3]). Any two triangulations of a convex polyhedron P in
R3 can be connected by a sequence of geometric bistellar moves, boundary geometric stellar
moves and continuous displacements of the interior vertices.

With their techniques however, even when the two triangulations agree on the boundary,
we still need boundary stellar moves to relate them. Our aim in this section is to show that
their techniques can be tweaked to give a boundary relative version for triangulations of
strictly star-convex flat polyhedra in any dimension. The main theorem of this section is the
following:

I Theorem 2.3. Let P ⊂ Rn be a strictly star-convex flat polyhedron. Let K1 and K2 be
triangulations of P that agree on the boundary. Then for some s ∈ N, their s-th derived
subdivisions βsK1 and βsK2 are related by geometric bistellar moves.

We use the following simple observation in the proof:

EuroCG’20

26:4 Geometric bistellar moves relate geometric triangulations

I Lemma 2.4 (Lemma 4, Ch 1 of [9]). Let K and L denote two simplicial complexes with
|K| ⊂ |L|. Then there exists r ∈ N and a subdivision K ′ of K such that K ′ is a subcomplex
of βrL.

I Lemma 2.5. Let K denote a triangulated flat polyhedron. Then for some s ∈ N, its s-th
derived subdivision βsK is regular.

Proof. Let ∆ be an n-simplex with |∆| ⊃ |K|. By Lemma 2.4, there exists an r ∈ N and
subdivision K ′ of K which is a subcomplex of βr∆. As ∆ is trivially a regular triangulation,
so its stellar subdivision βr∆ is also regular (see for instance [2]). Restricting its regular
function to the subcomplex K ′ we get K ′ to be regular, as codimension one simplexes of K ′
are also codimension one simplexes of βr∆. As |K| = |K ′| so applying Lemma 2.4 a second
time, we get s ∈ N such that βsK is a subdivision of K ′. Finally as βsK is the subdivision
of a regular subdivision K ′ of K so by Claim 3 in proof of Theorem 1 of [1], βsK is a regular
triangulation. J

Proof of 2.3. The techniques in this proof are essentially those of Morelli and Wlodarczyk
as detailed in Section 2 of [3].

Choose a ∈ Rn+1 outside K1 such that the orthogonal projection map pr : Rn+1 → Rn
takes the support of C(K1) = a ? K1 ⊂ Rn+1 onto P and takes a to the interior of an
n-simplex of K1. By Lemma 2.5, there exists s ∈ N so that K = βsC(K1) is a regular
simplicial cobordism between βsK1 and βsC(∂K1). Choose new vertices of the derived
subdivision K such that for any simplex A ∈ K of dimension less than n + 1, pr(A) is a
simplex of the same dimension as A.

Let h : |K| → R be a regular function for K. If a simplex σ′ has some point above a
simplex σ then ∂h

∂xn+1
on σ′ is greater than ∂h

∂xn+1
on σ. So inductively removing simplexes

in non-increasing order of the vertical derivative of h we ensure that the projection of the
upper boundary onto P is always one-to-one. That is, we get a sequence of triangulations
Σ0 = K, Σ1, ... , ΣN = K1 such that Σi+1 = Σi \ σi and the orthogonal projection
pr : ∂+Σi → P from the upper boundary of Σi onto P is one-to-one for every i. Removing
an n+ 1-simplex σi from K corresponds to a bistellar move on ∂+Σi. As the projection map
is linear so it also corresponds to a bistellar move taking pr(∂+Σi) to pr(∂+Σi+1). Therefore
pr(∂+Σ0) = βsC(∂K1) is bistellar equivalent to pr(∂+ΣN) = βsK1. Consequently, βsK1 is
bistellar equivalent to βsK2 via βsC(∂K1) = βsC(∂K2). J

3 Geometric manifolds

I Definition 3.1. Let K be a geometric triangulation of a Riemannian manifold M and let
L be a subcomplex of K. We call K locally geodesically-flat relative to L if for each simplex
A of K \ L, st(A,K) is simplicially isomorphic to a star-convex flat polyhedron in Rn by a
map which takes geodesics to straight lines.

I Definition 3.2. Let L be a subcomplex of K containing ∂K and let αK be a subdivision of
K which agrees with K on L. Let βαrK be the subdivision of K such that, if A is a simplex in
L or dim(A) ≤ r , then βαr A = αA. If A is not in L and dim(A) > r then βαr A = a ?βαr ∂αA,
i.e. it is subdivided as the cone on the already defined subdivision of its boundary. Observe
that βαnK is αK while βα0 K = βLK is a derived subdivision of K relative to L.

I Lemma 3.3. Let K be a locally geodesically-flat simplicial complex relative to a subcomplex
L which contains ∂K. Let αK be a geometric subdivision of K which agrees with K on L.

T. Kalelkar and A. Phanse 26:5

Then there exists s ∈ N for which βsαK is related to βsK by bistellar moves which keep βsL
fixed.

Proof. For A a positive dimensional r-simplex in K \ L, st(A, βαrK) is a strictly star-convex
subset of st(A,K). As K is locally geodesically-flat relative to L, there exists a geodesic
embedding taking st(A, βαrK) to a strictly star-convex flat polyhedron of Rn. By Theorem
2.3, βsst(A, βαrK) is bistellar equivalent to βsC(∂st(A, βαrK)). As A is not in L so no interior
simplex of st(A, βαrK) is in L and consequently these bistellar moves keep βsL fixed. Taking
all simplexes A in K \ L of dimension r = n, we get a sequence of bistellar moves taking
βsβαrK to βsβαr−1K. Ranging r from n down to 1, we inductively obtain a sequence of
bistellar moves taking βsαK = βsβαnK to βsβLK = βsβα0 K, which keeps βsL fixed.

And finally, arguing as above with the trivial subdivision αK = K, we get βsβLK from
βsK by bistellar moves which keep βsL fixed. J

The following simple observation allows us to treat the star of a simplex in a geometric
triangulation as the linear triangulation of a star-convex polytope in Rn and bistellar moves
in the manifold as bistellar moves of the polytope.

I Lemma 3.4. Let K be a geometric simplicial triangulation of a spherical, hyperbolic
or Euclidean n-manifold M and let L be a subcomplex of K containing ∂K. When M is
spherical we require the star of each positive dimensional simplex of K \ L to have diameter
less than π. Then K is locally geodesically-flat relative to L.

Proof. Let K be a geometric triangulation of M and let B be the interior of the star of a
simplex in K \ L. As K is simplicial, B is an open n-ball.

When M is hyperbolic, let φ : B → Hn be the lift of B to the hyperbolic space in the
Klein model. As geodesics in the Klein model are Euclidean straight lines (as sets) so φ is
the required embedding.

When M is spherical, let D be the southern hemisphere of Sn ⊂ Rn+1, let T be the
hyperplane xn+1 = −1 and let p : D → T be the radial projection map (gnomonic projection)
which takes spherical geodesics to Euclidean straight lines. As B is small enough, lift B to D
and compose with the projection p to obtain the required embedding φ from B to T ' En.

When B is Euclidean let φ be the lift of B to Rn, which is an isometry. J

It is known (Theorem 4(c) of [1]) that for simplicial complexes of dimension at least 5
the number of derived subdivisions required to make the link of a vertex combinatorially
isomorphic to a convex polyhedron is not (Turing machine) computable. So in particular, the
stars of simplexes of a geometric triangulation may not even be combinatorially isomorphic
to convex polyhedra, which is why we need to work with star-convex polyhedra instead.

Given a Riemannian manifold M , a geometric polytopal complex C of M is a finite
collection of geometric convex polytopes whose union is all of M and such that for every
P ∈ C, C contains all faces of P and intersection of two polytopes is a face of each of them.

Proof of 1.1. By Lemma 3.4, K1 and K2 are locally geodesically flat simplicial complexes.
Let C be the geometric polytopal complex obtained by intersecting the simplexes of K1 and
K2. Then K = βLC, the derived subdivision of C relative to L is a common geometric
subdivision of K1 and K2. By Lemma 3.3 then, there exists s ∈ N so that βsK1 and βsK2
are bistellar equivalent via βsK by bistellar moves which leave βsL fixed. J

EuroCG’20

26:6 Geometric bistellar moves relate geometric triangulations

References
1 Karim A. Adiprasito and Ivan Izmestiev. Derived subdivisions make every PL sphere

polytopal. Israel J. Math., 208(1):443–450, 2015. URL: https://doi.org/10.1007/
s11856-015-1206-4, doi:10.1007/s11856-015-1206-4.

2 Jesús A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations, volume 25 of
Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2010. Structures
for algorithms and applications. URL: https://doi.org/10.1007/978-3-642-12971-1,
doi:10.1007/978-3-642-12971-1.

3 Ivan Izmestiev and Jean-Marc Schlenker. Infinitesimal rigidity of polyhedra with vertices
in convex position. Pacific J. Math., 248(1):171–190, 2010. URL: https://doi.org/10.
2140/pjm.2010.248.171, doi:10.2140/pjm.2010.248.171.

4 Tejas Kalelkar and Advait Phanse. An upper bound on pachner moves relating geometric
triangulations, 2019. arXiv:1902.02163.

5 W. B. R. Lickorish. Unshellable triangulations of spheres. European J. Combin., 12(6):527–
530, 1991. URL: https://doi.org/10.1016/S0195-6698(13)80103-5, doi:10.1016/
S0195-6698(13)80103-5.

6 Robert Morelli. The birational geometry of toric varieties. J. Algebraic Geom., 5(4):751–
782, 1996.

7 Francisco Santos. Geometric bistellar flips: the setting, the context and a construction.
In International Congress of Mathematicians. Vol. III, pages 931–962. Eur. Math. Soc.,
Zürich, 2006.

8 Jaroslaw Wlodarczyk. Decomposition of birational toric maps in blow-ups & blow-
downs. Trans. Amer. Math. Soc., 349(1):373–411, 1997. URL: https://doi.org/10.1090/
S0002-9947-97-01701-7, doi:10.1090/S0002-9947-97-01701-7.

9 E. C. Zeeman. Seminar on Combinatorial Topology. Institut Des Hautes Etudes Scien-
tifiques, 1963.

Efficiently stabbing convex polygons and variants
of the Hadwiger-Debrunner (p, q)-theorem
Justin Dallant1 and Patrick Schnider2

1 Department of Computer Science, ETH Zürich
jdallant@student.ethz.ch

2 Department of Computer Science, ETH Zürich
patrick.schnider@inf.ethz.ch

Abstract
Hadwiger and Debrunner showed that for families of convex sets in Rd with the property that
among any p of them some q have a common point, the whole family can be stabbed with p−q+1
points if p ≥ q ≥ d+ 1 and (d− 1)p < d(q − 1). This generalizes a classical result by Helly. We
show how such a stabbing set can be computed for n convex polygons of constant size in the plane
in O((p−q+1)n4/3 log2+ε(n)+p3) expected time. For convex polyhedra in R3, the method yields
an algorithm running in O((p− q + 1)n13/5+ε + p4) expected time. We also show that analogous
results of the Hadwiger and Debrunner (p, q)-theorem hold in other settings, such as convex sets
in Rd × Zk or abstract convex geometries.

1 Introduction

A classical result in convex geometry by Helly [10] states that if a collection of convex sets
in Rd is such that any d + 1 sets have a common intersection, then all sets do. In 1957,
Hadwiger and Debrunner [9] considered a generalization of this setting. Let F be a collection
of sets in Rd and let p ≥ q ≥ d + 1 be integers. We say that F has the (p, q)-property if
|F| ≥ p and for every choice of p sets in F there exist q among them which have a common
intersection. We further say that a set of points S stabs F if every set in F contains at least
one point from S. Then the following holds:

I Theorem 1.1 (Hadwiger and Debrunner). Let d ≥ 1 be an integer. Let p and q be integers
such that p ≥ q ≥ d+ 1 and (d− 1)p < d(q − 1), and let F be a finite family of convex sets
in Rd. Suppose that F has the (p, q)-property. Then F can be stabbed with p− q + 1 points
in Rd.

In 1992 Alon and Kleitman [3] proved that for any p ≥ q ≥ d+ 1, there exists a finite
bound on the maximum number of points needed to stab a collection of convex sets with
the (p, q)-property. However, the known bounds are probably far from being tight. There
is a lot of work in this more general setting, both improving the bounds (e.g. [13]) as well
as adapting to generalizations of convex sets (e.g. [12, 16]), and it is an interesting open
problem to study algorithmic questions connected to these results. However, in this work we
will focus on the setting of Theorem 1.1, where the bound is tight, and show how such a
stabbing set can be efficiently computed for convex polytopes in dimensions 2 and 3. To make
the presentation simpler, we focus on polytopes of constant size, although the techniques
used can be partially adapted to work for polytopes of arbitrary size.

Helly’s theorem has also been generalized to many other settings. In general, we say that
a set system has Helly number h if the following holds: if any h sets in the set system have
a common intersection, then the whole set system does. Helly numbers have been shown
to exist for many set systems, such as convex sets in Rd × Zk [4, 11] or abstract convex
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

27:2 Stabbing convex polygons and variants of the (p, q)-theorem

geometries (see [8] or Chapter III of [14]), which include subtrees of trees and ideals of posets.
We will show that under some weak conditions, the existence of a Helly number implies a
tight Hadwiger-Debrunner type result.

All of the skipped proofs and details can be found in the full version of this paper [7]

2 Stabbing convex polytopes

2.1 A proof of the Hadwiger-Debrunner (p,q)-theorem
We will first consider a proof of Theorem 1.1, taken from [15], which will naturally lead to
an algorithm for finding stabbing points. The proof makes use of a lemma which can also
be found in [15]. For a non-empty compact set S, let lexmin(C) denote its lexicographical
minimum point. Then we have the following:

I Lemma 2.1 ([15]). Let F be family of at least d+ 1 convex compact sets in Rd, such that
I :=

⋂F is non-empty. Let x := lexmin(I). Then, there exist a subfamily H ⊂ F of size d
such that x = lexmin(

⋂H).

We now sketch the idea of the proof of the Hadwiger-Debrunner theorem.

Proof idea of the Hadwiger-Debrunner theorem. Call a pair of integers (p, q) admissible
if p ≥ q ≥ d + 1 and (d − 1)p < d(q − 1). Let (p, q) be an admissible pair, and let F be
a family of compact convex sets in Rd with the (p, q)-property. Construct a point x∗(F)
defined as the lexicographically maximum point among all lexicographically minimum points
in the intersection of d sets in F . We choose it as one of our stabbing points. Now, remove
all the sets stabbed by this point. It can be shown that the remaining sets either satisfy the
(p− d, q − d+ 1)-property, where (p− d, q − d+ 1) is admissible, or it consists of p− q + k

sets where some k+ 1 of them have a common intersection. In the first case, we can continue
inductively, in the second case we can trivially stab the remaining sets using p− q points. J

This proof naturally leads to an algorithm. In the following, we will assume that the
convex sets are n polytopes of constant size. Similar ideas still work for general polytopes.
Computing x∗(F) can be done in O(nd) time by computing all d-wise intersections, and it
needs to be computed at most p− q + 1 times. For the case where there are only p− q + k

sets remaining, it can be deduced from the proof the p− q remaining stabbing points can be
computed in O(pd+1) time. Thus, in the plane, we get a total runtime of O((p−q+1)n2 +p3).

If p (and thus q), is small compared to n, the first term is the bottleneck in the computation
time. In the following, we will show how to improve the runtime of this first part. The
second term can be improved to O(p2 log p) by adapting the Bentley-Ottmann sweep line
algorithm [5]. It is an interesting open problem whether further improvements are possible.

2.2 A more efficient algorithm for the planar case
We will now present an algorithm running in subquadratic time with respect to n. In this
whole section, the collection F consists of n constant-size compact convex polygons in the
plane and has the (p, q)-property, for some admissible pair (p, q).

In [6], Chan discovered a simple but remarkably powerful technique to reduce many
optimization problems to a corresponding decision problem, with no blow-up in expected
runtime. He proves the following lemma (stated in a slightly more general form here):

J. Dallant and P. Schnider 27:3

I Lemma 2.2. Let α < 1 and r be fixed constants. Suppose f : P → Q is a function that
maps inputs to values in a totally ordered set (where elements can be compared in constant
time), with the following properties:
(1) For any input P ∈ P of constant size, f(P) can be computed in constant time.
(2) For any input P ∈ P of size n and any t ∈ Q, we can decide f(P) ≤ t in time T (n).
(3) For any input P ∈ P of size n, we can construct inputs P1, . . . , Pr ∈ P each of size at

most dαne, in time no more than T (n), such that f(P) = max{f(P1), . . . , f(Pr)}.
Then for any input P ∈ P of size n, we can compute f(P) in O(T (n)) expected time, assuming
that T (n)/nε is monotone increasing for some ε > 0.

We can apply this technique to the computation of x∗. Here, each P ∈ P is a set
of polygons, Q is the plane with lexicographical order, and f is x∗ (which we define as
(−∞,−∞) if the intersection of the considered polygons is empty). For the sake of simplicity,
we will assume that all points defined as the lexicographical minimum in the intersection of
a pair of sets have different x-coordinates. We make the following observations:

1. For F a constant number of polygons, x∗(F) can be computed in constant time by
computing the lexicographical minimum of all pairs in F . This verifies property (1).

2. For any F of size n, we can partition it into 3 disjoint subcollections S1, S2, S3 of size
between bn/3c and dn/3e each. Then, let F1 := S2 ∪S3, F2 := S1 ∪S3 and F3 := S1 ∪S2.
Every set Fi is of size |Fi| ≤ dn · 2/3e. Moreover, every pair of sets of F appears in
one Fi. Thus, x∗(F) is the lexicographical maximum of {x∗(F1), x∗(F2), x∗(F3)}. These
collections can be constructed in O(n) time. This verifies property (3), assuming that
T (n) ∈ Ω(n) (which it will be).

Thus, in order to apply Chan’s framework, it remains to decide x∗(F) ≤lex t for any t in
subquadratic time. We can rephrase this as deciding whether there exist two intersecting
sets in F whose intersection lies entirely to the right of a vertical line ` with x-coordinate t.
We can make some simple observations to discard some of the sets in F in O(np) time:

All sets which lie entirely to the left of ` can be safely ignored.
If there are at least p sets lying entirely to the right of l, then by the (p, q)-property some
q > 2 of them intersect and we can already answer the question in the affirmative.
If there are fewer than p sets lying entirely to the right of l, then one can test in O(pn)
whether the intersection of any of those with any other set in F lies entirely to the right
of `.

We are then left with answering the following question, which we define as the Right
Intersection Problem.

I Problem 2.3 (Right Intersection Problem). Given n compact convex polygons of constant
size and a vertical line ` intersecting all polygons, decide if there exist two polygons whose
intersection is non-empty and lies strictly to the right of `.

Solving this problem trivially in quadratic time and applying Lemma 2.2 would result in
no improvement in the runtime. However, we can solve it in subquadratic time.

I Proposition 2.4. The Right Intersection Problem can be decided in O(n4/3 log2+ε(n)) time,
for any constant ε > 0.

EuroCG’20

27:4 Stabbing convex polygons and variants of the (p, q)-theorem

Proof. It was shown in [1] that counting the number of pairwise intersections between n
convex polygons of constant size can be done in O(n4/3 log2+ε(n)) time.

For any instance of the Right Intersection Problem, we can cut all polygons along ` and
discard the parts lying on the left of ` in linear time.

The answer to the original instance is positive if and only if there are two polygons
which have a non-empty intersection but do not intersect on `. This can be decided by
counting the number of pairwise intersecting polygons in O(n4/3 log2+ε(n)) time, counting
the number of pairwise intersecting polygons on ` (this can be done in O(n log(n)) time),
and then comparing these numbers. They differ if and only if some pair of polygons intersect
exclusively to the right of `. J

We can thus use Lemma 2.2 to get the following:

I Proposition 2.5. Let (p, q) be an admissible pair for d = 2 and let F be a family of n
constant size compact convex polygons in the plane with the (p, q)-property. Then we can
compute a set of at most p− q + 1 points stabbing F in expected time

O((p− q + 1)n4/3 log2+ε(n) + p3).

A similar method (using the method found in [1] for counting intersections of 3D convex polyhe-
dra) can be applied for n convex polyhedra in R3, with a runtime ofO((p− q + 1)n13/5+ε + p4).

3 Other Hadwiger-Debrunner type results

By taking a close look at our proof for the Hadwiger-Debrunner (p, q)-theorem, we can observe
that we made use of relatively few properties of compact convex sets. These properties are
(i) closure under intersection, (ii) existence of a lexicographically minimum point, (iii) Helly’s
theorem as well as (iv) the fact that the set of all points lexicographically smaller than some
point y is convex (this last property doesn’t appear explicitly but is needed in the proof of
Lemma 2.1). We define Ordered-Helly systems as set systems with analogue properties:

I Definition 3.1 (Ordered-Helly system). An Ordered-Helly system S is a tuple (B, C,D, h,�)
consisting of a base set B with a total order �, a set C ⊂ P(B), whose members are called
convex sets, a set D ⊂ C, whose members are called compact sets, and an integer h ≥ 2, called
the Helly-number of S, with the following properties:
1. D is closed under intersections (Intersection closure);
2. For all non-empty S ∈ D, there exists x ∈ S which is minimal with respect to �

(Attainable minimum);
3. If F ⊂ C is a finite family of sets in C where any h members of F have non-empty common

intersection, then all of F has non-empty intersection (Helly property);
4. For all t ∈ B, we have {x ∈ B | x � t and x 6= t} ∈ C (Convex order).

We can thus carry out an analogue proof and derive (p, q)-theorems in these systems. A
similar algorithm to the previous case can also be used to stab such a system, assuming we
have access to a few oracles. Let h be the Helly number of an Ordered-Helly system. We say
that a pair of integers (p, q) is h-admissible if p ≥ q ≥ h and (h− 2)p < (h− 1)(q − 1). We
then get an analogue of Lemma 2.1 as well as the following:

I Theorem 3.2. Let S be an Ordered-Helly system. Let (p, q) be an h-admissible pair and
let F be a family of non-empty sets in D with the (p, q)-property. Then F can be stabbed
with p− q + 1 elements of B.

J. Dallant and P. Schnider 27:5

It should be mentioned that the existence of a Helly number alone is not enough to show
such a result, see [2] for an example of a set system with Helly number 2 but no general
(p, q)-theorem.

It can be shown that both convex sets in Rd × Zk as well as abstract convex geometries
are Ordered-Helly sytems, so we immediately get (p, q)-theorems for all of them. In the
following, we give a non-exhaustive list of results that can be obtained this way:

I Corollary 3.3 (Mixed-Integer Hadwiger-Debrunner).
Let d, k ≥ 0. Let (p, q) be a ((d+1)2k)-admissible pair. Let F be a finite family of convex sets
in Rd × Zk with the (p, q)-property. Then F can be stabbed with p− q + 1 points in Rd × Zk.

I Corollary 3.4. Let T be a tree and let F be a collection of subtrees of T (represented as
sets of vertices). Let (p, q) be a 2-admissible pair. Let F ⊂ N be a family of non-empty
subtrees of T with the (p, q)-property. Then F can be stabbed with p− q + 1 vertices.

For a finite poset (E,≤), we say that a set S ⊂ E is an ideal of E if for all x ∈ S and all
y ∈ E, y ≤ w ⇒ y ∈ S. Let h(E) be the maximum length of an antichain in E.

I Corollary 3.5. Let (E,≤) be a finite poset. Let (p, q) be an h(E)-admissible pair and let
F be a family of non-empty ideals of E with the (p, q)-property. Then F can be stabbed with
p− q + 1 elements of E.

References
1 Pankaj K. Agarwal, Mark de Berg, Sariel Har-Peled, Mark H. Overmars, Micha Sharir,

and Jan Vahrenhold. Reporting intersecting pairs of convex polytopes in two and
three dimensions. Computational Geometry, 23(2):195 – 207, 2002. URL: http:
//www.sciencedirect.com/science/article/pii/S0925772102000494, doi:https://
doi.org/10.1016/S0925-7721(02)00049-4.

2 Noga Alon, Gil Kalai, Jiří Matoušek, and Roy Meshulam. Transversal numbers for hyper-
graphs arising in geometry. Advances in Applied Mathematics, 29(1):79–101, 2002.

3 Noga Alon and Daniel J. Kleitman. Piercing convex sets. Bulletin of the American
Mathematical Society, 27(2):252–257, August 1992. URL: https://doi.org/10.1090/
s0273-0979-1992-00304-x, doi:10.1090/s0273-0979-1992-00304-x.

4 Gennadiy Averkov and Robert Weismantel. Transversal numbers over subsets of linear
spaces. Advances in Geometry, 12, 02 2012. doi:10.1515/advgeom.2011.028.

5 Jon Bentley and Thomas Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Transactions on Computers, C-28(9):643–647, Sep. 1979. doi:10.
1109/TC.1979.1675432.

6 Timothy M. Chan. Geometric applications of a randomized optimization technique. Dis-
crete & Computational Geometry, 22(4):547–567, December 1999. URL: https://doi.org/
10.1007/pl00009478, doi:10.1007/pl00009478.

7 Justin Dallant and Patrick Schnider. Efficiently stabbing convex polygons and variants of
the Hadwiger-Debrunner (p, q)-theorem, 2020. arXiv:2002.06947.

8 Paul H. Edelman and Robert E. Jamison. The theory of convex geometries. Geometriae
Dedicata, 19(3), December 1985. URL: https://doi.org/10.1007/bf00149365, doi:10.
1007/bf00149365.

9 Hugo Hadwiger and Hans Debrunner. Über eine Variante zum Hellyschen Satz. Archiv
der Mathematik, 8(4):309–313, oct 1957. URL: http://link.springer.com/10.1007/
BF01898794, doi:10.1007/BF01898794.

EuroCG’20

27:6 Stabbing convex polygons and variants of the (p, q)-theorem

10 Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahres-
bericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923. URL: http://eudml.
org/doc/145659.

11 Alan J. Hoffman. Binding constraints and Helly numbers. Annals of the New York Academy
of Sciences, 319:284 – 288, 12 2006. doi:10.1111/j.1749-6632.1979.tb32803.x.

12 Andreas F Holmsen and Dong-Gyu Lee. Radon numbers and the fractional Helly theorem.
arXiv preprint arXiv:1903.01068, 2019.

13 Chaya Keller, Shakhar Smorodinsky, and Gábor Tardos. Improved bounds on the
Hadwiger–Debrunner numbers. Israel Journal of Mathematics, 225(2):925–945, 2018.

14 Bernhard Korte, Rainer Schrader, and László Lovász. Greedoids. Springer Berlin Hei-
delberg, 1991. URL: https://doi.org/10.1007/978-3-642-58191-5, doi:10.1007/
978-3-642-58191-5.

15 Jiří Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Mathe-
matics. Springer New York, New York, NY, 2002. URL: http://link.springer.com/10.
1007/978-1-4613-0039-7, doi:10.1007/978-1-4613-0039-7.

16 Shay Moran and Amir Yehudayoff. On weak epsilon-nets and the Radon number. In 35th
International Symposium on Computational Geometry (SoCG 2019), volume 129, page 51.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

Weak Unit Disk Contact Representations for
Graphs without Embedding
Jonas Cleve∗1

1 Institut für Informatik, Freie Universität Berlin
jonascleve@inf.fu-berlin.de

Abstract
Weak unit disk contact graphs are graphs that admit representing nodes as a collection of inter-
nally disjoint unit disks whose boundaries touch if there is an edge between the corresponding
nodes. In this work we focus on graphs without embedding, i.e., the neighbor order can be chosen
arbitrarily. We give a linear time algorithm to recognize whether a caterpillar, a graph where
every node is adjacent to or on a central path, allows a weak unit disk contact representation. On
the other hand, we show that it is NP-hard to decide whether a tree allows such a representation.

1 Introduction

A disk contact graph G = (V,E) is a graph that has a geometric realization as a collection of
internally disjoint disks mapped bijectively to the node set V such that two disks touch if
and only if the corresponding nodes are connected by an edge in E. In an attempt to tackle
the open problem of recognizing embedded caterpillars for disk contact graphs, weak disk
contact graphs were introduced, which allow two disks to touch even if they don’t share an
edge. it was shown in this setting that the problem of recognizing embedded caterpillars is
NP-hard by Chiu, Cleve, and Nöllenburg [2]. We continue this line of research by looking at
graphs without embedding.

2 Recognizing Caterpillars in Linear Time

Similar to the algorithm by Klemz, Nöllenburg and Prutkin [3] we efficiently decide whether
a caterpillar G = (V,E), a graph where every node is adjacent to or lies on a central path,
admits a weak unit disk contact representation (WUDCR). Let ∆ be the maximum degree
of G. If ∆ ≥ 7 it is impossible to find a WUDCR: no unit disk can have more than six other
adjacent unit disks. For ∆ ≤ 4, G can even be realized as a (strong) UDCR [3], which is also
a WUDCR. For 5 ≤ ∆ ≤ 6 some caterpillars can be realized and some cannot; see Figure 1
for an example. This can be formalized as the following

I Lemma 1. Let G be a caterpillar, v0, v1, . . . , vk, vk+1 a longest path in G and di = deg(vi)
for all 1 ≤ i ≤ k. Then G has a WUDCR iff for all 1 ≤ ` ≤ k: ∑`

i=1 di ≤ 4`+ 2.

Proof (by induction). For k = 1 we have one node with d1 leaves. The corresponding disk
can have up to 6 neighboring disks and d1 ≤ 4 + 2 = 6.

Assuming the hypothesis holds for all ` < k we show that it holds for k. Look at Figure 2
for a depiction of the cases.

1. dk ≤ 4: up to 3 new leaves are added, no overlap with previous disks needed. It follows
that

∑k
i=1 di =

∑k−1
i=1 di + dk ≤

∑k−1
i=1 di + 4

IH
≤ [4(k − 1) + 2] + 4 = 4k + 2.

∗ Supported by ERC StG 757609.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

28:2 Weak Unit Disk Contact Representations for Graphs without Embedding

Figure 1 A caterpillar with ∆ = 5, red (internal) nodes having degrees 5, 5, and 4. It becomes
unrealizable when adding another child to the rightmost internal (red) node, giving it degree 5 as
well.

Figure 2 The three different cases from Lemma 1: dk ≤ 4 (left), dk = 5 (center), and dk = 6
(right).

2. dk = 5: exactly 4 new leaves are added, taking away one position from the smaller
construction, hence for k − 1 it must hold that

∑k−1
i=1 di ≤ 4(k − 1) + 1. It follows that∑k

i=1 di =
∑k−1

i=1 di + dk =
∑k−1

i=1 di + 5 ≤ [4(k − 1) + 1] + 5 = 4k + 2.
3. dk = 6: exactly 5 new leaves are added, taking away two position from the smaller

construction, hence for k − 1 it must hold that
∑k−1

i=1 di ≤ 4(k − 1). It follows that∑k
i=1 di =

∑k−1
i=1 di + dk =

∑k−1
i=1 di + 6 ≤ [4(k − 1)] + 6 = 4k + 2. J

I Theorem 2. It can be decided in linear time whether a caterpillar G admits a WUDCR.

Proof. First determine a longest path v0, v1, . . . , vk, vk+1 in linear time. Then check for all
1 ≤ ` ≤ k whether

∑`
i=1 di ≤ 4`+ 2. This linear number of sums is easily checked in linear

time. With Lemma 1 this immediately tells us whether a WUDCR for G exists. J

3 NP-hardness of Recognizing Trees

Recognizing whether a tree has a WUDCR is NP-hard—we use a reduction from Not-All-
Equal-3SAT (NAE3SAT) [4] via a logic engine construction [1]. An instance for the NAE3SAT
problem is a 3SAT formula and a yes-instance is a formula φ for which an assignment exists,
which satisfies φ and additionally contains at least one false literal per clause. The logic
engine construction, see Figure 3, works as follows: Given a formula with variables x1, . . . , xn

and clauses c1, . . . , cm we construct an orthogonal drawing representing this formula. We
have one horizontal spine to which one pole (consisting of a thick positive and thin negative
part) for each variable is attached at its center. Each pole has m levels on the top and m
on the bottom, each side representing the m clauses. We add a flag to the ith pole on the
jth level as follows: 1. If xi appears as xi in cj we add a flag on the negative part, 2. if xi

appears as ¬xi in cj we add a flag on the positive part, and 3. if xi does not appear in cj we
add a flag on both parts (hatched in Figure 3). Two vertical poles are added, one on the left
and one on the right. Note that in both realizations of Figure 3 there is one pole which is
flipped. Otherwise it would not be drawable without overlap.

The question is now: Can the logic engine be drawn without overlap? For the drawing
the variable poles can be flipped along their center and the flags can be drawn either left
or right. In a non-overlapping drawing the leftmost pole puts its flags to the right and the

J. Cleve 28:3

x1 x2 x3 x4

c3

c2

c1

c1

c2

c3

(a) x1 = 0, x2 = 1, x3 = 1, and x4 = 1.

x1 x2 x3 x4

c3

c2

c1

c1

c2

c3

(b) x1 = 1, x2 = 1, x3 = 0, and x4 = 1.

Figure 3 Two different logic engine realizations for the NAE3SAT formula with the three clauses
c1 = (x1, x2, x3), c2 = (x1,¬x2, x4), and c3 = (x1, x3,¬x4). Shaded flags correspond to literals which
do not appear in a clause. For the poles: thicker means positive part, thinner means negative part.
Note that in both cases there is one pole which is flipped.

rightmost one puts its flags to the left. Hence, every level j (top and bottom) needs at least
one pole i without a flag on this level. The corresponding literal of xi appears in cj , fulfilling
cj . There cannot be a clause cj with only positive literals—then the jth level on the bottom
would have a flag on every variable pole; this is impossible without overlap. The upper part
of the drawing finds a positive literal for each clause and the lower part finds a negative
literal. Whether a variable pole was flipped for the drawing gives a direct correspondence
to the assignment of its corresponding variable to 1 (not flipped) or 0 (flipped). Hence, the
logic engine can be drawn without any overlaps if and only if the corresponding NAE3SAT
formula is satisfiable. Constructing a logic engine with a WUDCR of trees gives a direct
reduction from NAE3SAT and thus shows NP-hardness.

3.1 Rigid Hexagons as Basic Building Blocks
The goal is to model the logic engine structure by weak unit disk representations of trees. The
weak model allows us to tightly pack disks, something we use heavily. The whole construction
will live on a hexagonal grid with distance 2 (the diameter of a unit disk) between the grid
points. The grid distance between two grid points is the number of edges on a shortest
path—two touching disks have grid distance 1.

We will construct a tree which can only be realized as a hexagon and which can be
chained together to form longer and rigid structures. For the chaining we need two special
vertices which will always be on opposite corners of the resulting hexagon. In Figure 4 there
are examples with various radii r (maximal grid distance to the center) which fulfill this
criterion, as will be shown in

I Lemma 3. All possible WUDCR of the trees in Figure 4 are hexagons where the (red)
paths end on opposite corners of the hexagon.

EuroCG’20

28:4 Weak Unit Disk Contact Representations for Graphs without Embedding

Figure 4 Hexagons with r = 3, 4, 5. Hexagons with arbitrary radii r ≥ 3 can be constructed.

c c

(a) Placing path segments on individual lines
leaves at least one uncovered grid position c.

c c

(b) Bending a path segment gives c an unreachable
shortest path distance of 4.

Figure 5 Not placing both path segments on a common line leaves unreachable grid positions.

Proof. We show that the trees are always hexagons and that all red nodes lie on a line.
Observe that in Figure 4 a tree node has distance k to the root if and only if its

corresponding disks has grid distance k from the center disk. Hence, we have exactly as
many nodes with distance k from the root as we have positions with grid distance k from
some fixed location. The root node with only its direct children is realized as a disk with
six neighboring disks. This is a tight packing and w.l.o.g. we can assume that they lie on a
hexagonal grid. Furthermore, all but the last level of the tree have at least one node with
3 children (green nodes in Figure 4); this forces them onto the hexagonal grid: 3 of the
6 neighboring positions are taken by the parent and two siblings, the other three by the
children. As a result all nodes on this level are forced onto positions on the hexagonal grid
and the result is a tight packing of disks which forms a hexagon.

Assume that not all red nodes are placed on a line. Look at Figure 5 where four such
situations are depicted. Due to the structure of the green and blue subtrees, placing the disks
as in Figure 5a leaves at least one grid position c empty. Placing the disks as in Figure 5b
leaves the corner position c empty. A shortest path from the center disk to c (shown dotted)
has distance k + 1 if k is c’s grid distance to the center. There is no node with depth k + 1
in the tree—c is left empty. However, as all grid positions with grid distance up to the tree’s
height are covered, there is at least one node whose disk cannot be placed without overlap.

We conclude that all red nodes are forced on a line which places the two leaf nodes on
opposite corners of the hexagon. J

We say that the trees for the hexagons have only one distinguishable WUDCR: It means
that the placement of the important nodes (where something else will be connected to) does
not change, but the placement of the other nodes may.

Plugging two hexagons together at a common endpoint forces them to lie on the same
line. With this we are able to construct longer straight paths. Additionally, the connected

J. Cleve 28:5

Figure 6 Connecting multiple hexagons, which can have different sizes. Observe, that the
hexagons can even overlap more than one disk (center and right).

Figure 7 The branching gadget with 60° angle and interchangeable sides (left). Placing the
horizontal part non-horizontally does not leave sufficient room for both branches (center, right).

hexagons can differ in size or they can overlap by more than just one disk. See an example
of three connected hexagons in Figure 6.

3.2 A Branching Gadget
Apart from going in a straight line, we need to be able to branch off two branches from a
straight part (the trunk) to simulate the variable poles and flags. Additionally, it must allow
for both branches to be interchanged to flip the variable poles or flags between two sides. As
we could not branch orthogonally in a fully rigid way we will instead introduce a branching
gadget which branches off at a 60° angle, see Figure 7.

I Observation 4. The branching gadget in Figure 7 (left) has exactly two WUDCR which
differ in the placement of the red vertices.

Proof. From Lemma 3 we know that the four hexagons are rigid. Two hexagons and one
path (ending in a hexagon) are connected to the leftmost hexagon. As shown in Figure 7 (left)
it is possible to place the path horizontally. Placing the path differently, e.g. as in Figure 7
(center and right), leaves no space to fit both hexagons. Due to symmetry, both branching
hexagons can be interchanged in the left case, giving two distinguishable WUDCR. J

EuroCG’20

28:6 Weak Unit Disk Contact Representations for Graphs without Embedding

x1

x2

x3

x4

c3

c2

c1

c3

c2

c1

(a) x1 = 0, x2 = 1, x3 = 1, and x4 = 1.

x1

x2

x3

x4

c3

c2

c1

c3

c2

c1

(b) x1 = 1, x2 = 1, x3 = 0, and x4 = 1.

Figure 8 Two logic engine realizations for the clauses c1 = (x1, x2, x3), c2 = (x1,¬x2, x4), and
c3 = (x1, x3,¬x4). It is a modification of Figure 3 where the branching angles are 60° instead of 90°.

3.3 Simulating the Logic Engine
The logic engine needs orthogonal branching and we only have branches at at 60° angle.
Hence, it is necessary to modify the logic engine in a way to accommodate for such a difference.
Figure 8 shows a modification of Figure 3 which only includes 60° angles. Flipping of the
poles and flags happens by mirroring them along the line segment they are attached to. As
can be seen, the clauses are still orthogonal to the variable poles s.t. two flags in the same
free space are forced to overlap.

I Theorem 5. It is NP-hard to decide whether a tree has weak unit disk contact representation.

Proof. We model the logic engine from Figure 8 with the hexagon and branching gadgets to
reduce NAE3SAT to our problem. See Figure 9 for an example of how a resulting drawing
might look like. Apart from the two hexagons with radius 4 near the left and right end of the
horizontal spine we only use hexagons with radius 3 and the branching gadget from before
(also with radius 3 hexagons).

As shown in Figure 10 the distance between two variable poles and placement of the
branching gadgets enforces that no two flags can be placed into the same free space. Fur-
thermore, the left and right frame prevent flags from being drawn to the outside. The tree
constructed from a boolean formula has a WUDCR if and only if no overlap occurs. This
happens if and only if for every level j / clause cj there is at least one flag less than the total
number of variables; or to put it differently: if and only if not all three variables appearing in
cj place a flag on the bottom and not all on the top. This then gives a satisfying assignment
of variables where not alle literals evaluate to 1.

J. Cleve 28:7

x1 = 0

x2 = 1

x3 = 1

x4 = 1

c3

c2

c1

x1 = 1

x2 = 0

x3 = 0

x4 = 0

c3

c2

c1

Figure 9 An example of a logic engine for the formula with clauses c1 = (x1, x2, x3), c2 =
(x1,¬x2, x4), and c3 = (x1, x3,¬x4). The variables are set to x1 = 0, x2 = 1, x3 = 1, and x4 = 1.

EuroCG’20

28:8 Weak Unit Disk Contact Representations for Graphs without Embedding

Figure 10 Possible cases of overlaps are highlighted: No two flags can be in the same place (left)
and all flags on the outer variable poles must face inside (right).

The size of the construction is polynomial in the number of clauses m and variables n.
There is a constant distance between two variable poles, hence, the size of the horizontal
spine is O(n). The further left a variable pole is the longer it has to be. The part without
branching grows linearly in n (2 more hexagons per step to the left) and the branching part
grows linearly in m, since each branching gadget with flag has constant size: the total size of
one variable pole is O(n+m). For n variable poles (and the two frames) this gives a total
size of O(n2 +mn) for the whole construction and it can be easily constructed in polynomial
time. J

4 Conclusion

We showed that in linear time we can decide whether a caterpillar graph can be realized as a
weak unit disk contact representation. On the other hand, the same problem is NP-hard for
trees. The main open question remains whether lobster graphs (every node has distance at
most 2 to a central path) can be recognized in polynomial time or whether it is NP-hard to
recognize them. This can be generalized to look at trees where each node has a distance at
most d from a central path.

Acknowledgments. The author wants to give special thanks to Sujoy Bhore, Man-Kwun
Chiu, Soeren Nickel, and Martin Nöllenburg for the discussions and ideas during a research
visit in Vienna which laid the groundwork for this paper.

References
1 Sandeep N. Bhatt and Stavros S. Cosmadakis. The complexity of minimizing wire

lengths in VLSI layouts. Information Processing Letters, 25(4):263–267, 1987. doi:
10.1016/0020-0190(87)90173-6.

2 Man-Kwun Chiu, Jonas Cleve, and Martin Nöllenburg. Recognizing embedded caterpillars
with weak unit disk contact representations is NP-hard. In Proceedings of the 35th European
Workshop on Computational Geometry (EuroCG). URL: http://www.eurocg2019.uu.nl/
papers/47.pdf.

3 Boris Klemz, Martin Nöllenburg, and Roman Prutkin. Recognizing weighted disk contact
graphs. In Emilio Di Giacomo and Anna Lubiw, editors, Graph Drawing and Network
Visualization - 23rd International Symposium, GD 2015, Los Angeles, CA, USA, September

J. Cleve 28:9

24-26, 2015, Revised Selected Papers, volume 9411 of Lecture Notes in Computer Science,
pages 433–446. Springer, 2015. doi:10.1007/978-3-319-27261-0_36.

4 Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton,
Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors,
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978,
San Diego, California, USA, pages 216–226. ACM, 1978. doi:10.1145/800133.804350.

EuroCG’20

On Hard Instances of the Minimum-Weight
Triangulation Problem
Sándor P. Fekete1, Andreas Haas1, Yannic Lieder1, Eike Niehs1,
Michael Perk1, Victoria Sack1, and Christian Scheffer1

1 Department of Computer Science, TU Braunschweig, Germany
{s.fekete, a.haas, y.lieder, e.niehs, m.perk, v.sack, c.scheffer}@tu-bs.de

Abstract
We present a study on the practical nature of the NP-hard problem of finding a Minimum Weight
Triangulation (MWT) of a planar point set: Can we deliberately construct practically difficult in-
stances? This requires identifying point sets for which all of a number of previously developed ex-
act and heuristic methods simultaneously encounter a combination of pitfalls. We show that for in-
stances of medium size, this seems unlikely, implying that one of several alternative methods may
offer a path to an optimal solution. This complements recent work on the practical performance
of these heuristic methods for specific classes of large benchmark instances, indicating that MWT
problems may indeed be practically easier to solve than implied by its NP-hard complexity.

1 Introduction

The complexity of finding a minimum-weight triangulation (MWT) of a planar point set was
a famous open problem for 27 years [8], until Mulzer and Rote [16] gave an NP-hardness
proof, based in intricately constructed gadgets of considerable size.

While this shows that finding an MWT is difficult in a well-defined, theoretical sense, it
does not necessarily imply that the problem is also intractable for instances of practically
relevant size. In recent work, Haas [13] was able to extend, refine and streamline a number
of previous ideas to compute provably optimal solutions for point sets of up to 30, 000, 000
uniformly distributed points and real-world benchmark instances with up to 744, 710 points.
This suggests that the MWT may indeed be much simpler than indicated by its theoretical
complexity, at least for standard classes of instances.

We present a complimentary study on the practical nature of the theoretical hardness: Can
we deliberately construct practically difficult instances of the MWT problem? This requires
identifying point sets for which the previously developed methods simultaneously encounter
a number pitfalls. We show that for instances of medium size, this seems unlikely, implying
that one of several alternative methods may always provide a path to an optimal solution.

1.1 Related Work
There are efficient algorithms for computing optimal MWT solutions for special classes of
instances. Independently, Gilbert [9] and Klincsek [15] showed that for simple polygons,
the MWT problem can be solved in O(n3) time with dynamic programming. This can be
generalized to polygons with k inner points. Hoffmann and Okamoto [14] showed how to
obtain the MWT of such a point set in O(6kn5 logn) time. Grantson et al. [11] improved
the algorithm to O(n44kk) and showed another O(n3k!k)-time decomposition strategy [12].

For general instances, there are polynomial-time heuristics for including or excluding
edges with certain properties from an MWT. Das and Joseph [4] showed that every edge in
an MWT has the diamond property: For a point set S, an edge e cannot be in its minimum
weight triangulation MWT(S) if both of the two isosceles triangles with base e and base
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

29:2 On Hard Instances of the Minimum-Weight Triangulation Problem

angle π/8 contain other points of S. Drysdale et al. [7] improved the angle to π/4.6. This
property can exclude large portions of the edge set and works exceedingly well on uniformly
distributed point sets, for which only an expected number of O(n) edges remain. Dickerson
et al. [5, 6] proposed the LMT-skeleton heuristic, which is based on a simple local-minimality
criterion fulfilled by every edge in MWT(S). The LMT-skeleton algorithm often yields a
connected graph, such that the remaining polygonal faces can be triangulated with dynamic
programming to obtain the minimum weight triangulation.

The combination of the diamond property and the LMT-skeleton made it possible to
compute the MWT for large, well-behaved point sets. Beirouti and Snoeyink [1] showed an
efficient implementation of these two heuristics and reported that their implementation could
compute the exact MWT of 40,000 uniformly distributed points in less than 5 minutes and
even up to 80,000 points with the improved diamond property.

In more recent work, Haas [13] refined a number of these ideas. Based on a variety of
improvements and additional data structures, he could compute provably optimal solutions
for instances with up to 30,000,000 uniformly distributed points in less than 4 minutes on
commodity hardware; the limiting factor turned out to be memory, not runtime. He achieved
the same performance for normally distributed point sets, as well real-world benchmark
instances from the TSPLIB [18] and the VLSI library of size up to 744,710 points. This
shows that a wide range of huge MWT instances can be solved to provable optimality with
the right combination of theoretical insight and algorithm engineering.

1.2 Our Results

We conduct a study of the practical difficulty of arbitrary MWT instances. In addition to
the proven methods based on diamond property and LMT-skeleton, we present an integer
program that strengthens Haas’ toolbox by providing a practically useful alternative for
determining optimal triangulation edges in unresolved faces. We also show that with this
extended set of methods, any considered instance with up to 300 points can be solved to
provable optimality within short time, even point sets deliberately constructed to be difficult.

2 Tools

Solving MWT instances to provably optimality relies on a number of different tools, which
we briefly sketch in the following. The cited Diamond Property filters out a set of only
O(n) edges that may be in an MWT. The mentioned LMT Skeleton consists of a (possibly
large) set of edges that must be contained in an MWT, but may still leave a number of
untriangulated faces; see Figure 1. These faces can be triangulated with different versions of
Dynamic Programming (Section 2.1) or with Integer Programming (Section 2.2).

2.1 Dynamic Programming (DP)

Empty faces of the LMT-skeleton can be triangulated using a dynamic programming approach
for simple polygons, in time O(n3) for an empty face with n ∈ N boundary vertices [10, 15].
For faces containing inner points, one of the following dynamic programming approaches
can be used: A non-empty face with n ∈ N boundary vertices and k ∈ N inner points can
be triangulated in O(n3k!k) [12] or a non-empty face with k ∈ N connected components
(resulting from the LMT-skeleton) can be triangulated in O(nk+2) [19], respectively.

Fekete, Haas, Lieder, Niehs, Perk, Sack, Scheffer 29:3

Empty Faces

Faces with inner vertices

Figure 1 The LMT-skeleton (a subset of MWT(S)) of a point set S may contain untriangulated
faces. These can be empty (hatched) or contain points and edges of the LMT-skeleton (filled).

2.2 Integer Programming
Another approach to compute the MWT of the remaining faces of the LMT-skeleton makes
use of the following integer program (IP); see Yousefi and Young [20] as well as Dantzig,
Hoffman and Hu [3] for related work. The objective function minimizes the sum of the
perimeters ||4|| of all triangles, used in the triangulation. The variables x4 ∈ {0, 1} indicate
whether 4 is used in the triangulation. (Note that this description is slightly simplified
because of limited space; a practically complete description provides additional adjustments
for fixed edges along face boundaries.)

min
x4

∑

4
||4|| · x4 (1)

s.t.
∑

4∈δ(e)

x4 = 1 ∀e ∈ boundary component (2)

∑

4∈δ+(e)

x4 = 1 ∀e ∈ antennas (3)

∑

4∈δ−(e)

x4 = 1 ∀e ∈ antennas (4)

∑

4∈δ+(e)

x4 −
∑

4∈δ−(e)

x4 = 0 ∀e ∈ inner edges (5)

x4 ∈ {0, 1} (6)

Given a non-triangulated face, we distinguish three kinds of edges. Boundary edges lie on
the outer face boundary or inner hole boundaries. Boundary edges are part of exactly one
triangle in the face (Equation (2)). Antenna edges have the same face on both of its sides (see
filled face in Figure 1), so they are part of two triangles in the face (Equation (3) and (4)).
The third kind are inner edges, i.e., all remaining edges inside a face that are not fixed by
the LMT-skeleton and not excluded by the diamond property. For these edges, the difference
of the number of triangles on their left side equals the number of triangles on their right side
(Equation (5)). The first three constraints imply either zero or one triangle on each side.

EuroCG’20

29:4 On Hard Instances of the Minimum-Weight Triangulation Problem

Equation 2 and Equation 5 are sufficient to solve the IP for a given polygon, with the boundary
edges containing both the outer boundary and hole boundaries. Equation 3 and Equation 4 are
auxiliary constraints, fixing edges of the LMT skeleton that have the same face on both sides.

3 Hard Instances

While previous studies on large classes of specific MWT instances showed that even huge
instances can be solved optimally, this does not imply that there are no practically hard ones.
For any NP-hard problem, natural candidates for such instances are the ones constructed
in an NP-hardness reduction. However, the intricate constructions in the seminal proof
by Mulzer and Rote [16] produce instances of tremendous size: While the clause gadgets
have dimensions of 250, 000× 250, 000, the connector gadgets (representing variable-clause
incidences in a planar embedding of a 3SAT instance) require 14 points per subsegment of a
length less than 28. As a consequence, representing even a Planar 1-in-3SAT instance with
a handful of clauses (and thus, three handfuls of connector gadgets) easily requires millions
of points. Given that “... modern SAT solvers can often handle problems with millions
of constraints [i.e., clauses] and hundreds of thousands of variables” [17], it is clear that
insufficient memory becomes a limiting factor long before the algorithmic difficulty of 3SAT.

This motivates the complimentary question to the results of [13]: Can we deliberately
construct practically difficult instances of moderate size? It follows from the availability of
the tools described in the previous section that such an instance must satisfy the following
three properties.

1. It contains at least one complex face; otherwise it can be solved in O(n3).
2. The complex face must contain a relatively large number of connected components;

otherwise, it can be solved in polynomial time with Dynamic Programming.
3. The Linear Programming relaxation of the IP for a face must yield a fractional optimal

solution; otherwise, the IP is easy to solve.

We have employed a number of systematic methods to generate such instances. Figure 2
illustrates the workflow of an evolutionary strategy and a local perturbation algorithm. An
example of how this leads to more complex instances can be seen in Figure 3.

create initial
instance

generate/
mutate

offspring

evaluate
fitness

select next
generation

empty faces add
little to fitness,
non-empty faces
add more to fitness

select
point

select ε = 8,
random
direction

pertubate
point

evaluate
statistics

ε = ε/2
lower complexity

higher complexity

Figure 2 Modifying a point set to produce more complex LMT faces: (Left) Evolutionary
strategy. (Right) Local Perturbation.

There are known classes of instances with a complex face of the LMT-skeleton that contain
many connected components; see Figure 4. On the other hand, there are also known classes of

Fekete, Haas, Lieder, Niehs, Perk, Sack, Scheffer 29:5

Figure 3 Evolving a point set to produce more complex LMT faces.

EuroCG’20

29:6 On Hard Instances of the Minimum-Weight Triangulation Problem

Figure 4 Instances for which the LMT-skeleton has a complex face with many connected
components. Adapted from Belleville et al. [2].

Figure 5 Instances for which the IP has fractional solutions. Adapted from Yousefi and Young [20].

instances with one complex face of the LMT-skeleton that produce fractional solutions when
handled by the described integer program; see Figure 5. However, these instances are of quite
different nature, so it is not clear that they can be combined for instances of reasonable size.

4 Experimental Results

We investigated the practical solvability of MWT instances, with a focus on constructing
hard instances. All experiments were executed with CPLEX 12.9 on an Intel(R) Core(TM)
i7-6700K CPU 4.00GHz with 4 cores and 8 threads utilizing an L3 Cache with 8MB, and a
maximum amount of 64GB RAM. With the evolutionary strategy shown in Figure 2, we were
able to generate many instances that contain at least one complex face. In order to generate
the variables of the integer program (i.e. possible empty triangles within the complex face),
we used a heuristic that performs well in practical scenarios. The heuristic does not guarantee
to find empty triangles in every case. Therefore, we added a callback to the integer programs
that verifies that all triangles of an integer solution are empty. In the upcoming figures,
the optimization and verification time (callback time) are separated. We chose the instance
size to be 306 points, which is comparable to the one shown in Figure 4. The goal was to
produce complex faces that require large computational effort during the optimization of the
integer program. After generating an instance with a complex face, we applied random local
perturbations with respect to certain properties. The generation process was executed for
several days, producing around 17, 000 instances.

We first studied the size of the complex boundary, which includes all edges on the
boundary of the complex face, as well as hole boundary edges and antennas. Figure 6 (Left)

Fekete, Haas, Lieder, Niehs, Perk, Sack, Scheffer 29:7

shows that the number of variables of the IP increases linearly with the size of the complex
boundary. Moreover, the time to solve these instances (see Figure 6 (Right)) increases from
0.01 seconds to 0.25 seconds for complex faces with a boundary size of 300 edges.

0 50 100 150 200 250 300
Size of Complex Boundary

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f C
pl

ex
 V

ar
ia

bl
es

50 100 150 200 250
Size of Complex Boundary

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

)

LMT + Dyn. Prog.
CPX without CB
CPX CB
CPX IP Construction
CPX Triangle Generation

Figure 6 Results on instances that were generated with a large complex boundary size. (Left)
Number of IP variables as a function of the size of the complex boundary. (Right) Runtime of
the integer program. LMT + Dyn. Prog. refers to the construction of the LMT skeleton and
triangulation of the empty faces. CPX Triangle Generation and CPX IP Construction represents
the time that was necessary to generate the variables and constraints of the IP. CPX (without) CB
refers to the runtime of the optimization and the empty triangle verification.

Next we investigated the number of complex faces in an instance. As shown in Fig-
ure 7 (Left), the number of IP variables for empty triangles grows linearly in the number of
components. Figure 7 (Right) shows that runtimes for instances with < 5 complex compo-
nents differ only by 0.1 seconds compared to instances with > 30 components.

0 5 10 15 20 25 30
Number of Components

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f C
pl

ex
 V

ar
ia

bl
es

5 10 15 20 25 30
Number of Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e
(s

)

LMT + Dyn. Prog.
CPX without CB
CPX CB
CPX IP Construction
CPX Triangle Generation

Figure 7 Results on instances that were generated with a large number of components. (Left)
Number of IP variables as a function of the number of components. (Right) Runtime of the integer
program. LMT + Dyn. Prog. refers to the construction of the LMT skeleton and triangulation
of the empty faces. CPX Triangle Generation and CPX IP Construction represents the time that
was necessary to generate the variables and constraints of the IP. CPX (without) CB refers to the
runtime of the optimization and the empty triangle verification.

Despite the extensive length of the search, no instances with larger complex boundary
sizes or more complex components were found. Therefore, we extended the instance from
Figure 4 to produce instances with arbitrary numbers of complex boundary edges and
connected components. Increasing the complex boundary size to more than 13, 000 edges
showed that the runtime of the algorithm increases quadratically, see Figure 8. Further
investigation showed that the optimal solution of the LP relaxation of the integer program
for the produced instances was integral. Thus, only two of the three necessary malicious
properties from the previous section could be established at once, so all instances could be

EuroCG’20

29:8 On Hard Instances of the Minimum-Weight Triangulation Problem

solved to provable optimality. In particular, only relatively degenerate instances similar to
the one from Figure 5 seem to produce complex faces with non-integer LP solutions.

0 2000 4000 6000 8000 10000 12000
Size of Complex Boundary

0

100

200

300

400

500

600

700
Ti

m
e

(s
)

CPX without CB
CPX CB
CPX IP Construction
CPX Triangle Generation

Figure 8 Runtime of the integer program for extensions of the instance in Figure 4. Note the
moderate runtime despite the size: The largest IPs have more than 6,000,000 variables. LMT + Dyn.
Prog. refers to the construction of the LMT skeleton and triangulation of the empty faces. CPX
Triangle Generation and CPX IP Construction represents the time that was necessary to generate
the variables and constraints of the IP. CPX (without) CB refers to the runtime of the optimization
and the empty triangle verification.

5 Conclusions

Our systematic study for constructing practically difficult MWT instances showed that
medium-sized point sets that simultaneously have three malicious properties seem hard
to come by. This provides further evidence to the observation that the MWT problem is
practically easier to solve than indicated by its theoretical complexity, as it shows that this
practical solvability does not only depend on benign properties of special classes of instances,
but remains intact even when we try to make instances deliberately difficult.

References
1 Ronald Beirouti and Jack Snoeyink. Implementations of the LMT Heuristic for Minimum

Weight Triangulation. In Proc. Symposium on Computational Geometry (SoCG), pages 96–
105, 1998.

2 Patrice Belleville, Mark Keil, Michael McAllister, and Jack Snoeyink. On computing edges
that are in all minimum-weight triangulations. In Proc. Symposium on Computational
Geometry (SoCG), pages V7–V8, 1996.

3 George B. Dantzig, Alan J. Hoffmann, and T.C. Hu. Triangulations (tilings) and certain
block matrices. Mathematical Programming, 31:1–14, 1985.

4 Gautam Das and Deborah Joseph. Which triangulations approximate the complete graph?
In Proc. International Symposium on Optimal Algorithms, pages 168–192, 1989.

5 Matthew Dickerson, J. Mark Keil, and Mark H. Montague. A Large Subgraph of the
Minimum Weight Triangulation. Discrete & Computational Geometry, 18(3):289–304, 1997.

Fekete, Haas, Lieder, Niehs, Perk, Sack, Scheffer 29:9

6 Matthew Dickerson and Mark H. Montague. A (Usually?) Connected Subgraph of the
Minimum Weight Triangulation. In Proc. Symposium on Computational Geometry (SoCG),
pages 204–213, 1996.

7 Robert L. Scot Drysdale, Scott A. McElfresh, and Jack Snoeyink. On exclusion regions for
optimal triangulations. Discrete Applied Mathematics, 109(1-2):49–65, 2001.

8 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

9 P. D. Gilbert. New results in planar triangulations. Master’s thesis, University Illinois, 1979.
10 Peter D. Gilbert. New results on planar triangulations. Technical report, Illinois University

at Urbana-Champaign, 1979.
11 Magdalene Grantson, Christian Borgelt, and Christos Levcopoulos. A Fixed Parameter Al-

gorithm for Minimum Weight Triangulation: Analysis and Experiments. Technical Report
LU-CS-TR: 2005-234, Lund University, Sweden, 2005.

12 Magdalene Grantson, Christian Borgelt, and Christos Levcopoulos. Minimum Weight Tri-
angulation by Cutting Out Triangles. In Proc. International Symposium on Algorithms
and Computationa (ISAAC), pages 984–994, 2005.

13 Andreas Haas. Solving large-scale minimum-weight triangulation instances to provable
optimality. In Proc. Symposium on Computational Geometry (SoCG), pages 44:1–44:14,
2018.

14 Michael Hoffmann and Yoshio Okamoto. The minimum weight triangulation problem with
few inner points. Computational Geometry, 34(3):149–158, 2006.

15 G.T. Klincsek. Minimal Triangulations of Polygonal Domains. Annals of Discrete Mathe-
matics, 9:121–123, 1980.

16 Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. Journal of
the ACM, 55(2):11, 2008.

17 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = lazy clause gener-
ation. In Christian Bessière, editor, Principles and Practice of Constraint Programming –
CP 2007, pages 544–558, 2007.

18 G. Reinelt. TSPLIB–A Traveling Salesman Problem Library. ORSA Journal of Computing,
3(4):376–384, 1991.

19 Chiu-fai Tsang. Expected Case Analysis of [beta]-skeletons with Applications to the Con-
struction of Minimum-weight Triangulations. PhD thesis, Hong Kong University of Science
and Technology, 1995.

20 Arman Yousefi and Neal E. Young. On a linear program for minimum-weight triangulation.
SIAM Journal on Computing, 43(1):25–51, 2014.

EuroCG’20

Flips in higher order Delaunay triangulations∗

Elena Arseneva1, Prosenjit Bose2, Pilar Cano2,3, and Rodrigo I.
Silveira3

1 St. Petersburg State University, Russia
e.arseneva@spbu.ru

2 Carleton University, Canada
jit@scs.carleton.ca

3 Universitat Politècnica de Catalunya, Spain
{m.pilar.cano, rodrigo.silveira}@upc.edu

Abstract
We study the flip graph of higher order Delaunay triangulations. A triangulation of a set S of n
points in the plane is order-k Delaunay if the circumcircle of every triangle encloses at most k
points of S in its interior. The flip graph of S has one vertex for each possible triangulation of S,
and an edge connects two vertices when the two corresponding triangulations can be transformed
into each other by a flip (i.e., exchanging the diagonal of a convex quadrilateral by the other one).
We show that, even though the order-k flip graph might be disconnected for k ≥ 3, any order-k
triangulation can be transformed into some different order-k triangulation by at most k− 1 flips,
such that the intermediate triangulations are of order at most 2k − 2, in the following settings:
(1) for any k ≥ 0 when S is in convex position, and (2) for any point set S when k ≤ 5.

1 Introduction

Given a set S of points in the plane, a triangulation of S is a decomposition of the convex hull
of S into triangles, such that each triangle has its three vertices in S. Despite the well-known
fact that a point set S in the plane can have many different triangulations [7], most of the
time the Delaunay triangulation is used, since its triangles are considered “well-shaped”. A
Delaunay triangulation of S, denoted DT (S), is a triangulation where each triangle satisfies
the empty circle property: the circumcircle of each triangle does not enclose other points of S
(for a survey, see [3, 8]). When no four points of S are co-circular, DT (S) is unique. However,
when used to model terrains as a 3D surface, the Delaunay triangulation of points on the
surface ignores the elevation information, potentially resulting in poor terrain models where
important terrain features, such as valley or ridge lines, are ignored [6, 10]. This motivated
Gudmundsson et al. [9] to propose higher order Delaunay triangulations. A triangulation T
of S is an order-k Delaunay triangulation—or, simply, order-k—if the circumcircle 1 of each
triangle of T contains at most k points of S in its interior. As soon as k > 0, one obtains a
class of triangulations that, intuition suggests, still has well-shaped triangles for small values
of k, but with potentially many triangulations to choose from.

A fundamental operation to locally modify triangulations is the edge flip. It consists of
removing the edge shared by two triangles that form a convex quadrilateral, and inserting
the other diagonal of the quadrilateral. A flip transforms a triangulation T into another

∗ E.A. was supported by supported by RFBR, project 20-01-00488. P.B. was partially supported by
NSERC. P.C. was supported by CONACYT, MX. R.S. was supported by MINECO through the Ramón
y Cajal program. P.C. and R.S. were also supported by projects MINECO MTM2015-63791-R and
Gen. Cat. 2017SGR1640. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

1 We refer to the interior of a circumcircle. as the interior of the disk defined by such circle

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

30:2 Flips in higher order Delaunay triangulations

triangulation T ′ that differs by exactly one edge and two triangles. The flip operation leads
naturally to the definition of the flip graph of S. Each triangulation of S is represented by a
vertex in this graph, and two vertices are adjacent if their corresponding triangulations differ
by exactly one flip. The importance of flips in triangulations comes from the fact that the
flip graph is connected [11]. In fact, it is known that O(n2) flips are enough to convert any
triangulation of S into DT (S) [12, 15]. In general, computing the distance in the flip graph
between two given triangulations is a difficult problem [13, 14]. This has drawn considerable
attention to the study of certain subgraphs of the flip graph, which define the flip graph of
certain classes of triangulations. We refer to [5] for a survey.

Almost nothing is known about the flip graph of order-k triangulations, except that it
is connected only for k ≤ 2 [1]. Similarly, Abellanas et al. [2] showed that the flip graph
of triangulations of point sets with edges of order k 2 is connected for k ≤ 1, but can be
disconnected for k ≥ 2. On the other hand, they proved that for point sets in convex position
the flip graph is connected provided one allows intermediary triangulations of order at most
3k [2]. However, their proof implies an exponential bound on the diameter of the flip graph.

In this paper we present several structural properties of the flip graph of order-k tri-
angulations. For points in convex position, we show that for any k > 2 there exists point
sets in convex position for which the flip graph is not connected. However, we prove that
for any order-k triangulation there exists another order-k triangulation at distance at most
k − 1 in the flip graph of order-(2k − 2) triangulations. This shows that, while order-k
triangulations are not connected via the flip operation, they become connected if a slightly
larger neighborhood is considered. For points in generic (non-convex) position, we prove the
same result for up to k ≤ 5, although we conjecture that it holds for all k. Our results have
implications on the flip distance between order-k triangulations, as well as on their efficient
algorithmic enumeration.

Due to space limitations, most proofs are omitted.

2 Preliminaries and general observations

Let S be a point set in the plane. The point set S is in general position if no three points of
S lie on a line and no four points of S lie on a circle. For the rest of the paper we assume
that the point set is in general position. Let T be a triangulation of S, and let 4uyv be a
triangle in T with vertices u,y,v. We will denote by ©uyv the disk defined by the enclosed
area of the circumcircle of 4uyv (i.e., the unique circle going through u, y, and v), unless
stated otherwise. Triangle 4uyv is an order-k triangle if ©uyv contains at most k points of
S in its interior. A triangulation T where all triangles are order-k is an order-k (Delaunay)
triangulation. Thus, T is not of order-k if ©uxv contains more than k points in its interior
for some 4uxv in T . The set of all order-k triangulations of S will be denoted Tk(S).

Let e = uv be an edge in T . Edge e is flippable if e is incident to two triangles 4uxv
and 4uyv of T and uxvy is a convex quadrilateral. The flippable edge e is illegal if ©uxv
contains y in its interior. Note that this happens if and only if©uyv contains x in its interior.
Otherwise, it is called legal. The angle-vector α(T) of a triangulation T is the vector whose
components are the angles of each triangle in T ordered in increasing order. Let T ′ 6= T

be another triangulation of S. We say that α(T) > α(T ′) if α(T) is greater than α(T ′) in
lexicographical order. It is well-known that if T ′ is the triangulation obtained by flipping an

2 An edge uv is an order-k edge of S if there exists a disk that contains u and v on its boundary and at
most k points of S in its interior. Observe that the edges of an order-k triangle are order-k edges.

E. Arseneva, P. Bose, P. Cano and R. I. Silveira 30:3

uv

x

y

Figure 1 An illegal edge uv, with region
uv

y in gray.

illegal edge of T , then α(T ′) > α(T) [8]. Moreover, since DT (S) maximizes the minimum
angle, it follows that DT (S) is the only triangulation where all the edges are legal [15]. This
also implies that the flip graph is connected, since any triangulation can be transformed into
the Delaunay triangulation. We will denote the flip graph of Tk(S) by G(Tk(S)). Abe and
Okamoto [1] observed that G(T2(S)) is connected as a consequence of the following lemma.

I Lemma 2.1 (Abe and Okamoto [1]). Let T be a triangulation of S, let uv be an illegal
edge of T , and let 4uvx and 4uyv be the triangles incident to uv in T . If 4uxv is of order
k, and 4uyv is of order l, then triangles 4uxy and 4xyv have orders k′ and l′, respectively,
for k′, l′ with k′ + l′ ≤ k + l − 2.

When we refer to points in a certain region, we refer to points of S in that region.
For a triangle 4uyv, we will use

uv

y to denote the open region bounded by edge uv and
the arc of circle ∂© uyv that does not contain y. See Fig 1. Consider a triangulation T
of order k ≥ 3, and an illegal edge uv adjacent to triangles 4uxv and 4uyv. Consider the
triangulation T ′ resulting from flipping uv in T . Using that the interior of ©uxv and ©uyv
contain at most k points each (including x and y), and the fact that the interior of ©uxy
contains at least k + 1 points, a rather simple counting argument implies the following.

I Observation 2.2. If ©uxy contains more than k ≥ 3 points in its interior then each region
ux

y \©uxv and
uy

x \©uyv contains at least 2 points.

3 Points in convex position

First, we show that G(Tk(S)) may not be connected and k − 1 flips may be necessary to
transform a triangulation in Tk(S) into some different order-k triangulation for k > 2.

I Theorem 3.1. For any k > 2 there is a set Sk of 2k + 2 points in convex position such
that G(Tk(Sk)) is not connected. Moreover, there is a triangulation Tk in Tk(Sk) that is at
least k − 1 flips away from any other triangulation in Tk(Sk).

Proof sketch. Set Sk is constructed as follows, see Fig. 2.a. Start with a horizontal segment
uv and add points S′ = p1, . . . , pk above it, and points S′′ = q1, . . . , qk below it, such that qi

is the reflection of pi with respect to the line through uv. Point p1 is placed close enough to
uv, and each next point pi+1 for i = 1, . . . , k − 1 is: (1) inside ©uqipi, (2) below the line
through pi−1pi, (3) above the line through uv, and (4) outside©upi−1pi (we set p0 = v). The
set Sk is {u, v}∪S′ ∪S′′. Triangulation Tk of Sk is formed by all the triangles 4upipi+1 and
4uqiqi+1 (where p0 = q0 = v). It turns out that any ©upipi+1 (resp., ©uqiqi+1) contains
exactly the k points of S′′ (resp., of S′) in its interior and no other point of Sk. Thus Tk is
in Tk(Sk). We observe that any triangulation of Sk containing edge pipt with k ≥ i > t+ 1

EuroCG’20

30:4 Flips in higher order Delaunay triangulations

is not of order k (the case for qiqt is symmetric). Consider T ′ 6= Tk in Tk(Sk). Thus, each
edge in T ′ \ Tk must have one endpoint in S′ and one in S′′. Thus, edge uv has to be flipped
in order to transform Tk to T ′. Triangle 4(uq1p1) is of order 2k − 2. The second part of
the statement follows from the observation that for any i, j with k ≥ i > 0 and k ≥ j > 0,
the triangle upiqj is of order 2k − i− j. Thus, k − 1 flips are needed to get T ′, since some
4upiqj has to be in T ′ with i+ j ≥ k. Otherwise uv is in T ′, a contradiction. J

Let S be a point set in convex position. Let T be an order-k triangulation of S. We
say that T is minimal if flipping any illegal edge in T results in a triangulation that is not
of order k. Let uv be a diagonal in T and let 4uxv and 4uyv be the triangles adjacent
to it. Since S is in convex position, the diagonal uv in T partitions the triangulation T

into two sub-triangulations that only share edge uv. Let T x
uv (respectively, T y

uv) denote the
sub-triangulation that contains triangle 4uxv (respectively, 4uyv). See Fig. 2.b.

We show that any order-k triangulation different from DT can be transformed into some
other order-k triangulation by performing at most k − 1 flips of illegal edges such that all
the intermediate triangulations are of order 2k − 2.

I Theorem 3.2. Let S be a point set in convex position and let k ≥ 2. Let T 6= DT (S) be
in Tk(S). Then, there exists a triangulation T ′ in Tk(S) at flip distance at most k − 1 in
G(T2k−2(S)) from T such that α(T ′) > α(T).

Proof sketch. For k = 2 the theorem follows trivially, since G(T2(S)) is connected. Thus,
we assume k ≥ 3. Note that if T is not minimal, then there exists an illegal edge e such that
the resulting triangulation T ′ after flipping e is a triangulation of order k with the property
that α(T ′) > α(T). Thus, we assume that T is a minimal triangulation. We observe that
there must exist an illegal edge ac adjacent to triangle 4abc such that T b

ac consists of only
legal edges: Since T is not an order-0 triangulation, there is an illegal edge in T . Note that if
a triangle has two edges in the convex hull of S, its third edge must be legal in T , otherwise
T would not be minimal. Since triangulations of polygons have at least two such triangles
(often called ears), then there exists an edge ac in 4abc such that T b

ac consists of legal edges.
Let uv be an illegal edge in 4uxv such that T x

uv consists of legal edges. Let 4uyv be the
other triangle in T adjacent to uv. Consider the triangulation T1 = (T \ {uv}) ∪ {xy}. Note
that α(T1) > α(T). Since T is minimal, T1 is not an order-k triangulation. Thus, the only
triangles that cannot be of order k in T1 are the new triangles 4uxy and 4xyv. Without
loss of generality assume that 4uxy is not of order k. By Lemma 2.1, it follows that 4uxy
is the only triangle that is not of order k. In addition, ©uxy contains at most 2k − 2 points
in its interior. By Obs. 2.2 it follows that

ux

y has at least 2 points and at most k − 1.

u

x

y

v

(b)

u v

p1
p2

p3
p4

q1
q2

q3q4

(a)

Figure 2 (a) An order-k triangulation at distance at least k− 1 from other order-k triangulations
(k=4). (b) The gray area corresponds to T x

uv.

E. Arseneva, P. Bose, P. Cano and R. I. Silveira 30:5

u

x

v

y

u

x

v

y

(a) (b)

Figure 3 In both cases, k = 5. (a) There are four points in the gray region ©uxy \
ux

y . (b)
There are exactly three points in

ux

y and exactly three points in
uy

x .

By induction on the number of points in
ux

y we show that T1 can be transformed into an
order-k triangulation T ′ by flipping at most k−2 illegal edges. Hence, α(T ′) > α(T1) > α(T).
Moreover, the triangulations from T1 to T ′ are of order 2k − 2, implying our result. J

If T is an order-k triangulation, then the edges of T have order k. There are O(kn) edges
of order k [2, 9]. It follows from Theorem 3.2 that T can be transformed into DT (S) by a
sequence of at most O((2k − 2)n) = O(kn) flips, since all the flipped edges are illegal and of
order 2k − 2, which implies that no order-(2k − 2) edge is flipped twice.

4 General point sets

Consider a general point set S. Using a much more involved approach than the one for
convex point sets, we can obtain an analogous result for triangulations of order k = 3, 4 or 5.

In order to prove this result, we consider a triangulation T ∈ Tk(S). If there is an illegal
edge in T whose flip results in a new order-k triangulation, we are done. If not, k > 2 and T
is a minimal triangulation. Thus, for any illegal edge uv in T , flipping uv produces a new
and unique triangle 4uxy that is not of order k. Since k = 3, 4, 5, we notice that there are
only two cases to consider for the number of points in each region of ©uxy. For k = 3, 4,
since 4uxy is not of order k, by Obs. 2.2 it follows that one of the regions ©uxy \ ux

y

and ©uxy \ uy

x contains k − 1 points in its interior. For k = 5, if none of the regions
©uxy \ ux

y and ©uxy \ uy

x contains k− 1 points of S in its interior then, by Obs. 2.2 and
the fact that T is of order k, it follows that each region of

ux

y and
uy

x contains 3 points of
S. See Fig. 3. Finally, for each of these two cases we show that the statement holds using
the fact that when flipping certain illegal edges, the circumcircles of the new triangles lie in
the union ©uxv ∪©uyv.

In addition, since there are O(kn) order-k edges (see [2, 9]), it follows that for k ≤ 5,
any order-k triangulation can be transformed into DT (S) by a sequence of at most O(kn)
triangulations of order 2k − 2. Moreover, using the reverse search framework of Avis and
Fukuda [4] and the pre-processing method of order-k triangulations given by Silveira and
van Kreveld [16], all order-k triangulations can be enumerated in polynomial expected time
per triangulation.

References
1 Yusuke Abe and Yoshio Okamoto. On algorithmic enumeration of higher-order Delaunay

triangulations. In Proceedings of the 11th Japan-Korea Joint Workshop on Algorithms and
Computation, Seoul, Korea, pages 19–20, 2008.

EuroCG’20

30:6 Flips in higher order Delaunay triangulations

2 Manuel Abellanas, Prosenjit Bose, Jesús García, Ferran Hurtado, Carlos M Nicolás, and
Pedro Ramos. On structural and graph theoretic properties of higher order Delaunay
graphs. Internat. J. Comput. Geom. Appl., 19(06):595–615, 2009.

3 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay tri-
angulations. World Scientific Publishing Company, 2013.

4 David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Appl. Math.,
65(1-3):21–46, 1996.

5 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Comput. Geom., 42(1):60–80,
2009.

6 Leila De Floriani. Surface representations based on triangular grids. The Visual Computer,
3(1):27–50, 1987.

7 Adrian Dumitrescu, André Schulz, Adam Sheffer, and Csaba D. Tóth. Bounds on the max-
imum multiplicity of some common geometric graphs. SIAM J. Discrete Math., 27(2):802–
826, 2013.

8 Steven Fortune. Voronoi diagrams and Delaunay triangulations. pages 225–265. World
Scientific, 1995.

9 Joachim Gudmundsson, Mikael Hammar, and Marc van Kreveld. Higher order Delaunay
triangulations. Comput. Geom., 23(1):85–98, 2002.

10 Joachim Gudmundsson, Herman J Haverkort, and Marc Van Kreveld. Constrained higher
order Delaunay triangulations. Comput. Geom., 30(3):271–277, 2005.

11 Charles L. Lawson. Transforming triangulations. Discrete Math., 3(4):365 – 372, 1972.
12 Charles L Lawson. Software for C1 surface interpolation. In Mathematical software, pages

161–194. Elsevier, 1977.
13 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set

is NP-complete. Comput. Geom., 49:17–23, 2015.
14 Alexander Pilz. Flip distance between triangulations of a planar point set is apx-hard.

Comput. Geom., 47(5):589–604, 2014.
15 Robin Sibson. Locally equiangular triangulations. Comput. J., 21(3):243–245, 1978.
16 Rodrigo I Silveira and Marc van Kreveld. Optimal higher order Delaunay triangulations of

polygons. Comput. Geom., 42(8):803–813, 2009.

Distance Measures for Embedded Graphs -
Optimal Graph Mappings
Maike Buchin1 and Bernhard Kilgus2

1 Department of Mathematics, Ruhr University Bochum, Bochum, Germany
Maike.Buchin@rub.de

2 Department of Mathematics, Ruhr University Bochum, Bochum, Germany
Bernhard.Kilgus@rub.de

Abstract
We want to compare embedded graphs at a global and a local scale. The graph distances presented
in [5] compare two graphs by mapping one graph onto the other and taking the maximum Fréchet
distance between edges and their mappings. For this, the graph mapping is chosen such that the
bottleneck distance is minimized. Here, we present two approaches to compute graph mappings
subject to additional optimization criteria in order to improve distances locally.

1 Introduction

Motivation We are interested in comparing two embedded graphs. There are many appli-
cations that work with graphs embedded in an Euclidean space, such as road networks. For
instance, by comparing two road networks one can assess the quality of map construction
algorithms [3, 4]. Recently, graph distances based on graph mappings [5] were presented
suitable for this task. However, these distances are bottleneck distances and a mapping
realizing the bottleneck graph distance might be far from optimal for a single edge or any
subgraph. See Figure 1 for an example. In this paper, we want to improve these mappings
such that they express local distances more accurately.

ε

< ε

Figure 1 A partial map reconstruction R of the street map of Athens (in red). The graph distance
between R and the ground truth is ε. The blue dashed and solid mappings are both valid, although
the latter captures the local distance between the reconstruction and the ground truth better.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

31:2 Distance Measures for Embedded Graphs - Optimal Graph Mappings

Related Work Several approaches have been proposed for comparing embedded graphs.
These include an edit distance [8], algorithms that compare all paths [1] or random samples
of shortest paths [9], traversal distance [6], and local persistent homology distance [2].
However,as argued in [5], (most of) these capture only the geometry or only the topology of
the graphs. The distances presented in [5] capture both and are based on an explicit mapping
between the graphs. Here, we extend these measures by looking for locally good matchings.
To obtain locally good matchings between two polygonal curves, Buchin et al. introduced
locally correct matchings [7] and Rote suggested lexicographic Fréchet matchings [10].

The traversal distance is a bottleneck distance but given the optimal traversals, local
optimality is obtained by computing lexicographic Fréchet matchings. This approach can also
be applied when computing the path-based graph distances. However, such a local traversal
or path-based distance still suffers the shortcoming of the original measures, namely that it
reduces the graphs to one or several paths. The local persistent homology distance allows for
computing and visualization of local distances whereas expressing local distances with the
edit distance is limited as some edges and vertices might be deleted during transformation.

Definition and Previous Results Here, we summarize the definition of the graph distances,
the general algorithmic approach to compute the distances and the computational complexity
for several settings (general graphs, planar embedded graphs, trees) as described in detail in
[5]. Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs with vertices embedded
as points in Rd (typically in the plane) that are connected by straight-line edges. We consider
a mapping s : G1 → G2 that maps each vertex v ∈ V1 to a point s(v) on G2 (not necessarily
a vertex) and that maps each edge {u, v} ∈ E1 to a simple path in G2 with endpoints s(u)
and s(v). The directed graph distances ~δ(w)G are defined as

~δ(w)G(G1, G2) = infs : G1→G2 maxe∈E1 δ(w)F (e, s(e))1,

where δ(w)F denotes the (weak) Fréchet distance, s ranges over all graph mappings from
G1 to G2, and e and its image s(e) are interpreted as curves in the plane. These distances
are not symmetric and the difference between ~δ(w)G(G1, G2) and ~δ(w)G(G2, G1) can be
arbitrarily large. The undirected graph distances δ(w)G(G1, G2) are defined as the maximum
of ~δ(w)G(G1, G2) and ~δ(w)G(G2, G1). Note that in this extended abstract, we only consider
optimizing the directed distances. The undirected distances can be defined analogously as
the maximum of the two directions.

An ε-placement of a vertex v is a maximally connected component of G2 restricted to the
ε-ball Bε(v) around v. A (weak) ε-placement of an edge e = {u, v} ∈ E1 is a path P in G2
with endpoints on ε-placements Cu of u and Cv of v such that δ(w)F (e, P) ≤ ε. In that case,
we say that Cu and Cv are reachable from each other. An ε-placement Cv of v is (weakly)
valid if for every neighbor u of v, there exists an ε-placement Cu of u such that Cv and Cu

are reachable from each other.
The general algorithmic approach to solve the decision problem of the directed (weak)

graph distances for a given value ε > 0 consists of the following steps [5] (1) Compute all
ε-placements of vertices and (2) of edges. Subsequently, (3) prune all invalid placements
and (4) decide whether ~δ(w)G(G1, G2) ≤ ε based on the remaining valid ε-placements. We
call a graph mapping s that realizes ~δ(w)G(G1, G2) ≤ ε a (weakly) valid mapping.

1 We use the (w)-notation to simultaneously address the weak Fréchet distance and the Fréchet distance
and the weak graph distance and the graph distance, respectively.

Buchin and Kilgus 31:3

Deciding the directed (weak) graph distance is NP-hard for general graphs, but we can
compute the (weakly) valid ε-placements in polynomial time. If there is a vertex with no
(weakly) valid ε-placement, it follows that ~δ(w)G(G1, G2) > ε. Conversely, the existence of
a (weakly) valid ε-placement for each vertex ensures ~δ(w)G(G1, G2) ≤ ε for several cases,
namely if G1 is a tree (both graph distances) and if G1 and G2 are plane graphs (weak graph
distances). Thus, the distances are decidable in polynomial time in these cases. Deciding
whether ~δG(G1, G2) ≤ ε remains NP-hard, if G1 and G2 are plane graphs [5].

Contribution The graph distances are bottleneck distances and a valid mapping might be
far from optimal for a specific edge. To improve the local distance, we introduce additional
optimization criteria for the graph mappings. First observe that in contrast to the (weak)
Fréchet distance for polygonal paths [7, 10], we cannot expect to find a valid mapping
s1 : G1 → G2 that is locally minimal in the sense that for any other valid mapping s2,
δ(w)F (e, s1(e)) ≤ δ(w)F (e, s2(e)) for each edge e of G1. See Figure 2 for an example.

We formulate the following optimization criteria: One natural goal is to minimize the
(weighted) sum of the (weak) Fréchet distance between edges and their images; we denote this
goal by (weak) min-sum graph distance and describe how to compute the (weak) min-sum
graph distance for the setting where G1 is a tree in Section 2.

Another goal is to refine the minmax optimization goal of the definition of ~δwG(G1, G2).
Intuitively, in addition to the largest value, we want to minimize the second largest value with
respect to the largest value and so on. We denote this goal by lexicographic graph distance.
Note that this approach only applies for the weak graph distance. We show how to compute
the lexicographic graph distance for the setting where both graphs are planar in Section 3.

2 Min-Sum Graph Distance for Trees

Let G1 be a tree. First, we compute the bottleneck distance ε = ~δ(w)G(G1, G2). Subsequently,
we choose an optimal mapping based on ε. That is, we compute mins

∑
e∈E1

δ(w)F (e, s(e)),
where s : G1 → G2 ranges over all valid graph mappings with respect to ε.

Note that it might be possible to decrease this value by choosing an initial value ε′ >
~δ(w)G(G1, G2). Mappings with small distance to most of the edges of G1 are possibly declared
invalid with respect to ε if the bottleneck distance for these mappings is large. Therefore, an
alternative initial value can be used if we allow an (arbitrarily) large bottleneck distance for
the min-sum graph distance. However, computing the min-sum graph distance with respect
to ε is an optimal mapping respecting the global directed graph distance.

s1e1
e2G2

G1

s1

s1

s2 s2

s2

Figure 2 The graph mapping s1 is locally optimal for e2 but not for e1, whereas the graph
mapping s2 is locally optimal for e1 but not for e2.

EuroCG’20

31:4 Distance Measures for Embedded Graphs - Optimal Graph Mappings

w(C2) = 2

w(C1) = 8

w(C1) = 8 + 1 + 4 = 13

w(C2) = 2 + 4 + 1 = 6

1

4

r
C1

C2

C2

C1

ε = 5

Figure 3 The weights of the vertex placements of the root r consist of the sum of the weights of
the vertex placements of the children of r in G1 and the weights of the paths between the placements.
The min-sum graph mapping of G1 (in blue) onto G2 (in red) is marked with bold lines.

Description of the Search Structure For each edge e = (u, v) ∈ G1 and each pair of ε-
placements Cu, Cv, we compute the minimum (weak) Fréchet distance ∆(Cu, Cv) of e and an
edge-placement of e connecting Cu and Cv. We store a list Le with entries (Cu, Cv,∆(Cu, Cv))
for each combination of vertex placements. That is, we augment step 2 of the algorithm by
explicitly computing and storing the (weak) Fréchet distance of an edge and its placements.
This can be done in O(n1m

2
2 log(m2)) time and O(n1m

2
2) space for both the weak Fréchet

distance and the Fréchet distance. We denote the set of placements of a vertex u by P (u).
We will compute the min-sum graph distance bottom-up, maintaining the invariant that

subgraphs have been optimally placed for any vertex-placement. For this, we consider G1
as directed tree with arbitrary root r. The (abstract) reachability graph H of the vertex
placements has one vertex for each vertex placement of a vertex of G1. Two vertices Cu, Cv are
adjacent in H if the corresponding vertices u, v of G1 are adjacent and if the two placements
are reachable from each other. The edges of H are weighted with the minimum (weak)
Fréchet distance between the corresponding edge of G1 and an edge placement connecting
Cu and Cv in G2. Note that alternatively to the Fréchet bottleneck distances one might, for
instance, use the minimum area between an edge and a valid path as weights. As each vertex
u ∈ V1 has O(m2) vertex placements the vertex set VH of H has size O(n1m2) and the set
of edges EH has size O(n1m

2
2). We consider the edges of H to be directed according to the

direction of the edges of G1. Obviously, H is a directed acyclic graph (DAG).
For simplicity, let G1 be the graph obtained by replacing all paths of internal degree-2

vertices in G1 by one edge between the start and endpoint of the path. Then, for all vertices
v of G1, deg(v) ≥ 3. See Figure 3 for a small example of a min-sum graph mapping.

Description of the Algorithm First, we set the weight w(p) = 0 for all placements p of
vertices of G1. Let u ∈ V 1 be a vertex whose children are all leaves. We compute

w(Cu) =
∑

u′:u′is child of u

min
Cu′ ∈P (u′)

w(Cu′) + wH(Cu, Cu′), (1)

where wH(Cu, Cu′) is the weight of a minimum weight shortest path P between Cu and Cu′

in H. We store the mapping s which realizes w(Cu), delete the subtree of G1 rooted at u,

Buchin and Kilgus 31:5

and proceed with the next vertex of the updated graph G1 with leaf-children only until we
encounter the root r. After having processed r, the following theorem holds:

I Theorem 1. We can compute a valid mapping s in O(n1m
3
2) time and O(n1m

2
2) space

such that for any other valid mapping s′ : G1 → G2 we have
∑

e∈E1

δ(w)F (e, s′(e)) ≥
∑

e∈E1

δ(w)F (e, s(e)).

Proof. The graph H can be computed in O(n1m
2
2 log(m2)) time and uses O(n1m

2
2) space.

The algorithm maintains the invariant of optimally mapped subtrees and thus terminates
with a min-sum mapping. The complexity of the subgraph of H for computing wH(Cu, Cu′)
for all children u′ of u in G1 is O(lm2

2), where l is the length of the path between u and u′

in G1. Since H is a DAG, we can compute equation (1) in (deg(u)− 1)O(lm2
2) time using

topological sorting. As u has up to m2 placements, the runtime for processing one vertex of
G1 is O(deg(u)lm3

2). With
∑

u∈V 1
deg(u)l = 2m1 = 2(n1 − 1), the runtime follows. J

I Remark. While computing the directed graph distance for planar embedded graphs is
NP-hard, one can compute the directed weak graph distance in polynomial time [5]. It
remains open whether the weak min-sum graph distance can be computed in polynomial
time for planar embedded graphs, but we conjecture that the problem is NP-hard.

3 Lexicographic Graph Distance

First, we formally define the lexicographic graph distance based on weak Fréchet distance.

I Definition 2. Let s : G1 → G2 be a mapping. We say that s is a mapping realizing the
lexicographic graph distance, if it has the following property: Given an arbitrary subdivision
D of the graph G1 (with finite number l of edges). Let e1, e2, . . . , el be a numbering of the
edges of D such that ε1 ≥ ε2 ≥ · · · ≥ εl, where εi = δwF (ei, s(ei)). If there exists another
mapping ŝ, such that δwF (ei, ŝ(ei)) < δwF (ei, s(ei)) for some i ∈ {1, 2, . . . , l}, then there
exists an index j < i such that δwF (ej , ŝ(ej)) > δwF (ej , s(ej)).

A mapping that realizes the lexicographic graph distance is a lexicographic graph mapping.
Note that here we use the term lexicographic with a slight abuse of the standard notation

of a lexicographic order. This is due to the fact that the entities that must be ordered differ
for each mapping from G1 to G2. Intuitively, any mapping with a locally smaller distance
in comparison with a lexicographic graph mapping increases the value of some larger weak
Fréchet distance of an edge and its image.

In the following, we first assume that no pair of edges (e1, e2), where e1 ∈ E1 and e2
in E2, is parallel. Hence we can assume that the weak Fréchet distance between an edge
e ∈ E1 and a path s(e) in G2 is characterized by the maximum M of the maximum distance
between a vertex v ∈ V2 on s(e) and the edge e and the distances of the endpoints of e and
s(e). Second, we assume that the length of the perpendiculars of edges of G2 and vertices of
G1 are unique. Furthermore, we assume that M is uniquely defined by a vertex on s(e) or
by one of the endpoints of s(e). Last, we assume that for any valid mapping s, the weak
Fréchet distance between an edge e and s(e) are unique. These assumptions imply:

I Lemma 3. Let ε = ~δwG(G1, G2). If δwF (e, s(e)) = ε for an edge e = (u, v) ∈ E1 and a
valid mapping s : G1 → G2. Then, exactly one of the following cases occurs:

Case 1: There is a vertex w ∈ V2 on s(e) with dist(e, w) = ε. Then, for each valid
mapping ŝ 6= s, ŝ(e) contains w and therefore δwF (e, ŝ(e)) = ε.

EuroCG’20

31:6 Distance Measures for Embedded Graphs - Optimal Graph Mappings

Case 2: dist(u, s(u)) = ε. In this case, u has exactly one valid placement.
Case 3: dist(u, s(v)) = ε. In this case, v has exactly one valid placement.

Description of the Algorithm First we compute the directed weak graph distance
ε = ~δwG(G1, G2) and store a copy of G2 restricted to the ε-surrounding of e for each edge
e ∈ E1. We denote this subgraph by G2(e). In each step of the algorithm we compute
ε = ~δwG(G1, G2), where the subgraphs G2(e) are used for all graph explorations in step (1)
and (2). We consider the unique edge e with δF (e, s(e)) = ε and the unique point w on s(e)
with distance ε to e and remove this bottleneck by updating the graph as follows: Snap w to
w′ on e at distance ε and update all incident edges of w in G2(w) accordingly. Proceed until
~δwG(G1, G2) = 0. Figure 4 illustrates the iterations of the algorithm.

Note that the updated graphs are not necessarily plane, but planarity is not needed for
computing valid placements and pruning invalid placements. To compute a mapping for two
adjacent cycles, the corresponding placements in the plane graph G2 are used.

I Theorem 4. Given plane graphs G1, G2, the algorithm described above computes a lexico-
graphic graph mapping s : G1 → G2 in O(n2

1n
2
2 log(n1 + n2)) time using O(n1n2) space.

Proof. Let G2(e = (u, v)) be the graph updated in iteration i and let G2(e)prev be the
graph before the update. Furthermore, let ε = ~δwG(G1, G2(e)) be the weak directed graph
distance in iteration i + 1 and εprev = ~δwG(G1, G2(e)prev). Now Lemma 3 implies that
for a valid mapping s : G1 → G2(e) with respect to ε, the corresponding re-transformed
mapping is a valid mapping from G1 onto G2(e)prev with respect to εprev. That is, when
the algorithm terminates, we can easily compute a valid mapping from G1 onto G2 by a
series of re-transformations of the graph G2. The obtained mapping is a lexicographic graph
mapping as in each step the algorithm identifies the current bottleneck distance. In each
iteration, either a vertex of G2 is snapped onto an edge e of G1, or a point of an edge of G2
is snapped onto an endpoint of e. The latter case can only happen once for each endpoint of
e. Therefore, at most n2 + 2 points of G2 are snapped onto e until the distance between e
and s(e) is zero for any valid mapping s. Thus, after a maximum of m1(n2 + 2) = O(n1n2)
iterations, the algorithm terminates. Hence, the total runtime is O(n2

1n
2
2 log(n1 + n2)). J

I Remark. The definition and algorithmic approach cannot be directly transferred to the
Fréchet distance instead of the weak Fréchet distance Ṫhe Fréchet distance depends on the
specific subdivision of an edge. In general, the distance increases for larger subdivisions and
is maximal between the whole edge and the corresponding path.

Buchin and Kilgus 31:7

G2
G1

G2
G1

w1

w2

w3

w4

w5
w6 w8w7

u w′
7

w′
8 w′

1 w′
5

w′
3

w′
2

v

Figure 4 Iteratively updating G2. The lexicographic graph mapping (bold line) is uniquely
defined by the vertices wi and u, v, w′

i: sopt(u) = w7, sopt(v) = w4, sopt(w′
7) = w6, sopt(w′

8) = w8,
sopt(w′

1) = w1, sopt(w′
5) = w5, sopt(w′

3) = w3, sopt(w′
2) = w2, sopt(v) = w4.

EuroCG’20

31:8 Distance Measures for Embedded Graphs - Optimal Graph Mappings

References
1 Mahmuda Ahmed, Brittany Terese Fasy, Kyle S. Hickmann, and Carola Wenk. Path-based

distance for street map comparison. ACM Transactions on Spatial Algorithms and Systems,
28 pages, 2015.

2 Mahmuda Ahmed, Brittany Terese Fasy, and Carola Wenk. Local persistent homology
based distance between maps. In 22nd ACM SIGSPATIAL GIS, pages 43–52, 2014.

3 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. A comparison
and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica,
19(3):601–632, 2015.

4 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. Map Construction
Algorithms. Springer, 2015.

5 Hugo A. Akitaya, Maike Buchin, Bernhard Kilgus, Stef Sijben, and Carola Wenk. Distance
Measures for Embedded Graphs. In Pinyan Lu and Guochuan Zhang, editors, 30th Inter-
national Symposium on Algorithms and Computation (ISAAC 2019), volume 149 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 55:1–55:15, Dagstuhl, Germany,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.
de/opus/volltexte/2019/11551, doi:10.4230/LIPIcs.ISAAC.2019.55.

6 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal
of Algorithms, 49(2):262 – 283, 2003.

7 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Bettina Speckmann. Locally correct
Fréchet matchings. In Proceedings of the 20th Annual European Conference on Algorithms,
ESA’12, pages 229–240, Berlin, Heidelberg, 2012. Springer-Verlag. URL: http://dx.doi.
org/10.1007/978-3-642-33090-2_21, doi:10.1007/978-3-642-33090-2_21.

8 Otfried Cheong, Joachim Gudmundsson, Hyo-Sil Kim, Daria Schymura, and Fabian Stehn.
Measuring the similarity of geometric graphs. In International Symposium on Experimental
Algorithms, pages 101–112, 2009.

9 Sophia Karagiorgou and Dieter Pfoser. On vehicle tracking data-based road network gen-
eration. In 20th ACM SIGSPATIAL GIS, pages 89–98, 2012.

10 Günter Rote. Lexicographic Fréchet matchings. In Proc. 30rd European Workshop on
Computational Geometry (EuroCG), 2014.

Reconfiguring sliding squares in-place by flooding∗

Joel Moreno1 and Vera Sacristán1

1 Universitat Politècnica de Catalunya
joel.moreno97@gmail.com, vera.sacristan@upc.edu

Abstract
We present a new algorithm that reconfigures between any two edge-connected configurations of
n sliding squares within their bounding boxes. The algorithm achieves the reconfiguration by
means of Θ(n2) slide moves. A visual simulator and a set of experiments allows us to compare
the performance over different shapes, showing that in many practical cases the number of slide
moves grows significantly slower than in others as n increases.

1 Introduction

As defined in [13], “Modular self-reconfigurable (MSR) robots are robots composed of a large
number of repeated modules that can rearrange their connectedness to form a large variety
of structures. An MSR system can change its shape to suit the task, whether it is climbing
through a hole, rolling like a hoop, or assembling a complex structure with many arms."

Their versatility, though, comes with a drawback: the complexity of the algorithms
required to control MSR systems and make them walk, self-repair or, more generally,
reconfigure. Reconfiguring modular robots without a thoughtful method can generate
an excessive number of moves (and therefore too much time and power consumption),
disconnections of the robot, collisions between its modules, dead-locks and other complex
situations.

In this paper we propose a new and efficient in-place universal reconfiguration algorithm
for a class of lattice-based modular robots.

1.1 Basic Definitions
A connected robot configuration (in short, a robot or a configuration) is any edge-connected
set of squares (modules of the robot) located in a 2-dimensional square lattice. In other
words, it is a polyomino. Within the sliding-square setting, robot modules (represented as
squares) move relative to each other by sliding along their shared edges, as shown in Figure 1.

Figure 1 The sliding move allows straight transitions (left) as well as convex transitions (right).

A hole in a configuration is any vertex-connected component of empty lattice cells. A
pseudo-hole is any edge-connected component of empty lattice cells. See Figure 2 for an
illustration. Notice that, with this definitions, the unbounded component is considered to be
a hole/pseudo-hole. Notice also that pseudo-holes are subsets of holes.

∗ V.S. was partially supported by MTM2015-63791-R (MINECO/FEDER) and Gen. Cat. DGR
2017SGR1640.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

32:2 Reconfiguring sliding squares in-place by flooding

Figure 2 Example of a configuration (in blue) with 3 holes and 10 pseudo-holes. Left: Empty
cells marked with the same color belong to the same hole. Right: Empty cells marked with the same
color belong to the same pseudo-hole. The red square indicates one of the many critical pairs.

We call the boundary of a hole (respectively, pseudo-hole) the cycle of vertices and edges
simultaneously incident to the hole (pseudo-hole) and the robot, and boundary traversal the
cycle of hole (pseudo-hole) cells incident to its boundary.

A critical pair is a pair of vertex-adjacent robot modules such that no module exists that
is edge adjacent to both. They can be found in pseudo-holes that are not holes. Figure 2
shows an example.

1.2 Problem Statement and Results
Given any two configurations C and C ′ with n modules each, we present an efficient
algorithm that reconfigures C into C ′ in-place, without disconnecting the robot at any
moment throughout the reconfiguration. The algorithm is centralized and sequential, i.e.,
it slides one module at a time. It is efficient in the sense that the overall slide moves
performed along the reconfiguration is Θ(n2), which is optimal if constant force and velocity
are assumed [2]. Furthermore, if B and B′ respectively are the 1-cell offset of the bounding
boxes of C and C ′, and B and B′ share their left-bottom corner cell, then space used
throughout the reconfiguration is enclosed in B ∪ B′.

Furthermore, we provide an on-line simulator of our algorithm, together with a first
analysis of its performance in practice on a variety of configurations of different sizes.

1.3 Related Work
The sliding-square/cube model was introduced in [4] as a geometric abstraction for a variety
of modular robots, such as Metamorphic [5], Vertical [8], Molecube [14], M-TRAN [10],
EM-cube [3], or Smart [11]. Since then, several algorithms have been proposed to solve
different (but somehow related) problems such as locomotion [4, 7], self-repair [9], and
reconfiguration [6, 1].

In particular, [6] proposes the first algorithm to reconfigure between any two edge-
connected shapes of sliding squares in the plane with the same number of modules. The
algorithm is sequential and reconfiguration is done through an intermediate shape: a strip
grown from one extremal module. As a consequence, the overall reconfiguration takes place in
the disjoint union of the 1-offset of the bounding boxes of the initial and final configurations.

The algorithm we present builds on the ideas from [6], but differs from it in that it
reconfigures in-place, i.e., within the 1-offset of the union of the two bounding boxes. This

J. Moreno and V. Sacristán 32:3

adds further difficulties, as in our case the final destination of a module may be located in a
hole or a pseudo-hole, and not only in the outer boundary as in [6]. We further elaborate on
this issue in the following section.

2 Algorithm overview

Given two configurations C and C ′, our strategy to reconfigure C into C ′ consists of three
steps, illustrated in Figure 3.

C R R′ C ′

1 2 3

Figure 3 Reconfiguration steps.

1. First, we flood the bounding box of our initial configuration C. This process consists
of sequentially finding modules that can slide without disconnecting the configuration,
and sending them along a boundary traversal to fill the bounding box of C by rows from
bottom to top, filling each row from left to right. The result is a rectangle, except for its
topmost row, that may be incomplete. We call this shape R.

2. Then, we reconfigure R into R′, which is the analogous almost-rectangular shape corre-
sponding to C ′.

3. Finally, we reconfigure R′ into C ′.

The algorithm for step 2 is straightforward, and that of step 3 consists of reversing the
procedure of step 1. Therefore, in the remaining of this paper we concentrate on step 1.

As already mentioned, when flooding, the final destination of a module may be located
in a hole or a pseudo-hole, and not only in the outer boundary as in [6]. In other words,
while in [6] the algorithm consists in finding a feasible sequence of moves (of possibly several
modules) that ends up freeing a module in the outer boundary, our algorithm needs to
produce sequences that first go outwards from a pseudo-hole towards the outer boundary
and then may have to go inwards to a different pseudo-hole in order to fill the goal position.
Figure 4 illustrates this process.

We solve this issue using a hierarchy of pseudo-holes that is built by traversing all the
boundaries of the configuration in a preprocessing step. Starting at the outer one, the
boundary traversal detects all critical pairs. Each critical pair is a gate for a pseudo-hole that
is a descendant in the hierarchy. Gates between pseudo-holes contained in holes different
than the outer one are considered siblings in the hierarchy. Figure 5 illustrates this.

Once the hierarchy has been built, the algorithm looks for a module that is able to directly
move to the goal cell, i.e., a module that is not a cut vertex of the edge-adjacency graph of
the configuration, and is adjacent to the same pseudo-hole boundary as the next cell position
to be filled. If such module does not exist, the algorithm searches through the pseudo-holes
hierarchy for a module that can be moved, and sends it to connect a critical pair in the path
to the goal pseudo-hole. This creates a cycle in the adjacency graph of C enclosing the goal
cell, which, at its turn, allows finding a new module that can be moved inside the cycle. The
process continues until a movable module can be found in the goal pseudo-hole. This, at last,

EuroCG’20

32:4 Reconfiguring sliding squares in-place by flooding

1

2

3

Figure 4 Filling the next free position in the second row. Notice how the sequence of moves
starts in a pseudo-hole, continues in the outer boundary, and ends back in a (different) pseudo-hole.

Figure 5 A Hierarchy of pseudo-holes.

fills the goal cell. Naturally, every time a modules leaves a position in the configuration, and
every time it stops either because it reaches the goal cell or because it closes a critical pair,
the hierarchy is updated accordingly.

This procedure is repeated until the configuration has been completely flooded.

3 Correctness and complexity

We denote by G the edge-adjacency graph of the configuration C, and by T the cactus graph
associated WITH G, i.e., the tree of maximal cycles of G. We start by proving two lemmata.

I Lemma 3.1. As long as not all the modules are in their final destination in R, there
always exists a module that can slide without disconnecting the configuration.

Proof. Since T is a tree, it must have a leaf. If such a leaf is a module, it must be movable
since it is a leaf in G. Otherwise, if the leaf is a cycle, it must contain a module that is not a
cut vertex of T . Such a module is movable since it cannot be a cut vertex in G. J

I Lemma 3.2. If a movable module cannot reach the goal cell, g, it can connect a critical
pair reducing the size of the cycle containing g.

J. Moreno and V. Sacristán 32:5

Proof. Let hg be the pseudo-hole containing g, and let hm be the pseudo-hole containing a
movable module m whose existence is guaranteed by Lemma 3.1. A path must exist in the
pseudo-hole hierarchy connecting hg to hm, since every pseudo-hole must belong to a hole,
each hole is bounded by a cycle in T , and each cycle in T must contain a module that is not
a cut vertex. J

I Theorem 3.3. Let C be any configuration with n modules and R a configuration with the
same number of modules filling the bounding box of C from bottom to top, left to right. Our
algorithm reconfigures C into R using Θ(n2) sliding moves.

Proof. Each goal cell is filled after O(n) slide moves. This is evident when the moving
module reaches its destination without having to stop at a critical pair, since any boundary
traversal has size O(n). When it does stop, it can be proved that the overall number of slide
moves performed by the sequence of moving modules before filling the empty goal position
is O(n). Details are omitted due to space restrictions. Therefore, the entire flooding takes
O(n2) slide moves. It is worth noticing that the second step of the algorithm (reconfiguring
between R and R′) can be trivially done with O(n2) slide moves. Therefore, the entire
reconfiguration uses O(n2) slide moves, which is optimal within this context [2]. J

4 Simulator and practical experiments

In addition to the theoretical results, we have also implemented an on-line simulator of our
reconfiguration algorithm, see [12]. The simulator allows the user to define the initial and the
final configurations in a 2-dimensional grid both by uploading a predefined file or by direct
interaction. Then, it visualizes all the slide moves that the robot would be undertaking, step
by step from the initial configuration C to the final one, C ′. The reconfiguration can be
stopped at any moment and backtracking is also allowed.

(a) Dense (b) Hierarchy (c) Holes

(d) Mixed (e) Nested (f) Sparse

Figure 6 Examples of the configuration shapes used in our experiments.

We have used our simulator to test our algorithm on a variety of configurations, different
in shape and size. The chosen shapes have been the following: Dense (configurations whose

EuroCG’20

32:6 Reconfiguring sliding squares in-place by flooding

bounding box is almost completely filled with modules), Hierarchy (configurations with
several and large hierarchies of pseudo-holes), Holes (configurations without hierarchies
but with multiple holes), Mixed (configurations combining large hierarchies of pseudo-holes
with multiple holes), Nested (configurations requiring to connect critical pairs in order to
reconfigure), Sparse (configurations with maximal ratio between the size of their bounding
box and their number of modules). Figure 6 shows examples of these shape types.

The results of the experiments show that the sparser a configuration is, more slide moves
its reconfiguration requires. This is a consequence of the fact that sparsity usually obliges
the modules to slide over a great number of other modules in order to reach the intermediate
rectangular shape. Denser configurations require a smaller number of moves because many
modules are already located in their final grid positions. Figure 7 shows the results of the
experiments we run.

Figure 7 Number of slide moves used to reconfigure the different configuration types into their
corresponding rectangles.

Notice that the number of slide moves indicated in the table and charts corresponds to
reconfiguring each initial configuration C into its corresponding rectangle R. The number of
slide moves corresponding to the overall reconfiguration of an initial shape C into a final
shape C ′ can be obtained by adding up the corresponding values from the table together with
the number of steps required to reconfigure R into R′, which is straightforward to compute.

5 Conclusions and open problems

We have presented an algorithm that reconfigures between any two edge-connected configu-
rations of n sliding squares within their bounding boxes by means of Θ(n2) slide moves, and
we have made available an on-line simulator. We believe that extending our strategy to the
hexagonal and triangular grids should be straightforward.

Our algorithm is intrinsically sequential. An interesting open problem is to obtain a new

J. Moreno and V. Sacristán 32:7

strategy that allows to move several modules in parallel, giving rise to a faster reconfiguration,
and to distribute it in order to obtain a more scalable algorithm. Extending the results to
the 3-dimensional setting is also desirable.

6 Acknowledgments

We thank Diane Souvaine and Matias Korman for our preliminary discussions on a similar
problem.

References
1 Z. Abel and S.D. Kominers. Universal reconfiguration of (hyper-)cubic robots. CoRR,

abs/0802.3414, 2008. URL: http://arxiv.org/abs/0802.3414, arXiv:0802.3414.
2 G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland, S. Langerman,

J. O’Rourke, V. Pinciu, S. Ramaswami, V. Sacristán, and S. Wuhrer. Efficient constant-
velocity reconfiguration of crystalline robots. Robotica, 29(1):59–71, 2011.

3 B.K. An. EM-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces.
In Proc. IEEE International Conference on Robotics and Automation (ICRA), pages 3149–
3155, 2008.

4 Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decentralized control for a class of
self-reconfigurable robots. In IEEE International Conference on Robotics and Automation
(ICRA), page 809–816, 2002.

5 G.S. Chirikjian. Kinematics of a metamorphic robotic system. In Proc. IEEE International
Conference on Robotics and Automation (ICRA), volume 1, pages 449–455, 1994.

6 A. Dumitrescu and J. Pach. Pushing squares around. Graphs and Combinatorics, 22:37–50,
2006.

7 R. Fitch and Z. Butler. Million module march: Scalable locomotion for large self-
reconfiguring robots. The International Journal of Robotics Research, 27(3–4):331–343,
2008.

8 K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda, and I. Endo.
Self-organizing collective robots with morphogenesis in a vertical plane. In Proc. IEEE
International Conference on Robotics and Automation (ICRA), volume 4, pages 2858–2863,
1998.

9 K. Kotay and D. Rus. Generic distributed assembly and repair algorithms for self-
reconfiguring robots. In IEEE International Conference on Intelligent Robots and Systems
(IROS), pages 2362–2369, 2004.

10 H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata. Distributed
self-reconfiguration of M-TRAN III modular robotic system. International Journal of
Robotics Research, 27(3-4):373–386, 2008.

11 S. Mobes, G.J. Laurent, C. Clevy, N. Le Fort-Piat, B. Piranda, and J. Bourgeois. Toward a
2D modular and self-reconfigurable robot for conveying microparts. In Proc. Second Work-
shop on Design, Control and Software Implementation for Distributed MEMS (dMEMS),
pages 7–13, 2012.

12 J. Moreno. Reconfiguring sliding squares almost in-place.
https://dccg.upc.edu/people/vera/teaching/tfm-tfg/flooding/.

13 M. Yim, P. White, M. Park, and J. Sastra. Modular self-reconfigurable robots. In R.A.
Meyers, editor, Encyclopedia of Complexity and Systems Science, pages 5618–5631. Springer
New York, 2009.

14 V. Zykov, A. Chan, and H. Lipson. Molecubes: An open-source modular robotic kit. In
IROS-2007 Self-Reconfigurable Robotics Workshop, 2007.

EuroCG’20

Computational Complexity of the
α-Ham-Sandwich Problem∗

Man-Kwun Chiu1, Aruni Choudhary1, and Wolfgang Mulzer1

1 Institut für Informatik, Freie Universität Berlin, Berlin, Germany
[chiumk,arunich,mulzer]@inf.fu-berlin.de

Abstract
A variant of the Ham-Sandwich Theorem by Bárány, Hubard, and Jerónimo [DCG2008] states
that given any d measurable sets in Rd that are convex and well-separated, and any given
α1, . . . , αd ∈ [0, 1], there is a unique oriented hyperplane that cuts off a respective fraction
α1, . . . , αd from each set. Steiger and Zhao [DCG2010] proved a discrete analogue, which we
call the α-Ham-Sandwich theorem. They gave an algorithm to find the hyperplane in time
O(n(logn)d−3), where n is the total number of input points. The computational complexity of
this search problem in high dimensions is open, unlike that of the Ham-Sandwich problem, which
is now known to be PPA-complete (Filos-Ratsikas and Goldberg [STOC 2019]).

Recently, Fearley, Gordon, Mehta, and Savani [ICALP2019] introduced a new sub-class of CLS
(Continuous Local Search) called Unique End-of-Potential Line (UEOPL). This class captures
problems in CLS that have unique solutions. We show that for the α-Ham-Sandwich theorem, the
search problem of finding the dividing hyperplane lies in UEOPL. This gives the first non-trivial
containment of the problem in a complexity class and places it in the company of several classic
search problems.

1 Introduction and preliminaries

The classic Ham-Sandwich theorem [7, 8, 12] states that for any d measurable sets in Rd,
there is a hyperplane that bisects them simultaneously. Bárány et al. [2] proved a variant of
this classic theorem that aims at dividing sets into arbitrary given ratios instead of simply
bisecting them. The sets S1, . . . , Sd ⊂ Rd are well-separated if every selection of the sets can
be strictly separated from the others by a hyperplane. If the sets are well-separated and
convex, then for any given choice α1, . . . , αd ∈ [0, 1], there is a unique oriented hyperplane
that divides S1, . . . , Sd in the ratios α1, . . . , αd, respectively.

Steiger and Zhao [11] gave a discrete version of [2] and called their result the Generalized
Ham-Sandwich Theorem, yet it is not a strict generalization of the classic Ham-Sandwich
Theorem. Their result requires that the point sets obey well-separation and weak general
position, while the classic theorem always holds without these assumptions. Therefore, we
call this result the α-Ham-Sandwich theorem, for a clearer distinction. Formally, given d
finite point sets P1, . . . , Pd ⊂ Rd and any set of positive integers {α1, . . . , αd} satisfying
1 ≤ αi ≤ |Pi|, for all i ∈ [d], where [d] denotes the set {1, . . . , d}, an (α1, . . . , αd)-cut is an
oriented hyperplane H that contains one point from each set and satisfies |H+ ∩ Pi| = αi for
all i ∈ [d], where H+ is the closed positive half-space bounded by H.

I Theorem 1.1 (α-Ham-Sandwich Theorem [11]). Let P1, . . . , Pd be finite, well-separated
point sets in Rd. Let α = (α1, . . . , αd) be a vector, where αi ∈ [|Pi|] for all i ∈ [d].
1. If an α-cut exists, then it is unique.

∗ Supported in part by ERC StG 757609.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

33:2 Computational Complexity of the α-Ham-Sandwich Problem

2. If P is in a sufficiently general position, then a cut exists for each choice of α.
This statement does not necessarily hold if the sets are not well-separated, see Figure 1.

Figure 1 The red (square) and the blue (round) point sets are not well-separated. There is no
halfplane that contains exactly three red and three blue points.

We call the associated computational search problem of finding the dividing hyperplane
Alpha-HS. Set n =

∑
i∈[d] |Pi|. Steiger and Zhao gave an algorithm that computes the

dividing hyperplane in O
(
n(logn)d−3) time, which is exponential in d. Later, Bereg [3]

improved this algorithm to achieve a running time of n2O(d), which is linear in n but still
exponential in d. No polynomial algorithms are known for Alpha-HS if d is not fixed.
Despite their superficial similarity, it is not immediately apparent whether the classic Ham-
Sandwich theorem problem and Alpha-HS are comparable in terms of their complexity. Due
to the additional requirements on an input for Alpha-HS, an instance of the Ham-sandwich
problem may not be reducible to Alpha-HS in general.

Alpha-HS is a total search problem and is modeled by the complexity class TFNP
(Total Function Nondeterministic Polynomial) of NP-search problems that always admit a
solution. A noteworthy sub-class is CLS (continuous local search), that was introduced by
Daskalakis and Papadimitriou [4]. It models optimization problems that can be solved by
local search over a continuous domain using a continuous potential function. Recently there
have been increasing efforts towards mapping the complexity landscape of existence theorems
in high-dimensional discrete geometry in such classes. It was shown in [6] that the search
problem for the Ham-Sandwich theorem is complete for PPA. Finding a solution to the
Colorful Carathéodory problem [1] was shown to lie in the intersection PPAD ∩ PLS [9, 10].
Here, PPAD ⊆ PPA,CLS ⊆ PLS ∩ PPAD are other sub-classes of TFNP.

Recently, Fearley et al. [5] defined a sub-class of CLS by the name Unique End of
Potential Line that represents problems in CLS with unique solutions. They define it through
a canonical complete problem UniqueEOPL:
I Definition 1.2 (from [5]). Let n,m be positive integers. The input consists of

a pair of Boolean circuits S,P : {0, 1}n → {0, 1}n such that P(0n) = 0n 6= S(0n), and
a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V(0n) = 0,

each circuit having poly(n,m) size. The UniqueEOPL problem is to report one of the
following:

M.-K. Chiu, A. Choudhary and W. Mulzer 33:3

(U1). A point v ∈ {0, 1}n such that P(S(v)) 6= v.

(UV1). A point v ∈ {0, 1}n such that S(v) 6= v, P(S(v)) = v, and V(S(v))− V(v) ≤ 0.
(UV2). A point v ∈ {0, 1}n such that S(P(v)) 6= v 6= 0n.
(UV3). Two points v, u ∈ {0, 1}n such that v 6= u, S(v) 6= v, S(u) 6= u, and either

V(v) = V(u) or V(v) < V(u) < V(S(v)).
The problem defines a graph G with up to 2n vertices. Informally, S(·),P(·),V(·) represent
the successor, predecessor and potential functions that act on the vertices. There is an edge
(u, v) ∈ G if and only if S(u) = v, P(v) = u and V(u) < V(v). Thus, G is a directed path
(line) along which the potential strictly increases. S(P(x)) 6= x represents a start of a line,
P(S(x)) 6= x represents the end, P(S(x)) = x otherwise, and 0n is a given starting vertex.

(U1) is a solution representing the end of a path. (UV1), (UV2) and (UV3) are
violations. (UV1) gives a violation of our assumption that V increases strictly along the
path. (UV2) gives a start of a path that is not 0n. (UV3) shows that G has more than
one path. If there are no violations, G is a single path starting at 0n and ending at (U1).
UniqueEOPL is formulated in the non-promise setting, placing it in TFNP. UEOPL contains
three classical problems [5], including finding the fixed point of a contraction map.

A notion of promise-preserving reductions is also defined in [5]. A reduction from problem
X to Y is said to be promise-preserving, if whenever it is promised that X has no violations,
then the reduced instance of Y is free of violations. Such a reduction would imply that
whenever the original problem is free of violations, then the reduced instance always has a
single line that ends at a valid solution.

Contributions. We formalize the search problem for Alpha-HS in a non-promise setting:

I Definition 1.3 (Alpha-HS). Given d finite point sets P = P1 ∪ · · · ∪ Pd ⊂ Rd each
interpreted as a different color, and a vector (α1, . . . , αd) of positive integers such that
αi ≤ |Pi| for i ∈ [d], the Alpha-HS problem is to find one of the following:

(G1). A (α1, . . . , αd)-cut.

(GV1). A subset of P of size d+ 1 and at least d− 1 colors that lies on a hyperplane.
(GV2). A disjoint pair of sets I, J ⊂ [d] such that conv({∪i∈IPi}) ∩ conv({∪j∈JPj}) 6= ∅.

(G1) corresponds to a solution representing a valid cut, while (GV1) and (GV2) refer
to violations of weak general position and well-separation, respectively. From Theorem 1.1 we
see that (G1) is guaranteed if no violations are presented, so that Alpha-HS is a total search
problem. We give the first non-trivial complexity-theoretic upper bound for Alpha-HS:

I Theorem 1.4. There is a poly(n, d)-time promise-preserving reduction from Alpha-HS
to UniqueEOPL, so that Alpha-HS ∈ UEOPL ⊆ CLS.

It is not surprising to discover that Alpha-HS ∈ PPAD, since the proof of the continuous
version [2] was based on Brouwer’s Fixed Point Theorem. The observation that it also lies in
PLS is new and noteworthy, putting Alpha-HS into the reach of local search algorithms.
See Figure 2 for a pictorial view.

2 Alpha-HS is in UEOPL

For space reasons, we cannot provide much technical detail. Instead, we give a broad overview
and some difficulties we encountered. We call a hyperplane colorful if it passes through
exactly d colorful points p1, . . . , pd ⊂ P . Otherwise, we call the hyperplane non-colorful. We

EuroCG’20

33:4 Computational Complexity of the α-Ham-Sandwich Problem

Ham-Sandwich

Alpha-HS UEOPL

TFNP
PPA

PPAD

CLS

PLS

Figure 2 The hierarchy of complexity classes.

follow the notation of [11] to define the orientation of hyperplanes. If a hyperplane is colorful,
the orientation is determined by the d colorful points. If a hyperplane is non-colorful, we
design a deterministic way to pick a point in the intersection of the convex of the missing
color with the hyperplane to define the orientation (see Figure 3). The α-vector of any
oriented hyperplane H is a d-tuple (α1, . . . , αd) of integers where αi is the number of points
of Pi in the closed halfspace H+ for i ∈ [d].

z1

z2

p

x

y

H2, α = (3, 2)

H1, α = (3, 2)+

+

dist-value

Figure 3 Purple (disk) is the first color and red (square) is the second color. H2 is a hyperplane
that rotates from H1 at the anchor p. x, y are the highest ranked points of red color on each side of
H1, H2 under a given order. The orientations of H1, H2 are determined by p and z1, z2 respectively.

Our intuition is based on rotating a colorful hyperplane H to another colorful hyperplane
H ′ through a sequence of local changes of the points on the hyperplanes such that the
α-vector of H ′ increases in some coordinate by one from that of H. The hyperplane rotates
about an anchor, which is a colorful (d− 1)-tuple of P that spans a (d− 2)-flat. Whenever
the non-colorful hyperplane hits a new point of a repeated color, the point in the anchor of
the same color is swapped with it and continues the rotation until a point of the missing
color is hit (see Figure 4). Roughly speaking, the colorful hyperplanes represent the vertices
of the UniqueEOPL instance and the rotations determine the edges. We first describe our
approach assuming that both well-separation and sufficient general position hold. We then
describe how to handle the cases when these assumptions are violated.

M.-K. Chiu, A. Choudhary and W. Mulzer 33:5

H1, α = (2, 3)

H2, α = (2, 4)

H3, α = (2, 3)

H0, α = (2, 3)

H4, α = (3, 3)

+

+

+

+

+

z1

z2

z3

x

y

H12, α = (2, 3)

+

Figure 4 An example showing a sequence of rotations from H0 to H4 through H1, H2, H3. Purple
(disk) is the first color and red (square) is the second color. This sequence represents a path
between two vertices in the UniqueEOPL graph that is generated in the reduction. The shaded
region represents a rotation and H12 is its angular bisector. The segment xy is used to define the
orientations of H1, H2, H3, H12.

Canonical path. Each colorful hyperplane H is incident to a colorful set of d points. This
set of points defines d possible anchors, and each anchor can be used to rotate H in a different
fashion. To define a unique sequence of rotations, we pick a specific order as follows: first, we
assume that the colorful hyperplane H whose α-vector is (1, . . . , 1) is given (we show later
how this assumption can be removed). We start at H and pick the anchor that excludes the
first color, then apply a sequence of rotations until we hit another colorful hyperplane with
α-vector (2, 1, . . . , 1). Similarly, we move to a colorful hyperplane with α-vector (3, 1, . . . , 1)
and so on until we reach (α1, 1, . . . , 1). Then, we repeat this for the other colors in order to
reach (α1, α2, 1, . . . , 1) and so on until we reach the target α-vector. This pattern of α-vectors
helps in defining a potential function that strictly increases along the path. We can encode
this sequence of rotations as a unique path in the UniqueEOPL instance, and we call it
canonical path.

Distance parameter and potential function. The α-vector is not sufficient to define the
potential function, since the sequence of rotations between two colorful hyperplanes may
have the same α-vector. For instance, the angular bisectors of the rotations in H0, . . . ,H3 in
Figure 4 all have the same α-vector. Hence, we need an additional measurement in order to
determine the direction of rotation that increases the α-vector. Similar to how we define the
orientation for a non-colorful hyperplane H, we deterministically select a directed segment xy
that intersects H. We define a distance parameter called dist-value of H to be the distance
from x to the intersection point (see Figure 3). We define a potential value for each vertex
on the canonical path in UniqueEOPL using the sum of weighed components of α-vector

EuroCG’20

33:6 Computational Complexity of the α-Ham-Sandwich Problem

H1, α = (3, 2)
+

+

H2, α = (3, 2)

H1, α = (4, 3)

+

+

H2, α = (2, 2)

x

y

Figure 5 The examples show two sets of points that are not well-separated. Purple (circle)
represents the first color and red (square) represents the second color. In both examples the rotation
procedure does not increase the α-vector. Both examples show that the orientation of the hyperplane
may be flipped after the rotation, so the resulting α-vector can go wrong.

and dist-value for the tie-breaker.
We do not need to know the vertex with α-vector (1, . . . , 1) in advance. We split the

problem into two sub-problems: in the first we start with a copy of G and any arbitrary
vertex. We reverse the direction determined by the potential and construct a Alpha-HS
instance for which the vertex with α-vector (1, . . . , 1) is the solution. In the second, we use
this vertex as the input to the main Alpha-HS instance. If the input is free of violations,
then both sub-problems give valid solutions and together they answer the original question.

Handling violations. We show that if there are no violations, then the reduced instance of
UniqueEOPL only gives a (U1) solution, which readily translates to a (G1) solution, so
our reduction is promise-preserving, and this can be done in poly(n, d) time.

If P violates well-separation or weak general position, there may be multiple solutions for
the same α-cut (see Figure 5, left), and no solutions for other cuts. Many nice properties
of rotations are destroyed because the orientation of the rotating hyperplane may flip. For
instance, the α-vector may fail to increment (see Figure 5, right). From the point of view
of the canonical path we create, the path may be split into several pieces, which fails the
assumption of the unique line. The vertex that corresponds to the target α-vector may not
exist.

We design our reduction in such a way that any violations on the canonical path can be
captured from the violations of the UniqueEOPL instance. After we obtain a violation
solution from the reduced instance, we can process it to generate a certificate that witnesses
a violation of Alpha-HS. When weak general position fails, then the hyperplanes may have
additional points of P . These give rise to many different d-tuples (each corresponding to
some vertex in the UniqueEOPL graph G) that represent the same hyperplane. We join
these vertices to form a cycle in G. For some other case, we show that when two hyperplanes
have the same α-vector (and dist-value for non-colorful), we can compute a witness for the
violation of well-separation. To summarize, we show how to compute a

(GV1) solution from a (UV1) solution.
(GV1) or (GV2) solution, given a (UV2) or (UV3) solution.
(GV1) or (GV2) solution, that occurs with a (U1) solution with the incorrect α-vector.

We show that converting these solutions always takes poly(n, d) time. See Figure 6 for an
example.

M.-K. Chiu, A. Choudhary and W. Mulzer 33:7

Vertex for (1,. . . ,1)

U1, wrong alpha

Another start of line
Another target vertex

Loop with constant potential

Target vertex

Figure 6 A subgraph with multiple violations. The vertices that are not on the canonical path
are isolated by self-loops. Some vertex that witnesses a violation splits the canonical path into two.
Since the orientations are not consistent, there may exist multiple paths that contain vertices with
the same α-vector.

3 Conclusion and future work

We gave an upper bound on the complexity of Alpha-HS. The next question is determining
if the problem is hard for UEOPL. One challenge is that UniqueEOPL is formulated as
Boolean circuits, whereas Alpha-HS is purely geometric. Emulating circuits using purely
geometric arguments is highly non-trivial. It could be worthwhile to investigate if the
techniques used in [6] can prove useful in answering this question.

References

1 Imre Bárány. A generalization of Carathéodory’s theorem. Discrete Mathematics, 40(2-
3):141–152, 1982.

2 Imre Bárány, Alfredo Hubard, and Jesús Jerónimo. Slicing convex sets and measures by a
hyperplane. Discrete Comput. Geom., 39(1):67–75, 2008.

3 Sergey Bereg. Computing generalized ham-sandwich cuts. Inform. Process. Lett.,
112(13):532–534, 2012.

4 Constantinos Daskalakis and Christos H. Papadimitriou. Continuous Local Search. In Proc.
22nd Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 790–804, 2011.

5 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique End of Potential
Line. In Proc. 46th Internat. Colloq. Automata Lang. Program. (ICALP), pages 56:1–56:15,
2019.

6 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting Necklaces and
bisecting Ham sandwiches. In Proc. 51st Annu. ACM Sympos. Theory Comput. (STOC),
pages 638–649, 2019.

EuroCG’20

33:8 Computational Complexity of the α-Ham-Sandwich Problem

7 Chi-Yuan Lo, Jiří Matoušek, and William L. Steiger. Algorithms for Ham-sandwich cuts.
Discrete Comput. Geom., 11:433–452, 1994.

8 Jiří Matoušek. Using the Borsuk-Ulam theorem. Springer-Verlag Berlin Heidelberg, 2003.
9 Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. The rainbow

at the end of the line: A PPAD formulation of the Colorful Carathéodory theorem with
applications. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
1342–1351, 2017.

10 Wolfgang Mulzer and Yannik Stein. Computational aspects of the Colorful carathéodory
theorem. Discrete Comput. Geom., 60(3):720–755, 2018.

11 William Steiger and Jihui Zhao. Generalized Ham-sandwich cuts. Discrete Comput. Geom.,
44(3):535–545, 2010.

12 Arthur H. Stone and John W. Tukey. Generalized “Sandwich” theorems. Duke Mathemat-
ical Journal, 9(2):356–359, 06 1942.

Graph Planarity Testing with Hierarchical
Embedding Constraints∗

Giuseppe Liotta1, Ignaz Rutter2, and Alessandra Tappini1

1 Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy
giuseppe.liotta@unipg.it, alessandra.tappini@studenti.unipg.it

2 Department of Computer Science and Mathematics, University of Passau,
Germany
rutter@fim.uni-passau.de

Abstract
Hierarchical embedding constraints define a set of allowed cyclic orders for the edges incident to
the vertices of a graph. These constraints are expressed in terms of FPQ-trees. FPQ-trees are
a variant of PQ-trees that includes F-nodes in addition to P-nodes and to Q-nodes: An F-node
represents a permutation that is fixed, i.e., it cannot be reversed. LetG be a graph such that every
vertex of G is equipped with a set of FPQ-trees encoding hierarchical embedding constraints for
its incident edges. We study the problem of testing whether G admits a planar embedding such
that, for each vertex v of G, the cyclic order of the edges incident to v is described by at least one
of the FPQ-trees associated with v. We prove that the problem is fixed-parameter tractable for
biconnected graphs, where the parameters are the treewidth of G and the number of FPQ-trees
associated with every vertex. We also show that the problem is NP-complete if parameterized
by the number of FPQ-trees only, and W[1]-hard if parameterized by the treewidth only.

1 Introduction

The study of graph planarity testing and of its variants is at the heart of graph algorithms
and of their applications. This paper is inspired by a work of Gutwenger et al. [7], who
study the graph planarity testing problem subject to hierarchical embedding constraints.
Hierarchical embedding constraints specify for each vertex v of G which cyclic orders of the
edges incident to v are admissible in a constrained planar embedding of G. For example,
Fig. 1 shows the edges incident to a vertex v and a set of hierarchical embedding constraints
on these edges. Edges are partitioned into four sets, denoted as E1, E2, E3, and E4; the
constraints allow only two distinct clockwise cyclic orders for these edge-sets, namely either
E1E2E3E4 (Fig. 1a) or E1E3E2E4 (Fig. 1b). Within each set, the constraints of Fig. 1 allow
the edges of E1, E2, and E3 to be arbitrarily permuted, while the edges of E4 are partitioned
into three subsets E′

4, E
′′
4 , and E′′′

4 such that E′′
4 must appear between E′

4 and E′′′
4 in the

clockwise order around v. The edges of E′
4 can be arbitrarily permuted, while the edges of

E′′
4 and the edges of E′′′

4 have only two possible orders that are the reverse of one another.
Hierarchical embedding constraints can be encoded by using FPQ-trees, a variant of

PQ-trees that includes F-nodes in addition to P-nodes and to Q-nodes. An F-node encodes
a permutation that cannot be reversed. For example, the hierarchical embedding constraints
of Fig. 1 can be represented by two FPQ-trees denoted as T and T ′ in Fig. 1a and 1b.

Gutwenger et al. [7] study the planarity testing problem with hierarchical embedding

∗ Work partially supported by: (i) MIUR, under grant 20174LF3T8 “AHeAD: efficient Algorithms for
HArnessing networked Data”; (ii) Dipartimento di Ingegneria - Università degli Studi di Perugia, under
grant RICBA19FM: “Modelli, algoritmi e sistemi per la visualizzazione di grafi e reti”; (iii) German
Science Foundation (DFG), under grant Ru 1903/3-1.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

34:2 Graph Planarity Testing with Hierarchical Embedding Constraints

E4 E ′′
4

E ′
4

E1

E2

E3

E ′′′
4

E ′
4

E3

E1

E2

E ′′′
4

E ′′
4

F-node

Q-node

P-node

Legend:
T

v

(a)

E4 E ′′
4

E ′
4

E1

E3

E2

E ′′′
4

E ′
4

E2

E1

E3

E ′′′
4

E ′′
4

T ′

v

(b)

Figure 1 Two examples of a vertex v with hierarchical embedding constraints and the corre-
sponding FPQ-trees. F-nodes are shaded boxes, Q-nodes are white boxes, and P-nodes are circles.

constraints by allowing at most one FPQ-tree per vertex. We generalize their study and allow
more than one FPQ-tree associated with each vertex. Our main results are the following.

We show that FPQ-Choosable Planarity Testing is NP-complete even if the num-
ber of FPQ-trees associated with each vertex is bounded by a constant greater than 1,
and it remains NP-complete even if the FPQ-trees only contain P-nodes. This contrasts
with the result of Gutwenger et al. [7] who prove that FPQ-Choosable Planarity
Testing can be solved in linear time when each vertex is equipped with at most one
FPQ-tree.
We prove that FPQ-Choosable Planarity Testing is W[1]-hard if parameterized by
treewidth, and that it remains W[1]-hard even when the FPQ-trees only contain P-nodes.
The above results imply that FPQ-Choosable Planarity Testing is not fixed-
parameter tractable if parameterized by treewidth only or by the number of FPQ-trees
per vertex only. For a contrast, we show that FPQ-Choosable Planarity Testing
becomes fixed-parameter tractable for biconnected graphs when parameterized by both
the treewidth and the number of FPQ-trees associated with every vertex.

Proofs and details omitted from this extended abstract can be found in the full version [8].

Preliminaries. We assume familiarity with graph theory and algorithms, and with the
concepts of PQ-tree, SPQR-decomposition tree, branchwidth, treewidth and sphere-cut de-
composition of a graph [3, 4, 5, 6, 9]. We only briefly recall some of the basic concepts that
will be used extensively in the rest of the paper (see also [1]).

G. Liotta, I. Rutter, and A. Tappini 34:3

v1

v2

v3
v4

v5

a
b

c d
e

f

g

h i
j

(a)

i

v1

v4

v1

v2

v4v3

v1

v2
v5

v2

v1
v5

v2

b
c

a

g f h

e

d

j

P

PP

R S

(b)

f
h

e

i

j

T ε
v2

(c)

Figure 2 (a) A biconnected planar graph G. (b) An SPQR-decomposition tree of G. (c) The
embedding tree of v2.

Given a graph G together with a fixed combinatorial embedding, we can associate with
each vertex v a PQ-tree Tv whose leaves represent the edges incident to v. The tree Tv
encodes a set of permutations for its leaves: Each of these permutations is in a bijection
with a cyclic order of the edges incident to v. If there is a permutation πv of the leaves of
Tv that is in a bijection with a cyclic order σv of the edges incident to v, we say that Tv
represents σv, or equivalently that σv is represented by Tv. An FPQ-tree is a PQ-tree where,
for some of the Q-nodes, the reversal of the permutation described by their children is not
allowed. To distinguish these Q-nodes from the regular ones, we call them F-nodes.

The planar combinatorial embeddings that are given by the SPQR-decomposition tree
of a biconnected graph G give constraints on the cyclic order of edges around each vertex
of G. These constraints can be encoded by associating a PQ-tree with each vertex v of G,
called the embedding tree of v and denoted by T εv (see, e.g., [2]). For example, Fig. 2c shows
the embedding tree T εv2 of the vertex v2 in Fig. 2a. Note that edges f and h (i and j, resp.)
belong to an R-node (a P-node, resp.) in the SPQR-decomposition tree of G (Fig. 2b),
hence the corresponding leaves are connected to a Q-node (a P-node, resp.) in T εv2 .

2 The FPQ-choosable Planarity Testing Problem

Let G = (V,E) be a (multi-)graph, let v ∈ V , and let Tv be an FPQ-tree whose leaf set
is E(v). We define consistent(Tv) as the set of cyclic orders of the edges incident to v in
a planar embedding E of G that are represented by the FPQ-tree Tv. An FPQ-choosable
graph is a pair (G,D) where G = (V,E) is a (multi-)graph, and D is a mapping that as-
sociates each vertex v ∈ V with a set D(v) of FPQ-trees whose leaf set is E(v). Given a
planar embedding E of G, we denote by E(v) the cyclic order of edges incident to v in E .
An assignment A is a function that assigns to each vertex v ∈ V an FPQ-tree in D(v).
We say that A is compatible with G if there exists a planar embedding E of G such that
E(v) ∈ consistent(A(v)) for all v ∈ V . In this case, we also say that E is consistent with A.
An FPQ-choosable graph (G,D) is FPQ-choosable planar if there exists an assignment that
is compatible with G. Refer to Fig. 3 for an example.

The FPQ-Choosable Planarity Testing problem receives as input an FPQ-
choosable graph (G,D) and it asks whether (G,D) is FPQ-choosable planar. In the rest of
the paper we assume that G is a biconnected (multi-)graph. Clearly G must be planar or
else the problem becomes trivial. Also, any assignment that is compatible with G must de-
fine a planar embedding of G among those described by an SPQR-decomposition tree of G.
Therefore, a preliminary step for an algorithm that tests whether (G,D) is FPQ-choosable

EuroCG’20

34:4 Graph Planarity Testing with Hierarchical Embedding Constraints

u2

u3

u4

u1

5 1 2

34
46

34

1

32

21 25

15

Tδ Tα

Tε

Tβ Tγ

6

5 6

(a)

u2

u3

u4

u1

5
1

2

34
46

34

1

32

25

1

Tδ Tα

Tε

Tγ6

5 6

(b)

65

21

5 Tβ
u2

u3

u4

u134
46

34

1

32

Tδ Tα

Tε

1 5
2

6

(c)

Figure 3 (a) An FPQ-choosable planar graph (G, D). (b) A planar embedding of G that is
consistent with assignment {A(u1) = Tα, A(u2) = Tγ , A(u3) = Tδ, A(u4) = Tε}; the assignment is
compatible with G. (c) A non-planar embedding of G that is consistent with assignment {A(u1) =
Tα, A(u2) = Tβ , A(u3) = Tδ, A(u4) = Tε}; there is no planar embedding that is consistent with A.

planar is to intersect each FPQ-tree Tv ∈ D(v) with the embedding tree T εv of v, so that
the cyclic order of the edges incident to v satisfies both the constraints given by Tv and the
ones given by T εv . (See, e.g., [2] for details about the operation of intersection between two
PQ-trees, whose extension to the case of FPQ-trees is straightforward). We assume that the
FPQ-trees of D have been intersected with the corresponding embedding trees and we still
denote by D(v) the set of FPQ-trees associated with v and resulting from the intersection.

3 Complexity of FPQ-choosable Planarity Testing

As we are going to show, FPQ-Choosable Planarity Testing is fixed-parameter tractable
when parameterized by treewidth and number of FPQ-trees per vertex. One may wonder
whether the problem remains FPT if parameterized by the treewidth only or by the number
of FPQ-trees per vertex only. The following theorems answer this question in the negative.

I Theorem 3.1. FPQ-Choosable Planarity Testing with a bounded number of FPQ-
trees per vertex is NP-complete. It is NP-complete even if the FPQ-trees have only P-nodes.

I Theorem 3.2. FPQ-Choosable Planarity Testing parameterized by treewidth is
W[1]-hard. It is W[1]-hard even if the FPQ-trees have only P-nodes.

4 Fixed Parameter Tractability of FPQ-choosable Planarity Testing

In this section, we introduce some concepts that are fundamental to the description of the
algorithm and we present a polynomial-time testing algorithm for graphs having bounded
branchwidth and such that the number of FPQ-trees associated with each vertex is bounded

G. Liotta, I. Rutter, and A. Tappini 34:5

by a constant. Note that, for a graph G with treewidth t and branchwidth b > 1, it holds
that b− 1 ≤ t ≤

⌊ 3
2b

⌋
− 1 [9].

Let T be an FPQ-tree, let leaves(T) denote the set of its leaves, and let L be a proper
subset of leaves(T). We denote by σ a cyclic order of the leaves of an FPQ-tree, and we say
that σ ∈ consistent(T) if the FPQ-tree T represents σ. We say that L is a consecutive set if
the leaves in L are consecutive in every cyclic order represented by T . Let e be an edge of T ,
and let T ′ and T ′′ be the two subtrees obtained by removing e from T . If either leaves(T ′)
or leaves(T ′′) are a subset of a consecutive set L, then we say that e is a split edge for L.
The subtree that contains the leaves in L is the split subtree of e for L. A split edge e is
maximal for L if there exists no split edge e′ such that the split subtree of e′ contains e.

I Lemma 4.1. Let T be an FPQ-tree, let L be a consecutive proper subset of leaves(T), and
let S be the set of maximal split edges for L. Then either |S| = 1, or |S| > 1 and there exists
a Q-node (or an F-node) χ of T such that χ has degree at least |S|+ 2 and the elements of
S appear consecutive around χ.

If |S| = 1, the split edge in S is called the boundary of L. If |S| > 1, the Q-node (or F-
node) χ defined in the statement of Lemma 4.1 is the boundary of L. Since F-nodes are a
more constrained version of Q-nodes, when we refer to boundary Q-nodes we also take into
account the case of F-nodes. Fig. 4a shows an FPQ-choosable graph (G,D) and two FPQ-
trees Tu ∈ D(u) and Tv ∈ D(v). The three red edges b, c, and d of G define a consecutive
set Lu in Tu; the edges e and f define a consecutive set Lv in Tv. The boundary of Lu in Tu
is a Q-node, while the boundary of Lv in Tv is an edge.

We denote by B(L) the boundary of a set of leaves L. If B(L) is a Q-node, we asso-
ciate B(L) with a default orientation that arbitrarily defines one of the two possible permuta-
tions of its children. This default orientation is called the clockwise orientation of B(L), while
the other possible permutation of the children of B(L) is the counter-clockwise orientation.

Let L′ = L ∪ {`}, where ` is a new element. Let σ ∈ consistent(T), and let σ|L′ be
a cyclic order obtained from σ by replacing the elements of the consecutive set leaves(T)\L by
the single element `. We say that a cyclic order σ′ of L′ is extensible if there exists a cyclic or-
der σ ∈ consistent(T) with σ|L′ = σ′ (and σ is an extension of σ′). An extensible order σ is
clockwise if the orientation of χ is clockwise; σ is counter-clockwise otherwise. If the bound-
ary of L is an edge, we consider any extensible order as both clockwise and counter-clockwise.

Let (G,D) be an FPQ-choosable graph, let T be an SPQR-decomposition tree of G and let
v be a pole of a node µ of T , let Tv ∈ D(v) be an FPQ-tree associated with v, let Eext be
the set of edges that are incident to v and not contained in the pertinent graph Gµ, and let
E?µ(v) = E(v) \ Eext. Note that there is a bijection between the edges E(v) of G and the
leaves of Tv, hence we shall refer to the set of leaves of Tv as E(v). Also note that E?µ(v)
is represented by a consecutive set of leaves in Tv, because in every planar embedding of G
the edges in E?µ(v) must appear consecutively in the cyclic order of the edges incident to v.

The pertinent FPQ-tree of Tv, denoted as Pertµ(Tv), is the FPQ-tree obtained from Tv by
replacing the consecutive set Eext with a single leaf `. Informally, the pertinent FPQ-tree of
v describes the hierarchical embedding constraints for v within Gµ. For example, in Fig. 4b
a pertinent graph Gµ with poles u and v is highlighted by a shaded region; the pertinent
FPQ-tree Pertµ(Tu) of Tu and the pertinent FPQ-tree Pertµ(Tv) of Tv are obtained by the
FPQ-trees Tu and Tv of Fig. 4a.

Let ν1, . . . , νk be the children of µ in T . Observe that the edges E?νi
(v) of each Gνi

(1 ≤ i ≤ k) form a consecutive set of leaves of Aµ(v) = Pertµ(Tv). The skeletal FPQ-tree of
Pertµ(Tv), denoted by Skelµ(Tv), is the tree obtained from Pertµ(Tv) by replacing each of the

EuroCG’20

34:6 Graph Planarity Testing with Hierarchical Embedding Constraints

k

d

a

b c

e f

u

v
boundary boundary

Tu
gh

ij

h

g

Tv

i

j

k
q

m n

o

p

k
a

b

c

d

q
o

p
p

a

fe

m
n

(a)

p

k

d

a

b c

e f

u

v

a

b

c

d

gh

ij
a

`

fe

k
q

m n

o

p
k

q
o

p

m
n

`

Pertµ(Tu) Pertµ(Tv)

Gµ

(b)

`1

`

`2
`3

Skelµ(Tu)

`2

`

`1
`3

Skelµ(Tv)

(c)

Figure 4 (a) A boundary Q-node in Tu and a boundary edge in Tv. (b) Pertinent FPQ-trees
Pertµ(Tu) and Pertµ(Tv). (c) Skeletal FPQ-trees Skelµ(Tu) of Pertµ(Tu) and Skelµ(Tv) of Pertµ(Tv).

consecutive sets E?νi
(v) (1 ≤ i ≤ k) by a single leaf `i (see Fig. 4c). Note that each Q-node of

Skelµ(Tu) corresponds to a Q-node of Pertµ(Tu), and thus to a Q-node of Tu; also, distinct
Q-nodes of Skelµ(Tu) correspond to distinct Q-nodes of Pertµ(Tu), and thus to distinct Q-
nodes of Tu. For each Q-node χ of Tu that is a boundary of µ or of one of its children, there
is a corresponding Q-node in Skelµ(Tu) that inherits its default orientation from Tu.
Let (G,D) be an FPQ-choosable graph, let T be an SPQR-decomposition tree ofG, let µ be a
node of T , and let u and v be the poles of µ. We denote by (Gµ, Dµ) the FPQ-choosable graph
consisting of the pertinent graph Gµ and the set Dµ that is defined as follows: Dµ(z) = D(z)
for each vertex z of Gµ that is not a pole, and Dµ(v) = {Pertµ(Tv) | Tv ∈ D(v)} if v is a pole
of µ. A tuple 〈Tu, Tv, ou, ov〉 ∈ D(u)×D(v)×{0, 1}×{0, 1} is admissible for Gµ if there exist
an assignment Aµ of (Gµ, Dµ) and a planar embedding Eµ of Gµ consistent with Aµ such that
Aµ(u) = Pertµ(Tu), Aµ(v) = Pertµ(Tv), B(E?µ(u)) is clockwise (counter-clockwise) in Tu if
ou = 0 (ou = 1), and B(E?µ(v)) is clockwise (counter-clockwise) in Tv if ov = 0 (ov = 1). A
tuple is admissible for µ if it is admissible for Gµ. Ψ(µ) is the set of admissible tuples for Gµ.

FPT Algorithm: In order to test if (G,D) is FPQ-choosable planar, we root the SPQR-
decomposition tree T at an arbitrary Q-node and we visit T from the leaves to the root. At
each step of the visit, we equip the current node µ with the set Ψ(µ). If we encounter a node
µ such that Ψ(µ) = ∅, we return that (G,D) is not FPQ-choosable planar; otherwise the
planarity test returns an affirmative answer. If the currently visited node µ is a leaf of T , we
set Ψ(µ) = D(u)×D(v)× {0, 1} × {0, 1}, because its pertinent graph is a single edge. If µ
is an internal node, Ψ(µ) is computed from the sets of admissible tuples of the children of µ
and depending on whether µ is an S-, P-, or R-node. In the case of R-nodes, we compute the
set of admissible tuples by executing the sphere-cut decomposition of the skeleton of µ and
by exploiting the fact that it has branchwidth at most b, where b is the branchwidth of G.

G. Liotta, I. Rutter, and A. Tappini 34:7

I Theorem 4.2. Let (G,D) be a biconnected FPQ-choosable (multi-)graph such that G =
(V,E) and |V | = n. Let D(v) be the set of FPQ-trees associated with vertex v ∈ V . There
exists an O(D

3
2 bmax ·n2 +n3)-time algorithm to test whether (G,D) is FPQ-choosable planar,

where b is the branchwidth of G and Dmax = maxv∈V |D(v)|.

As future work, it would be nice to extend Theorem 4.2 to simply connected graphs.
Indeed, our proof is based on the SPQR-decomposition that assumes the biconnectivity of
the input graph.

References
1 Subramanian Arumugam, Andreas Brandstädt, Takao Nishizeki, and Krishnaiyan Thulasir-

aman. Handbook of graph theory, combinatorial optimization, and algorithms. Chapman
and Hall/CRC, 2016.

2 Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications to con-
strained embedding problems. ACM Trans. Algorithms, 12(2):16:1–16:46, 2016.

3 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–
379, 1976.

4 G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall,
Upper Saddle River, NJ, 1999.

5 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient ex-
act algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica,
58(3):790–810, 2010.

6 Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition of planar graphs in O(n3)
time. ACM Trans. Algorithms, 4(3):30:1–30:13, 2008.

7 Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing and optimal edge
insertion with embedding constraints. J. Graph Algorithms Appl., 12(1):73–95, 2008.

8 Giuseppe Liotta, Ignaz Rutter, and Alessandra Tappini. Graph planarity testing with
hierarchical embedding constraints. CoRR, abs/1904.12596, 2019. arXiv:1904.12596.

9 Neil Robertson and Paul D. Seymour. Graph minors. X. obstructions to tree-decomposition.
J. Comb. Theory, Ser. B, 52(2):153–190, 1991.

EuroCG’20

On the edge-length ratio of 2-trees∗

Václav Blažej1, Jiří Fiala2, and Giuseppe Liotta3

1 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

2 Faculty of Mathematics and Physics, Charles University, Prague, Czech
Republic

3 Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy

Abstract
We study planar straight-line drawings of graphs that minimize the ratio between the length of
the longest and the shortest edge. We answer a question of Lazard et al. [Theor. Comput. Sci.
770 (2019), 88–94] and, for any given constant r, we provide a 2-tree which does not admit a
planar straight-line drawing with a ratio bounded by r. When the ratio is restricted to adjacent
edges only, we prove that any 2-tree admits a planar straight-line drawing whose edge-length
ratio is at most 4 + ε for any arbitrarily small ε > 0.

1 Introduction

Straight-line drawings of planar graphs are thoroughly studied both for their theoretical
interest and their applications in a variety of disciplines (see, e.g., [7, 13]). Different quality
measures for planar straight-line drawings have been considered in the literature, including
area, angular resolution, slope number, average edge length, and total edge length (see,
e.g., [9, 10, 12]).

This paper studies the problem of computing planar straight-line drawings of graphs
where the length ratio of the longest to the shortest edge is as small as possible. We recall
that the problem of deciding whether a graph admits a planar straight-line drawing with
specified edge lengths is NP-complete even when restricted to 3-connected planar graphs [8]
and the completeness persists in the case when all given lengths are equal [5]. In addition,
deciding whether a degree-4 tree has a planar drawing such that all edges have the same
length and the vertices are at integer grid points is NP-complete [1].

In the attempt of relaxing the edge length conditions which make the problem hard,
Hoffmann et al. [10] propose to minimize the ratio between the longest and the shortest
edges among all straight-line drawings of a graph. While the problem remains hard for
general graphs (through approximation of unit disk graphs [6]), Lazard et al. prove [11]
that any outerplanar graph admits a planar straight-line drawing such that the length ratio
of the longest to the shortest edges is strictly less than 2. This result is tight in the sense
that for any ε > 0 there are outerplanar graphs that cannot be drawn with an edge-length
ratio smaller than 2−ε. Lazard et al. also ask whether their construction could be extended
to the class of series-parallel graphs.

We answer this question in the negative sense, by showing that a subclass of series-
parallel graphs, called 2-trees, does not allow any planar straight-line drawing of bounded
edge-length ratio. (The class of 2-trees is defined constructively: an edge is a 2-tree, and

∗ The research was initiated during workshop Homonolo 2018. Research partially supported by MIUR,
the Italian Ministry of Education, University and Research, under Grant 20174LF3T8 AHeAD: efficient
Algorithms for HArnessing networked Data. V. Blažej acknowledges the support of the OP VVVMEYS
funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. The work of
J. Fiala was supported by the grant 19-17314J of the GA ČR.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

35:2 On the edge-length ratio of 2-trees

modifying a 2-tree by adding a new vertex connected to two neighboring vertices is also a
2-tree.) In fact, a corollary of our main result is the existence of an Ω(logn) lower bound for
the edge-length ratio of planar straight-line drawings of 2-trees. Motivated by this negative
result, we consider a local measure of edge-length ratio and prove that when the ratio is
restricted only to the adjacent edges, any series-parallel graph admits a planar straight-line
drawing with local edge-length ratio at most 4+ε, for any arbitrarily small ε > 0. The proof
of this upper bound is constructive, and it gives rise to a linear-time algorithm assuming a
real RAM model of computation. (The omitted proofs can be found in [2].)

It is worth noticing that Borrazzo and Frati recently showed that any 2-tree on n vertices
can be drawn with edge-length ratio O(n0.695) [3]. This, together with our Ω(logn) result,
defines a non-trivial gap between upper and lower bound on the edge-length ratio of planar
straight-line drawings of partial 2-trees.

2 Preliminaries

We consider finite nonempty planar graphs and their planar straight-line drawings. Once a
straight-line drawing of G is given, with a slight abuse of notation we use the same symbol
for a vertex U and the point U representing the vertex U in the drawing, as well as for an
edge UV and the corresponding segment UV of the drawing. For points U and V , let |UV |
denote the Euclidean distance between U and V . For three mutually adjacent vertices U, V
and W of a graph G, the symbol 4UVW denotes the triangle of the corresponding drawing
of G. For a polygon Q, we denote its perimeter by P (Q) and its area by A(Q).

The edge-length ratio of a planar straight-line drawing of a graph G is the ratio between
the length of the longest and the shortest edge of the drawing.

I Definition 2.1. The edge-length ratio ρ(G) of a planar graph G is the infimum edge-length
ratio taken over all planar straight-line drawings of G.

A vertex is called simplicial when its neighborhood forms a clique. A complete graph on
k+ 1 vertices is a k-tree; a graph constructed from a k-tree by adding a simplicial vertex to
a clique of size k is also a k-tree. A partial k-tree is a subgraph of a k-tree.

3 Edge-length ratio of 2-trees

We recall that 2-trees are planar graphs. The main result of this section is the following.

I Theorem 3.1. For any r ≥ 1, there exists a 2-tree G whose edge-length ratio ρ(G) ≥ r.
To prove Theorem 3.1, for a given r we argue that a sufficiently large 2-tree, drawn with

the longest edge having length r, contains a triangle with area at most 1
2 (Lemma 3.2).

Then, inside this triangle of small area we build a sequence of triangles with perimeters
decreasing by 1

2 in each step (Lemmas 3.8 and 3.9), which results in a triangle with an edge
of length less than 1.

We consider a special subclass G = {G0, G1, . . . } of 2-trees with labeled vertices and
edges constructed as follows: G0 is the complete graph K3 whose vertices and edges are
given the label 0. The graph Gi+1 is obtained by adding five simplicial vertices to each edge
of label i of Gi. Each newly created vertex and edge gets label i + 1. See Fig. 1 for an
example where the black vertices and edges have label 0, the blue ones have label 1, and the
red ones have label 2.

A separating triangle of level i in a straight-line drawing of a 2-tree G is an unordered
triple {U, V,W} of its mutually adjacent vertices such that the vertexW of label i was added

V. Blažej, J. Fiala, G. Liotta 35:3

G1 G2

U

V

W

Figure 1 The 2-trees G1 and G2. Black color corresponds to label 0, blue to 1, and red to 2.
Separating triangle ∆1 is emphasized by a dashed line in G1.

as a simplicial vertex to the edge UV in the recursive construction of G and the triangle
4UVW splits the plane into two regions, each containing at least two other vertices with
label i which are simplicial to the edge UV . In particular, the triangle 4UVW contains
two vertices of G with label i in its interior. For example, in Fig. 1 (a) vertices {U, V,W}
form a separating triangle.

I Lemma 3.2. For any k > i ≥ 1, any planar straight-line drawing of the graph Gk and
an edge e of Gk labeled by i there exists a separating triangle of level i + 1 containing the
endpoints of e.

We proceed to show that any drawing of Gk contains a triangle of sufficiently small area.
To this aim, we construct a sequence of nested triangles such that each element’s area is
half of the previous element’s area. We denote as ∆i a separating triangle in an embedding
of Gk such that all its edges have labels at most i, with i ≤ k − 1.

I Lemma 3.3. For any k ≥ 1, any planar straight-line drawing of Gk contains a sequence
of triangles ∆1,∆2, . . . ,∆k, where for any i ∈ {1, . . . , k} the triangle ∆i is a separating
triangle of level i, and for each i > 1, in addition, ∆i is in the interior of ∆i−1 and
A(∆i) ≤ 1

2A(∆i−1).

I Corollary 3.4. For any given r > 1, there is a k such that every planar straight-line
drawing of Gk with edge lengths at most r contains a separating triangle of area at most 1

4 .

We call thin any triangle with edges of length at least 1 and area at most 1
4 . Any thin

triangle has height at most 1
2 and hence one obtuse angle of size at least 2π

3 and two acute
angles, each of size at most π

6 .

I Lemma 3.5. Let 4UVW be a thin triangle, where the longest edge is UV and let Z ∈
4UVW be such that |ZW | ≥ 1. Then one of the angles ∠UWZ or ∠VWZ is obtuse.

Now we focus our attention on the perimeters of the considered triangles.

I Observation 3.6. Let a triangle 4UVW be placed in the interior of a polygon Q. Then
the perimeter of the triangle is bounded by the perimeter of the polygon, i.e., P (4UVW) ≤
P (Q).

EuroCG’20

35:4 On the edge-length ratio of 2-trees

1

1U V

W

X

Y
Q

Figure 2 Cutting-off the triangle 4XV Y .

I Lemma 3.7. Let 4UVW be a thin triangle, where the longest edge is UV . Then the
polygon Q, created by cutting off an isosceles triangle 4XV Y with both edges XV and V Y
of length 1, has perimeter P (Q) ≤ P (4UVW)− 1.

See Fig. 2 for an example of cutting off. We now show that a separating triangle with a
small area is guaranteed to contain a separating triangle of a significantly smaller perimeter.

I Lemma 3.8. Let Gk have a planar straight-line drawing with edge length at least 1 and
let 4UVW be a thin separating triangle of level i ≤ k − 1. Assume that the edge UV is of
level i− 1 and that it is incident to the obtuse angle of 4UVW . Then 4UVW contains a
separating thin triangle Q of level i+ 1 whose perimeter satisfies P (Q) ≤ P (4UVW)− 1.

I Lemma 3.9. Let Gk have a planar straight-line drawing with edge length at least 1 and
let 4UVW be a thin separating triangle of level i ≤ k − 2. Assume that the edge UV is
of level i − 1 and that it is not incident to the obtuse angle of 4UVW . Then 4UVW
contains a separating thin triangle Q of level at most i+ 2 whose perimeter satisfies P (Q) ≤
P (4UVW)− 1.

Now we combine all lemmas together to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. For given r we choose k = log2

(√
3

4 r
2
)

+ 3 and consider the graph
Gk+4r. Assume for a contradiction that Gk+4r allows a drawing of edge-length ratio at most
r. Without loss of generality assume that the longest edge of such drawing has length r

and hence the shortest has length at least 1. In the drawing of the graph Gk+4r consider
a sequence of separating triangles ∆1, . . . ,∆k+4r where ∆1, . . . ,∆k are chosen as shown in
Lemma 3.3.

By Corollary 3.4, the triangle ∆k is thin. Observe that the side-length and area con-
straints imply that it could be drawn inside a rectangle r × 1

8 , hence it has perimeter at
most 2r + 1

4 by Observation 3.6.
For any i ∈ {0, 1, . . . , 2r − 1} either the edge of level k + 2i − 1 in ∆k+2i is incident to

the obtuse angle of ∆k+2i or not:
In the first case we apply Lemma 3.8 to get P (∆k+2i+1) ≤ P (∆k+2i)− 1. As ∆k+2i+2 is
inside ∆k+2i+1, we get P (∆k+2i+2) ≤ P (∆k+2i)− 1.
Otherwise we apply Lemma 3.9 to derive P (∆k+2i+2) ≤ P (∆k+2i)− 1 directly.

Therefore, P (∆k+4r) ≤ P (∆k)−2r ≤ 2r+ 1
4−2r = 1

4 , a contradiction to the assumption
that all triangles of Gk+4r have all sides of length at least one. J

Note that the graph Gk+4r has O∗((54)r) vertices. The dependency between the edge-
length ratio and the number of vertices could be rephrased as follows:

I Corollary 3.10. The edge-length ratio over the class of n-vertex 2-trees is Ω(logn).

V. Blažej, J. Fiala, G. Liotta 35:5

We recall that Borrazzo and Frati prove that every partial 2-tree with n vertices admits
a planar straight-line drawing whose edge-length ratio is in O(n0.695) (Corollary 1 of [4]).

4 Local edge-length ratio of 2-trees

The aesthetic criterion studied in the previous section took into account any pair of edges. By
our construction of nested triangles, it might happen that two edges attaining the maximum
length ratio might be far in the graph distance (in the Euclidean distance they are close as
the triangles are nested). This observation leads us to the question, whether the two edges
might be forced to appear close or whether 2-trees allow drawings where the length ratio
of any two adjacent edges could be bounded by a constant. For this purpose we define the
local variant of the edge-length ratio as follows:

The local edge-length ratio of a planar straight-line drawing of a graph G is the maximum
ratio between the lengths of two adjacent edges (sharing a common vertex) of the drawing.

I Definition 4.1. The local edge-length ratio ρl(G) of a planar graph G is the infimum local
edge-length ratio taken over all planar straight-line drawings of G.

ρl(G) = inf
drawing of G

max
UV,VW∈EG

|UV |
|VW |

Observe that the local edge-length ratio ρl(G) is by definition bounded by the global
edge-length ratio ρ(G). In particular, every outerplanar graph G allows a drawing witnessing
ρl(G) ≤ 2 [11]. We extend this positive result to a class of all 2-trees with a slightly increased
bound on the ratio.

I Theorem 4.2. The local edge-length ratio of any n-vertex 2-tree G is ρl(G) ≤ 4. Also,
for any arbitrarily small positive constant ε, a planar straight-line drawing of G with local
edge-length ratio at most 4 + ε can be computed in O(n) time assuming the real RAM model
of computation.

R

Figure 3 Decomposition rooted in vertex R of a 2-tree. Each connected component of colored
vertices forms a part of the decomposition.

The proof of Theorem 4.2 is based on a construction that for a given 2-tree G and any
ε > 0 provides a straight-line drawing of local edge-length ratio 4 + ε. The general idea of
the construction is as follows: We cover G by subgraphs, called parts, so that these parts
could be arranged into a rooted tree (see Fig. 3). For any vertex u the parts containing
u form a subtree of height one, where the root of this subtree has one edge in common
with each of its children and such edge is always incident to u. For each part, we reserve

EuroCG’20

35:6 On the edge-length ratio of 2-trees

a suitable area where this part can be drawn and then describe how to draw it there with
the local edge-length ratio at most 2 + ε

2 . For any two adjacent edges, either they belong
to the same part or to two parts that have a parent-child or sibling relationship in the tree.
By this reasoning we can prove that the local edge-length ratio is at most 4.

5 Open Problems

1. Corollary 3.10 of this paper gives a logarithmic lower bound while Corollary 1 of [4]
gives a sub-linear upper bound on the edge-length ratio of planar straight-line drawings
of partial 2-trees. We find it interesting to close the gap between upper and lower bound.

2. Theorem 4.2 gives an upper bound of 4 on the local edge-length ratio of partial 2-trees.
It would be interesting to establish whether such an upper bound is tight.

3. The construction in Theorem 4.2 creates drawings where the majority of angles are very
close to 0 or π radians. Hence, it would make sense to study the interplay between (local
or global) edge-length ratio and angular resolution in planar straight-line drawings.

References
1 Sandeep N. Bhatt and Stavros S. Cosmadakis. The complexity of minimizing wire lengths

in VLSI layouts. Inf. Process. Lett., 25(4):263–267, 1987.
2 Václav Blažej, Jiří Fiala, and Giuseppe Liotta. On the edge-length ratio of 2-trees. CoRR,

abs/1909.11152, 2019.
3 Manuel Borrazzo and Fabrizio Frati. On the edge-length ratio of planar graphs. CoRR,

abs/1908.03586, 2019.
4 Manuel Borrazzo and Fabrizio Frati. On the edge-length ratio of planar graphs. In Daniel

Archambault and Csaba D. Tóth, editors, Graph Drawing and Network Visualization -
27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019,
Proceedings, volume 11904 of Lecture Notes in Computer Science, pages 165–178. Springer,
2019.

5 Sergio Cabello, Erik D. Demaine, and Günter Rote. Planar embeddings of graphs with
specified edge lengths. J. Graph Algorithms Appl., 11(1):259–276, 2007.

6 Jianer Chen, Anxiao Jiang, Iyad A. Kanj, Ge Xia, and Fenghui Zhang. Separability and
topology control of quasi unit disk graphs. Wireless Networks, 17(1):53–67, 2011.

7 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

8 Peter Eades and Nicholas C. Wormald. Fixed edge-length graph drawing is NP-hard.
Discrete Applied Mathematics, 28(2):111–134, 1990.

9 Emilio Di Giacomo, Giuseppe Liotta, and Roberto Tamassia. Graph drawing. In Jacob E.
Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Com-
putational Geometry, pages 247–284. CRC Press LLC, 2017.

10 Michael Hoffmann, Marc J. van Kreveld, Vincent Kusters, and Günter Rote. Quality ratios
of measures for graph drawing styles. In Proceedings of the 26th Canadian Conference
on Computational Geometry, CCCG 2014, Halifax, Nova Scotia, Canada, 2014. Carleton
University, Ottawa, Canada, 2014.

11 Sylvain Lazard, William J. Lenhart, and Giuseppe Liotta. On the edge-length ratio of
outerplanar graphs. Theor. Comput. Sci., 770:88–94, 2019.

12 Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture
Notes Series on Computing. World Scientific, 2004.

13 Roberto Tamassia, editor. Handbook on Graph Drawing and Visualization. Chapman and
Hall/CRC, 2013.

Simple Drawings of Km,n Contain Shooting Stars∗

Oswin Aichholzer1, Alfredo García2, Irene Parada1, Birgit
Vogtenhuber1, and Alexandra Weinberger1

1 Graz University of Technology, Austria
[oaich|iparada|bvogt|weinberger]@ist.tugraz.at

2 Departamento de Métodos Estadísticos and IUMA, Universidad de Zaragoza.
olaverri@unizar.es

Abstract
Simple drawings are drawings of graphs in which all edges have at most one common point (either
a common endpoint, or a proper crossing). It has been an open question whether every simple
drawing of a complete bipartite graph Km,n contains a plane spanning tree as a subdrawing. We
answer this question to the positive by showing that for every simple drawing of Km,n and for
every vertex v in that drawing, the drawing contains a shooting star rooted at v, that is, a plane
spanning tree with all incident edges of v.

1 Introduction

A simple drawing is a drawing of a graph on the sphere S2 or, equivalently, in the Euclidean
plane where (1) the vertices are distinct points in the plane, (2) the edges are non-self-inter-
secting continuous curves connecting their incident points, (3) no edge passes through vertices
other than its incident vertices, (4) and every pair of edges intersects at most once, either
in a common endpoint, or in the relative interior of both edges, forming a proper crossing.
Simple drawings are also called good drawings [3, 5] or (simple) topological graphs [7, 8]. In
semi-simple drawings, the last requirement is softened such that edges without common
endpoints are allowed to cross several times. Note that in any simple or semi-simple drawing,
there are no tangencies between edges and incident edges do not cross. If a drawing does not
contain any crossing at all, it is called plane.

The search for plane subdrawings of a given drawing has been a widely considered topic
for simple drawings of the complete graph Kn which still holds tantalizing open problems. For
example, Rafla [10] conjectured that every simple drawing of Kn contains a plane Hamiltonian
cycle, a statement which is by now known to be true for n ≤ 9 [1] and several classes of simple
drawings (e.g., 2-page book drawings, monotone drawings, cylindrical drawings), but still
remains open in general. A related question concerns the least number of pairwise disjoint
edges in any simple drawing of Kn. The currently best lower bound of Ω(n1/2−ε), for any
ε > 0, for this number has been obtained by Ruiz-Vargas [11], improving over several previous
bounds [8, 9, 12], while the trivial upper bound of n/2 would be implied by a positive answer
to Rafla’s conjecture. A structural result of Fulek and Ruiz-Vargas [6] implies that every
simple drawing of Kn contains a plane sub-drawing with at least 2n− 3 edges.

∗ O.A., I.P., and A.W. partially supported by the Austrian Science Fund (FWF) grant W1230. A.G.
supported by MINECO project MTM2015-63791-R and Gobierno de Aragón under Grant E41-17
(FEDER). I.P. and B.V. partially supported by the Austrian Science Fund within the collaborative
DACH project Arrangements and Drawings as FWF project I 3340-N35. This work has been initiated
at the 6th Austrian-Japanese-Mexican-Spanish Workshop on Discrete Geometry which took place in
June 2019 near Strobl, Austria. We thank all the participants for the great atmosphere and fruitful
discussions.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

36:2 All Simple Drawings of Km,n Contain Shooting Stars

In this work, we consider the search for plane spanning trees in drawings of complete
bipartite graphs. For complete graphs, plane spanning trees trivially exist in both simple
and semi-simple drawings, as incident edges don’t cross, and as every vertex is incident to
all other vertices. Hence the star of any vertex, which consists of all edges incident to that
vertex and all vertices, is a plane spanning tree.

The task of finding plane spanning trees in drawings of complete bipartite graphs Km,n

turns out to be more involved. In fact, not every semi-simple drawing of a complete bipartite
graph contains a plane spanning tree; see Figure 1.

Figure 1 A semi-simple drawing of K2,3 that does not contain a plane spanning tree.

For simple drawings of Km,n, the existence of plane spanning trees has so far only been
proven for specific types of drawings. It is not too hard to see that monotone drawings always
contain plane spanning trees. Aichholzer et al. showed in [2] that simple drawings of K2,n
and K3,n, as well as so-called outer drawings of Km,n [4], always contain plane spanning
trees of a special type, which they called shooting stars. A shooting star rooted at v is a
plane spanning tree with root v that has height 2 and contains the star of vertex v.

In the present work, we show that every simple drawing of Km,n contains shooting stars
rooted at an arbitrary vertex of Km,n.

I Theorem 1.1. Let D be a simple drawing of the complete bipartite graph Km,n and let r
be an arbitrary vertex of Km,n. Then D contains a shooting star rooted at r.

2 Proof of Theorem 1.1

Proof. We can assume that D is drawn on a point set S = R ∪ B, R = {r1, . . . , rm},
B = {b1, . . . , bn}, in which the points in the two vertex partitions R and B are colored red
and blue, respectively. Without loss of generality let r = r1.

b2

b1

b3

r3

r2 r1 r3

b2 b1 b3

r2

Figure 2 A simple drawing of K3,3 (left) and its stereographic projection from r1 (right).

To simplify the figures, we consider the drawing D on the sphere and apply a stereographic
projection from r onto a plane. In that way, the edges in the star of r are represented as
(not necessarily straight-line) infinite rays; see Figure 2. We will depict them in blue. In the

O. Aichholzer, A. García, I. Parada, B. Vogtenhuber, and A. Weinberger 36:3

following, we consider all edges oriented from their red to their blue endpoint. In order to
specify how two edges cross each other, we introduce some notation. Consider two crossing
edges e1 = ribk and e2 = rjbl and let × be their crossing point. Consider the arcs ×ri
and ×bk on e1 and ×rj and ×bl on e2. We say that e2 crosses e1 in clockwise direction if
the clockwise cyclic order of these arcs around the crossing × is ×ri, ×rj , ×bk, and ×bl.
Otherwise, we say that e2 crosses e1 in counterclockwise direction; see Figure 3.

e1

e2
e1

e2

ri ri

rj rjbl bl

bk bk

× ×

Figure 3 Edge e2 crosses edge e1 in clockwise direction (left) or counterclockwise direction (right).

We prove Theorem 1.1 by induction on n. For n = 1 and any m ≥ 1, the whole drawing
D is a shooting star rooted at any vertex, and in particular at r.

Assume that the existence of shooting stars rooted at any vertex has been proven for any
simple drawing of Km,n′ with n′ < n. Let M be a subset of the edges of D connecting each
vertex ri 6= r to some blue vertex in B (with exactly one edge for every red vertex), such
that (i) M ∪ {⋃n

j=2 rbj} does not contain any crossing and (ii) the number of crossings of M
with edge rb1 is the minimum possible. Observe that the set M is well defined, since, by the
induction hypothesis, the subdrawing of D obtained by deleting the blue vertex b1 and its
incident edges contains a shooting star rooted at r. Thus there exists a set M1 of edges from
D connecting each ri 6= r to some blue vertex in B \ {b1} such that M1 ∪ {

⋃n
j=2 rbj} does

not contain any crossing. As arbitrarily many of the edges in M1 might cross rb1, M1 might
not fulfill condition (ii). We will show that M does not contain any crossing with rb1. Since
M ∪ {⋃n

j=2 rbj} does not contain crossings by construction and as rb1 does not cross any
edges of {⋃n

j=2 rbj} in a simple drawing, it follows that the edges in M ∪ {⋃n
j=1 rbj} form

the desired shooting star.
Assume for a contradiction that rb1 crosses at least one edge in M . When traversing

rb1 from b1 to r, let x be the first crossing point of rb1 with an edge rkbt in M . Without
loss of generality, when orienting rb1 from r to b1 and rkbt from rk to bt, rkbt crosses rb1 in
counterclockwise direction (otherwise we can mirror the drawing).

Suppose first that the arc rkx (on rkbt and oriented from rk to x) is crossed in counter-
clockwise direction by an edge incident to b1 (and oriented from the red endpoint to b1). Let
e = rlb1 be such an edge whose crossing with rkx at a point y is the closest to x. Otherwise,
let e be the edge rkb1 and y be the point rk. In the remaining figures, we represent in blue
the edges of the star of r, in red the edges in M , and in black the edge e.

We distinguish two cases depending on whether e crosses an edge of the star of r. The
idea in both cases is to define a region Γ and, inside it, redefine the connections between red
and blue points to reach a contradiction.
Case 1: e does not cross any edge of the star of r. Let Γ be the closed region of the plane
bounded by the arcs yb1 (on e), b1x (on rb1), and xy (on rkbt); see Figure 4. Observe that
all the blue points bj lie outside the region Γ and that for all the red points ri inside region
Γ, the edge rib1 must be in Γ. Let MΓ denote the set of edges rib1 with ri ∈ Γ and note that
rkb1 ∈ MΓ. Consider the set M ′ of red edges obtained from M by replacing, for each red
point ri ∈ Γ, the (unique) edge incident to ri in M by the edge rib1 in MΓ, and keeping the

EuroCG’20

36:4 All Simple Drawings of Km,n Contain Shooting Stars

Γ

b1
bt

rk

xy

rl

e

Figure 4 Illustration of Case 1.

other edges in M unchanged. In particular, the edge rkbt has been replaced by the edge rkb1.
The edges in MΓ neither cross each other nor cross any of the blue edges rbj . Moreover, we
now show that the non-replaced edges in M must lie completely outside Γ. These edges can
neither cross rkbt (by definition of M) nor the arc b1x (on rb1). Thus, if they are incident
to b1 they cannot cross the boundary of Γ, and otherwise their endpoints lie outside Γ and
they can only cross one arc of the boundary. Therefore, M ′ satisfies that M ′ ∪ {⋃n

j=2 rbj}
does not contain any crossing, and has fewer crossings with rb1 than M . This contradicts
the definition of M as the one with the minimum number of crossings with rb1.
Case 2: e crosses the star of r. When traversing e from rk or rl (depending on the definition
of e) to b1, let I = {α, β, . . . , ρ} be the indices of the edges of the star of r in the order as
they are crossed by e and let yα, . . . , yρ be the corresponding crossing points on e. Note that,
when orienting e from rk or rl to b1, the edges rbξ, ξ ∈ I, oriented from r to bξ, cross e in
counterclockwise direction, since they can neither cross rkbt (by definition of M) nor rb1.

b1
bt

rk

x

rl

e

bα

bη bξ

yα

Πright

xξ

zξ

rs

yη

x′

zη

Wη

b1
bt

rk

x

rl

e

bα

bη

bξ

yα

Πright

xξ

zξ

rs

x′
Wη

WξWξ

ΓΓ

Figure 5 Illustration of Case 2. Region Πright is striped in gray, region Γ is shaded in blue, and
regions in

⋃
ξ∈IWξ ∪Wη are shaded in yellow. Left: η /∈ I. Right: η ∈ I.

The three arcs ryα (on rbα), yαb1 (on e), and b1r divide the plane into two (closed)
regions, Πleft, containing vertex rk, and Πright, containing vertex bt. For each ξ ∈ I, let Mξ

be the set of red edges of M incident to some red point in Πright and to bξ. Note that all the
edges in Mξ (if any) must cross the edge e. When traversing e from rk or rl to b1, we denote
by xξ, zξ the first and the last crossing points of e with the edges of Mξ ∪ rbξ, respectively;
see Figure 5 for an illustration. We remark that both xξ and zξ might coincide with yξ and,
in particular, if Mξ = ∅ then xξ = yξ = zξ.

We now define some regions in the drawing D. Suppose first that there are edges in M
(oriented from the red to the blue point) that cross rb1 (oriented from r to b1) in clockwise
direction. Let rsbη be the edge in M whose clockwise crossing with rb1 at a point x′ is the

O. Aichholzer, A. García, I. Parada, B. Vogtenhuber, and A. Weinberger 36:5

closest one to x (recall that the arc b1x on rb1 is not crossed by edges in M). Then, if η /∈ I,
we denote by Wη the region bounded by the arcs rx′ (on rb1), x′bη (on rsbη), and rbη and
not containing b1; see Figure 5 (left). If η ∈ I, we define Wη as the region bounded by the
arcs rx′ (on rb1), x′bη (on rsbη), bηzη, zηyη (on e), and yηr (on rbη) and not containing
b1; see Figure 5 (right). If no edges in M cross rb1 in clockwise direction, we set Wη = ∅.
Moreover, for each ξ ∈ I \ {η}, we define Wξ as the region bounded by the arcs xξbξ, bξzξ,
and zξxξ (and not containing b1); see again Figure 5.

We can finally define the region Γ for Case 2, which is the region obtained from Πleft
by removing the interior of all the regions Wξ, ξ ∈ I plus region Wη if η /∈ I (otherwise it
is already contained in

⋃
ξ∈IWξ). Now consider the set of red and blue vertices contained

in the region Γ. Let J denote the set of indices such that for all j ∈ J , the blue point bj
lies in Γ (note that 1 ∈ J). Since bt is not in Γ, by the induction hypothesis, we can find
a set of edges MΓ connecting each red point in Γ with a blue point bj , j ∈ J satisfying
that MΓ ∪ {

⋃
j∈J rbj} does not contain any crossing. Moreover, all the edges in MΓ lie

entirely in Γ: An edge in MΓ cannot cross any of the edges rbj , with j ∈ J . Thus, it cannot
leave Πleft, as otherwise it would cross e twice. Further, if it entered one of the regions in⋃
ξ∈IWξ ∪Wη, it would have to leave it crossing e, and then it could not reenter Γ.
Consider the set M ′ of red edges obtained from M by replacing, for each red point

ri ∈ Γ, the edge ribξ in M by the edge ribj , j ∈ J , in MΓ, and keeping the other edges in M
unchanged. In particular, the edge rkbt has been replaced by some edge rkbj , j ∈ J . The
edges in MΓ neither cross each other nor cross any of the blue edges rbj , j ∈ J nor any of
the other ones, lying completely outside Γ. Moreover, the non-replaced edges in M cannot
enter Γ since the only boundary part of Γ that they can cross are arcs on e. Therefore, M ′
satisfies that M ′ ∪ {⋃n

j=2 rbj} does not contain any crossing, and has fewer crossings with
rb1 than M . This contradicts the definition of M as the one with the minimum number of
crossings with rb1. J

3 Some Observations on Tightness

There exist simple drawings of Km,n in which every plane subdrawing has at most as many
edges as a shooting star. For example, consider a straight line drawing of Km,n where all
vertices are in convex position such that all red points are next to each other in the convex
hull; see Figure 6 (left). The convex hull is a (m + n)-gon which shares only two edges
with the drawing of Km,n; see Figure 6 (right). All other edges of the drawing of Km,n

are diagonals of the polygon. As there can be at most (m + n) − 3 pairwise non-crossing
diagonals in a convex (m+ n)-gon, any plane subdrawing of this drawing of Km,n contains
at most m+ n− 1 edges.

Figure 6 Left: A simple drawing of Km,n where no plane subdrawing can have more edges than
a shooting star. Right: A convex (n+m)-gon (in green lines) around the simple drawing of Km,n.

Furthermore, both requirements from Theorem 1.1 – simplicity of the drawing and having

EuroCG’20

36:6 All Simple Drawings of Km,n Contain Shooting Stars

a complete bipartite graph – are in fact necessary: As mentioned in the introduction, not all
semi-simple drawings of Km,n contain a plane spanning tree. Further, if in the example in
Figure 6, we delete one of the two edges of Km,n on the boundary of the convex hull, then
any plane subdrawing has at most m + n − 2 edges. Hence the resulting drawing cannot
contain any plane spanning tree.

4 Remarks on an Algorithm

The proof of Theorem 1.1 contains an algorithm with which we can find shooting stars in
given simple drawings. We start with constructing the shooting star for a subdrawing that
is a Km,1 and then inductively add more vertices. Every time we are adding a new vertex,
the shooting star of the step before is a set fulfilling all requirements of M1 ∪ {

⋃n
j=2 rbj} in

the proof. By replacing edges as described in the proof, we obtain a new set with the same
properties and fewer crossings. We continue replacing edges until we obtain a set of edges
(M in the proof) that form a shooting star for the extended vertex set. We remark that the
runtime of this algorithm might be exponential, as finding the edges of MΓ might require
solving the problem for the subgraph induced by Γ. However, we believe that there exists a
polynomial-time algorithm for this task.

I Open Problem 1. Given a simple drawing of the complete bipartite graph, is there a
polynomial-time algorithm to find a plane spanning tree contained in the drawing?

References

1 B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, T. Hackl, J. Pammer, A. Pilz,
P. Ramos, G. Salazar, and B. Vogtenhuber. All good drawings of small complete graphs.
In Proc. 31st European Workshop on Computational Geometry EuroCG ’15, pages 57–60,
Ljubljana, Slovenia, 2015.

2 Oswin Aichholzer, Irene Parada, Manfred Scheucher, Birgit Vogtenhuber, and Alexandra
Weinberger. Shooting stars in simple drawings ofKm,n. In Proceedings of the 34th European
Workshop on Computational Geometry (EuroCG’19), pages 59:1–59:6, 2019. URL: http:
//www.eurocg2019.uu.nl/papers/59.pdf.

3 Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Levi’s lemma, pseu-
dolinear drawings of Kn, and empty triangles. Journal of Graph Theory, 87(4):443–459,
2018. doi:10.1002/jgt.22167.

4 Jean Cardinal and Stefan Felsner. Topological drawings of complete bipartite graphs. In
Proceedings of the 24th International Symposium on Graph Drawing and Network Visu-
alization (GD’16), volume 9801 of LNCS, pages 441–453. Springer, 2016. doi:10.1007/
978-3-319-50106-2_34.

5 Paul Erdős and Richard K. Guy. Crossing number problems. The American Mathematical
Monthly, 80(1):52–58, 1973. doi:10.2307/2319261.

6 Radoslav Fulek and Andres J. Ruiz-Vargas. Topological graphs: empty triangles and dis-
joint matchings. In Proceedings of the 29th Annual Symposium on Computational Geometry
(SoCG’13), pages 259–266, New York, 2013. ACM. doi:10.1145/2462356.2462394.

7 Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of
Combinatorics, 30:1676–1685, 2009. doi:10.1016/j.ejc.2009.03.005.

8 János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete
topological graphs. Discrete & Computational Geometry, 30(2):311–320, 2003. doi:10.
1007/s00454-003-0012-9.

O. Aichholzer, A. García, I. Parada, B. Vogtenhuber, and A. Weinberger 36:7

9 János Pach and Géza Tóth. Disjoint edges in topological graphs. In Proceedings of the
2003 Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory
(IJCCGGT’03), volume 3330 of LNCS, pages 133–140, Berlin, 2005. Springer. doi:10.
1007/978-3-540-30540-8_15.

10 Nabil H. Rafla. The good drawings Dn of the complete graph Kn. PhD thesis, McGill Uni-
versity, Montreal, 1988. URL: http://digitool.library.mcgill.ca/thesisfile75756.
pdf.

11 Andres J. Ruiz-Vargas. Many disjoint edges in topological graphs. In Proceedings of the 8th
Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS’15), volume 50,
pages 29–34, 2015. doi:10.1016/j.endm.2015.07.006.

12 Andrew Suk. Disjoint edges in complete topological graphs. Discrete & Computational
Geometry, 49(2):280–286, 2013. doi:10.1007/s00454-012-9481-x.

EuroCG’20

On the Number of Delaunay Triangles occurring
in all Contiguous Subsequences
Stefan Funke and Felix Weitbrecht

Universität Stuttgart
{funke,weitbrecht}@fmi.uni-stuttgart.de

Abstract
Given an ordered sequence of points P = {p1, p2, . . . pn}, we are interested in the number of differ-
ent Delaunay triangles occurring when considering the Delaunay triangulations of all contiguous
subsequences within P . While clearly point sets and orderings with Θ(n2) Delaunay triangles
exist, we prove that for an arbitrary point set in random order, the expected number of Delaunay
triangles is Θ(n logn).

1 Introduction

Given an ordered sequence of points P = {p1, p2, . . . , pn}, we consider for 1 ≤ i < j ≤ n the
contiguous subsequences Pi,j := {pi, pi+1, . . . , pj} and the set of Delaunay triangles Ti,j that
appear in the Delaunay triangulation DT (Pi,j) of the respective subset. We are interested in
the size of the set T :=

⋃
i<j Ti,j of distinct Delaunay triangles occurring over all contiguous

subsequences.
There are sequences of points where |T | = Θ(n2), e.g., see Figure 1. Here, points are

ordered as shown in the Figure (note that the collinearity can easily be perturbed away).
For j > n

2 , any point pj will be connected to all points {p1, ..., pn
2
} in T1,j , so any such T1,j

contains Θ(n) Delaunay triangles which are not contained in any T1,j′ with j′ < j, hence
|T | = Θ(n2). Note, though, that for this argument we only used linearly many contiguous
subsequences. It is conceivable that the quadratically many contiguous subsequences create
even a superquadratic number of distinct Delaunay triangles. We will show, though, that for
an arbitrary point set in random order, E[|T |] = Θ(n logn), and |T | = O(n2) for any order.

Applications and Motivation
Subcomplexes of the Delaunay triangulation have proven to be very useful for representing
the shape of objects from a discrete sample in many contexts, see for example α-shapes [3],

p1 p2 p3 pn/2

pn
2 +1pn pn

2 +2

Figure 1 Example for a sequence of points with |T | = Θ(n2), as in [4]

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

37:2 Delaunay Triangles in Contiguous Subsequences

the β-skeleton [5], or the crust [1]. If the samples are acquired over time, a subcomplex of
the Delaunay triangulation of the samples within a contiguous time interval might allow for
interesting insights into the data, see for example [2], where the authors use α-shapes to
visualize the regions of storm event data within the United States between 1991 and 2000.

While in real world application scenarios, samples do not occur in truly random order, it
has also been observed in [2] that the potentially huge size of T seems more like a pathological
setting. Our result provides some sort of explanation for this observation. It also suggests the
possibility of precomputing all Delaunay triangles occurring in all contiguous subsequences
and indexing them with respect to time and possibly some other parameter (e.g., the α value
in case of α-shapes, or the β values in case of the β-skeleton) for faster retrieval.

2 Counting Delaunay Edges and Triangles

Our proof will proceed in two steps. We first show that the expected number of Delaunay
edges created when considering all contiguous subsequences is Θ(n logn) for a uniformly
random ordering of an arbitrary point set. Then we show that, for an arbitrary order, there is
a linear dependence between the number of created Delaunay triangles and Delaunay edges.

As usual, we assume non-degeneracy of P , i.e., absence of four co-circular or three co-linear
points. Also let us define the set of edges used in triangles of T as:

ET := {e | ∃ t ∈ T : e edge of t}

We consider an arbitrary point set ordered uniformly at random and bound the expected
size of ET , that is, the number of edges that appear in at least one of the Delaunay
triangulations DT (Pi,j). The following Lemma is a simple observation that helps to focus
on a smaller subsequence when considering a potential Delaunay edge {pi, pj}.

I Lemma 2.1. Any edge e = {pi, pj} ∈ ET (w.l.o.g. i < j) appears in DT (Pi,j).

Proof. There exists some triangle t ∈ T which uses e, so for suitable a ≤ i, b ≥ j, e appears
in DT (Pa,b), i.e., there exists a disk with pi, pj on its boundary and its interior free of points
from Pa,b. As Pi,j ⊆ Pa,b this disk is also free of points from Pi,j , hence e ∈ DT (Pi,j). J

Essentially, Lemma 2.1 states that we only need to consider the minimal contiguous subse-
quence containing pi and pj to argue about the probability of an edge {pi, pj} being present
in ET . Let us now bound the probability that an edge e = {pi, pj}, with j > i+ 1, appears
as Delaunay edge in some DT (Pi,j).

I Lemma 2.2. For a potential edge e = {pi, pj}, j > i+ 1, we have Pr[e ∈ DT (Pi,j)] < 6
j−i .

Proof. Observe that when considering the point set Pi,j , clearly DT (Pi,j) will be the same
regardless of how the points in Pi,j are ordered. All points in Pi,j are equally likely to be pi,
or pj . DT (Pi,j) is a planar graph with j − i+ 1 > 2 nodes, and hence per Euler’s formula
contains at most 3(j − i+ 1)− 6 edges. Pr[e ∈ DT (Pi,j)] is thus bounded by the probability
of two randomly chosen nodes in a graph with j − i+ 1 nodes and at most 3(j − i+ 1)− 6
edges to be connected with an edge. By randomly choosing two nodes, we randomly choose
one edge amongst all possible

(
j−i+1

2
)
edges. The probability of that edge to be one of the

≤ 3(j − i+ 1)− 6 edges of DT (Pi,j) is < 6
j−i . J

As due to Lemma 2.1 we have that Pr[e ∈ ET] = Pr[e ∈ DT (Pi,j)]), we can continue to
bound the expected size of ET .

S. Funke and F. Weitbrecht 37:3

I Lemma 2.3. The expected size of ET is Θ(n logn).

Proof. For the lower bound of Ω(n logn) consider first for point p1 the nearest neighbor in
P2,i as i grows from 2 to n. It is well known that for random order of P , the nearest neighbor
changes Θ(logn) times in expectation. It is also well-known that the nearest neighbor graph
of a point set is a subgraph of its Delaunay triangulation. Hence p1 in expectation is involved
in the creation of Ω(logn) distinct Delaunay edges. The same argument can be applied to
all other points, hence we get a Ω(n logn) lower bound.

By linearity of expectation we can simply sum over all potential
(

n
2
)
edges to obtain the

upper bound on the expected size of ET . We split the set of potential edges between those
with neighboring nodes in the ordering (like pi and pi+1) and the remaining ones. The former
always exist, but there are only linearly many of them, for the latter we use Lemma 2.2 to
bound the probability of existence.

E[|ET |] =
n−1∑

i=1

n∑

j=i+1
Pr[{pi, pj} ∈ ET]

=
n−1∑

i=1

[
Pr[{pi, pi+1} ∈ ET] +

n∑

j=i+2
Pr[{pi, pj} ∈ DT (Pi,j)]

]

≤
n−1∑

i=1

[
1 +

n∑

j=i+2

6
j − i

]
= (n− 1) + 6

n−1∑

i=1

n−i∑

j=2

1
j

≤ (n− 1) + 6
n−1∑

i=1
Hn = O(n logn)

J

Note that in general, many of these edges are used by several Delaunay triangles, some
may even be used by Θ(n) different Delaunay triangles, so it is not immediately obvious
that the overall number of Delaunay edges linearly bounds the overall number of Delaunay
triangles. Yet, the following Lemma shows why this is the case.

I Lemma 2.4. |T | ∈ Θ(|ET |).

Proof. Consider some Delaunay triangle t = papbpc ∈ T (w.l.o.g. a < b < c). Due to Lemma
2.1, we have t ∈ Ta,c. Apart from t, there can exist at most one other triangle t′ ∈ Ta,c

which uses the edge {pa, pc}. This way, we can charge every Delaunay triangle of T to some
Delaunay edge of ET , charging at most 2 Delaunay triangles to any Delaunay edge. So the
overall number of Delaunay triangles is at most twice the overall number of Delaunay edges,
hence |T | ∈ O(|ET |). The lower bound is obvious. J

As a corollary, Lemma 2.4 implies that O(n2) is also an upper bound for |T | for arbitrary
orderings of n points as there are only O(n2) possible edges.

I Corollary 2.5. |T | ∈ O(n2) for arbitrary point sets and orderings.

Finally we can state our main theorem.

I Theorem 2.6. The expected number of different Delaunay triangles occurring in all
contiguous subsequences of a (uniformly) randomly ordered point set of size n is Θ(n logn).

Proof. Follows from Lemmas 2.3 and 2.4. J

EuroCG’20

37:4 Delaunay Triangles in Contiguous Subsequences

Note that our analysis relies on two main properties, namely, uniqueness of the triangu-
lation of a point set, and that edges cannot disappear when removing points (except their
endpoints, of course). It might be interesting to investigate other triangulations fulfilling
this property.

References
1 Nina Amenta, Marshall W. Bern, and David Eppstein. The crust and the beta-skeleton:

Combinatorial curve reconstruction. Graphical Models and Image Processing, 60(2):125–
135, 1998.

2 Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retrieving α-shapes
and schematic polygonal approximations for sets of points within queried temporal ranges.
In SIGSPATIAL/GIS, pages 249–258. ACM, 2019.

3 Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a set
of points in the plane. IEEE Trans. Information Theory, 29(4):551–558, 1983.

4 Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental con-
struction of delaunay and voronoi diagrams. Algorithmica, 7(1):381–413, Jun 1992.

5 David G. Kirkpatrick and John D. Radke. A framework for computational morphology. In
Godfried T. Toussaint, editor, Computational Geometry, volume 2 of Machine Intelligence
and Pattern Recognition, pages 217 – 248. North-Holland, 1985.

Empty Rainbow Triangles in k-colored Point Sets∗

Ruy Fabila-Monroy1, Daniel Perz2, and Ana Laura Trujillo1

1 Departamento de Matemáticas, CINVESTAV
ruyfabila@math.cinvestav.edu.mx, ltrujillo@math.cinvestav.mx

2 Institute for Software Technology, Graz University of Technology, Graz,
Austria
daperz@ist.tugraz.at

Abstract
Let S be a set of n points in general position in the plane. Suppose that each point of S has
been assigned one of k ≥ 3 possible colors and that there is the same number, m, of points
of each color class, so n = km. A triangle with vertices on S is empty if it does not contain
points of S in its interior and it is rainbow if all its vertices have different colors. Let f(k,m) be
the minimum number of empty rainbow triangles determined by S. In this paper we show that
f(k,m) = Θ(k3). Furthermore we give a construction which does not contain an empty rainbow
quadrilateral.

1 Introduction

A set of points in the plane is in general position if no three of its vertices are collinear.
In this paper all sets of points are in general position. The well known Erdős-Szekeres
theorem [15] states that for every positive integer r > 3 there exists a positive integer n(r)
such that every set of n(r) or more points in the plane contains the vertices of a convex
polygon of r vertices.

Let S be a set n points in the plane. A polygon with vertices on S is said to be empty
if it does not contain a point of S in its interior. An r-hole of S is an empty convex r-gon
spanned by points of S. In 1978, Erdős [14] asked if for every r, every sufficiently large set
of points in the plane contains an r-hole. Klein [15] had already noted that every set of 5
points contains a 4-hole. Harboth [19] showed that every set of 10 points contains a 5-hole.
Horton [20] constructed an arbitrarily large set of points without a 7-hole. The case for
6-holes remained open until Nicolás [25] and Gerken [18], independently showed that every
sufficiently large point set contains a 6-hole.

Once the existence of a given r-hole is established, it is natural to ask what is the
minimum number of r-holes in every set of n points in the plane. Katchalski and Meir [22]
first considered this question for triangles. They showed that every set of n points determines
Ω(n2) empty triangles and provided an example of a point set determining O(n2) empty
triangles. The lower and upper bounds on this number have been improved throughout the
years [6, 13, 27, 17, 11, 3, 1]. The problem of determining the minimum number of r-holes
for r = 4, 5 or 6 in every set of n points in the plane has also been considered in these papers.

∗ R. F.-M. is partially supported by Conacyt of Mexico, Grant 253261. D. P. is partially supported
by the Austrian Science Fund within the collaborative DACH project Arrangements and Drawings as
FWF project I 3340-N35.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No
734922.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

38:2 Empty Rainbow Triangles in k-colored Point Sets

Colored variants of these problems where first studied by Devillers, Hurtado, Károlyi and
Seara [12]. In these variants each point of S is given a color from a prescribed set. A point
set is k-colored if every one of its points is assigned one of k available colors. We say that
an r-hole on S is monochromatic if all its vertices are of the same color and rainbow if all its
vertices are of different colors. Many chromatic variants on problems regarding r-holes in
points sets have been studied since; see [7, 26, 2, 4, 8, 24, 5, 21, 9, 16, 28, 23]. In particular,
Aichholzer, Fabila-Monroy, Flores-Peñaloza, Hackl, Huemer, and Urrutia showed that every
2-colored set of n points determines Ω(n5/4) empty monochromatic triangles [2]. This was
later improved to Ω(n4/3) by Pach and Toth [26]. The best upper bound on this number is
O(n2) and this is conjectured to be the right asymptotic value. If we take three colors, then
there exist 3-colored point sets without a monochromatic triangle [12].

In this paper we consider the problem of counting the number of empty rainbow triangles
in k-colored point sets in which there are the same number, m, of points of each color class.
Let f(k,m) be the minimum number empty rainbow triangles in such a point set. We give
the following asymptotic tight bound for f(k,m).

I Theorem 1.1. Let m ≥ k be positive integers then

f(k,m) = Θ(k3).

The lower bound is shown in Section 2 and the upper bound in Section 3. We point out
that in contrast to the number of empty monochromatic triangles, the number of rainbow
empty triangles does not necessarily grow with the number of points. Further we show that
for every k ≥ 4 there are k-colored point sets without a rainbow 4-hole.

2 Lower Bound

I Theorem 2.1. Let m ≥ k be positive integers then

f(k,m) ≥ 1
6k

3 − 1
2k

2 + 1
3k.

Proof. Let S be a k-colored set of points such that there are the m ≥ k points of each color
class. Without loss of generality assume that no two points of S have the same x-coordinate.
Assume that the set of colors is {1, . . . , k}. For each 1 ≤ i ≤ k, let pi be the leftmost point
of color i. Without loss of generality assume that when sorted by x-coordinate these points
are pk, pk−1 . . . , p1.

We now show that for i ≥ 3 there are at least (i2 − 3i + 2)/2 empty rainbow triangles
having a point of color i as its rightmost point. Let q1 := pi, q2, . . . , qi−2 be the first i − 2
points of color i when sorted by x-coordinate. For each 1 ≤ j ≤ i − 2 do the following.
Sort the points of S to the left of qj counterclockwise by angle around qj . Note that any
two consecutive points in this order define an empty triangle with qj as its rightmost point.
Since the points p1, . . . , pi−1 are to the left of qj , there at least i−2 of these empty triangles
such that the first point is of a color l distinct from i, and the next point is of a color distinct
from l and i. Furthermore, for at least (i − 2) − (j − 1) = i − j − 1 of these triangles the
next point is not of color i; thus they are rainbow. We have least

i−1∑

j=1
i− j − 1 = i2 − 3i+ 2

2

empty rainbow triangles with a point of color i as its rightmost point.

Ruy Fabila-Monroy, Daniel Perz, and Ana Laura Trujillo 38:3

Thus, S determines at least

k∑

i=1

i2 − 3i+ 2
2 = 1

6k
3 − 1

2k
2 + 1

3k

empty rainbow triangles. J

3 Upper Bound

In this section we construct a k-colored point set which gives us an upper bound for f(k,m).

3.1 The Empty Triangles of the Horton Set
In this section we define the point set introduced by Horton [20] and characterize its empty
triangles. Let H be a set of n points in the plane with no two points having the same
x-coordinate; sort its points by their x-coordinate so that H := {p0, p1, . . . , pn−1}. Let H0
be the subset of the even-indexed points, and H1 be the subset of the odd-indexed points.
That is, H0 = {p0, p2, . . . } and H1 = {p1, p3, . . . }. Let X and Y be two sets of points in the
plane. We say that X is high above Y if: every line determined by two points in X is above
every point in Y , and every line determined by two points in Y is below every point in X.

I Definition 3.1. H is a Horton set if
1. |H| = 1; or
2. |H| ≥ 2; H0 and H1 are Horton sets; and H1 is high above H0.

Assume that H is a Horton set. We say that an edge e := (pi, pj) is a visible edge of H
if one of the following two conditions are met.

Both i and j are even and for every even i < l < j, the point pl is below the line passing
through e. In this case we say that e is visible from above.
Both i and j are odd and for every odd i < l < j, the point pl is above the line passing
through e. In this case we say that e is visible from below.

I Lemma 3.2. The number of visible edges of H is less than 2n.

I Lemma 3.3. Let pi, pj and pl be the vertices of a triangle τ of H such that either
(pi, pj) is an edge visible from below and pl ∈ H0; or
(pi, pj) is an edge visible from above and pl ∈ H1.

Then τ is empty. Moreover, every empty triangle of H with at least one vertex in each of
H0 and H1 is of one these forms.

I Corollary 3.4. [10] The number of empty triangles of H is at most 2n2.

3.2 Blockers
Our strategy is to start with a Horton set H of k points and replace each point pi of H
with a cluster Ci of m ≥ k points. All of the points of Ci are of the same color and are
at a distance of at most ε1 from pi. We choose ε1 to be sufficiently small. Let S be the
resulting set. Note that every rainbow triangle of S must have all its vertices in different
clusters. Moreover, since each Ci is arbitrarily close to pi we have the following. If τ is an
empty triangle of S with vertices in clusters Ci, Cj and Cl then pi,pj and pl are the vertices
of an empty triangle in H. In principle, this gives up to m3 empty triangles in S per empty

EuroCG’20

38:4 Empty Rainbow Triangles in k-colored Point Sets

triangle of H. However, we place the points within each cluster in such a way so that only
very few of these triangles are actually empty.

We now define real numbers ε1 > ε2 > · · · > εk > 0. Suppose that εr has been defined.
We define εr+1 small enough so that the following is satisfied for every triple of distinct
indices i, j, l. Let q be a point at distance εr from pl such that q is in the interior of every
triangle with vertices p′i, p′j and pl; where p′i and p′j are at a distance of at most ε1 of pi and
pj , respectively. Then q is in the interior of every triangle with vertices p′i, p′j and p′l, where
p′l is any point at a distance of at most εr+1 from p′l. In this case we say that q blocks the
triangle with vertices p′i, p′j and p′l. For each point pi of H, we place the points q1, . . . , qk−1
of Ci at a distance of ε1, ε2, . . . , εk−1 from pi, respectively. We say that qr is at layer r. The
remaining points of Ci are placed at a distance of at most εk from pi.

We now describe how these “blocker” points are placed for each point pi ∈ H. Let
s1, . . . , sr be strings of 0’s and 1’s such that: s1 = ∅; sj+1 = sj0 or sj+1 = sj1. Further let
all Hsj be Horton sets and Hs1 = H. Define recursively the sets Hsj0 and Hsj1 as Horton
sets, such that Hsj

= Hsj0 ∪ Hsj1 and Hsj1 is high above Hsj0. Let pi be contained in
every of the sets Hsj

. Note that r ≤ dlog2(k)e. For every j = 1, . . . , r we place points
q2j−1 and q2j in layers 2j − 1 and 2j, respectively as follows. Sort the points of H \ {pi}
counterclockwise by angle around pi

Suppose that pi is in Hsj0. Place q2j−1, just after the leftmost point of Hsj1 in counter-
clockwise order around pi; place q2j , just before the rightmost point of Hsj1 in counter-
clockwise order around pi;
suppose that pi is in Hsj1. Place q2j−1, just before the leftmost point of Hsj0 in coun-
terclockwise order around pi; place q2j , just after the rightmost point of Hsj0 in coun-
terclockwise order around pi;

For any two consecutive points of H in counterclockwise order around pi, such that between
them there is not yet a blocker, place a blocker in a new layer. Place the remaining points
of Ci in any way but at a distance of at most εk from pi.

Let S be the set that results from replacing each pi ∈ H with the cluster Ci.

I Theorem 3.5. S determines O(k3) empty rainbow triangles.

Proof. We classify the empty triangles of H as follows. Let τ be an empty triangle of H.
Let s be the string of 0’s and 1’s such that the vertices of τ are contained in Hs but not
in Hs0 and Hs1. We say that τ is in layer |s|. Let pi, pj , pl be the vertices of τ , such that
pj and pl are both contained in Hs0 or are both contained in Hs1. Then τ contains two
blocker points at layers at most 2|s| in clusters Cj and Cl, respectively. Note τ also contains
a blocker point in cluster Ci of layer at most k − 1. Therefore, τ produces at most

4|s|2k

empty rainbow triangles in S.
By Lemma 3.3, (pj , pl) is a visible edge of Hs. Since |Hs| ≤

⌈
k/2|s|

⌉
, by Lemma 3.2

there are at most 2
⌈
k/2|s|

⌉ ⌈
k/2|s|+1⌉ ≤ 8

(
k2/22|s|) empty triangles in Hs. Thus, for every

0 ≤ r ≤ log2(k) there at most 2r8
(
k2/22r

)
= 8k2/2r empty triangles in H of layer r.

Therefore, S contains at most

dlog2(k)e∑

r=0

(
4r2k

) (
8k2/2r

)
= 32k3

dlog2(k)e∑

r=0

r2

2r
= 192k3

empty rainbow triangles. J

Ruy Fabila-Monroy, Daniel Perz, and Ana Laura Trujillo 38:5

4 Empty rainbow 4-gons

A natural generalization is to consider empty rainbow r-gons for r ≥ 4. Empty r-gons can
also be non-convex, in contrast to r-holes, which are convex. If there does not exist an empty
rainbow 4-gon, then also empty rainbow r-gons, r ≥ 5, do not exist. We construct arbitrary
large colored point sets which do not contain any empty rainbow 4-gon. Before constructing
our point set we observe that the colored point set in Figure 1 does not contain any empty
rainbow 4-gon. Note, that we can place arbitrary many further red points between the red
points on the lines, such that the point set still does not contain an empty rainbow 4-gon.
A more detailed explanation for this can be found in the full version.

A

B

C

Figure 1 Colored point set without an empty rainbow 4-gon.

We use this observation to construct our point set. First we take a regular (k − 1)-gon,
P , with vertices p1, . . . , pk−1; we replace every point pi with a cluster Ci of m points with
color i. Let P ′ be a copy of P with vertices p′1, . . . , p′k−1, which is rotated by 360◦

2(k−1) = 180◦

k−1 .
So p1, p

′
1, p2, . . . , pk−1, p

′
k−1 form a regular 2(k − 1)-gon. Let ε be sufficiently small. For

every 1 ≤ i ≤ k−1, we place the points of Ci at a distance of at most ε from pi. We place at
least 2(k− 3) points of color k on the line segment p′i−1p

′
i, for 1 ≤ i ≤ k− 1 with p′0 = p′k−1,

so that the following holds. Let q1, q2 be any two consecutive points of P distinct from pi.
In the triangle with vertices pi, q1 and q2 there are at least two points of p′i−1p

′
i of color k.

Further these points have at least distance ε to the lines piq1 and piq2. The construction
for k = 6 is depicted in Figure 2. Note, that the clusters Ci are drawn enlarged.

C1

C3

C2

C4

C5

p′2

p′3

p′4

p′5

p′1

Figure 2 Construction for a 6-colored point set without empty rainbow 4-gons.

I Theorem 4.1. All clusters Ci, 1 ≤ i ≤ k − 1, along with the points with color k describe
a k-colored point set without an empty rainbow 4-gon.

A detailed proof can be found in the full version of the paper. Note that in this construc-
tion we have that m ≥ 2k2 − 8k + 6. Further the points placed on the line segments p′i−1p

′
i

EuroCG’20

38:6 Empty Rainbow Triangles in k-colored Point Sets

can be moved slightly such that the point set still does not contain an empty rainbow
quadrilateral but that the points are in general position.

5 Open Problems

We finish the paper with two open problems.
For our results we relied heavily on the fact that m ≥ k; it would be interesting to obtain

sharp bounds of f(m, k) when m < k.
I Problem 1. Compute f(m, k) for m < k.

We constructed a k-colored point set with the same number of points in each color class
and without (convex or non-convex) empty rainbow 4-gon. This point set contains many
empty monochromatic 4-gons. This leads us to the following question.
I Problem 2. Does every sufficiently large k-colored (k ≥ 4) point set with the same number
of points in each color class contain an empty rainbow 4-gon or an empty monochromatic
4-gon?

References
1 O. Aichholzer, M. Balko, T. Hackl, J. Kyncl, I. Parada, M. Scheucher, P. Valtr, and

B. Vogtenhuber. A superlinear lower bound on the number of 5-holes. In 33rd International
Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

2 O. Aichholzer, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl, C. Huemer, and J. Urrutia.
Empty monochromatic triangles. Comput. Geom., 42(9):934–938, 2009.

3 O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber. Lower
bounds for the number of small convex k-holes. Comput. Geom., 47(5):605–613, 2014.

4 O. Aichholzer, T. Hackl, C. Huemer, F. Hurtado, and B. Vogtenhuber. Large bichromatic
point sets admit empty monochromatic 4-gons. SIAM J. Discrete Math., 23(4):2147–2155,
2010.

5 O. Aichholzer, J. Urrutia, and B. Vogtenhuber. Balanced 6-holes in linearly separable
bichromatic point sets. Electronic Notes in Discrete Mathematics, 44:181–186, 2013.

6 I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons.
Studia Sci. Math. Hungar., 41(2):243–266, 2004.

7 D. Basu, K. Basu, B. B. Bhattacharya, and S. Das. Almost empty monochromatic triangles
in planar point sets. Discrete Appl. Math., 210:207–213, 2016.

8 S. Bereg, J. M. Díaz-Báñez, R. Fabila-Monroy, P. Pérez-Lantero, A. Ramírez-Vigueras,
T. Sakai, J. Urrutia, and I. Ventura. On balanced 4-holes in bichromatic point sets. Comput.
Geom., 48(3):169–179, 2015.

9 P. Brass. Empty monochromatic fourgons in two-colored point sets. Geombinatorics,
14(2):5–7, 2004.

10 I. Bárány and Z. Furedi. Empty simplices in euclidean space. Canadian Mathematical
Bulletin, 30, 12 1987.

11 K. Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen. PhD thesis, TU, Braun-
schweig, 1987.

12 O. Devillers, F. Hurtado, G. Károlyi, and C. Seara. Chromatic variants of the Erdős-
Szekeres theorem on points in convex position. Comput. Geom., 26(3):193–208, 2003.

Ruy Fabila-Monroy, Daniel Perz, and Ana Laura Trujillo 38:7

13 A. Dumitrescu. Planar sets with few empty convex polygons. Studia Sci. Math. Hungar.,
36(1-2):93–109, 2000.

14 P. Erdős. Some more problems on elementary geometry. Austral. Math. Soc. Gaz., 5(2):52–
54, 1978.

15 P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463–
470, 1935.

16 E. Friedman. 30 two-colored points with no empty monochromatic convex fourgons. Ge-
ombinatorics, 14(2):53–54, 2004.

17 A. García. A Note on the Number of Empty Triangles, pages 249–257. Springer Berlin
Heidelberg, 2012.

18 T. Gerken. Empty convex hexagons in planar point sets. Discrete Comput. Geom., 39(1-
3):239–272, 2008.

19 H. Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elem. Math., 33(5):116–118,
1978.

20 J. D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26(4):482–484, 1983.
21 C. Huemer and C. Seara. 36 two-colored points with no empty monochromatic convex

fourgons. Geombinatorics, 19(1):5–6, 2009.
22 M. Katchalski and A. Meir. On empty triangles determined by points in the plane. Acta

Math. Hungar., 51(3-4):323–328, 1988.
23 V. Koshelev. On Erdős–Szekeres problem and related problems. arXiv preprint

arXiv:0910.2700, 2009.
24 L. Liu and Y. Zhang. Almost empty monochromatic quadrilaterals in planar point sets.

Math. Notes, 103(3-4):415–429, 2018.
25 C. M. Nicolás. The empty hexagon theorem. Discrete Comput. Geom., 38(2):389–397,

2007.
26 J. Pach and G. Tóth. Monochromatic empty triangles in two-colored point sets. Discrete

Appl. Math., 161(9):1259–1261, 2013.
27 P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Sci.

Math. Hungar., 30(1-2):155–163, 1995.
28 R. van Gulik. 32 two-colored points with no empty monochromatic convex fourgons. Ge-

ombinatorics, 15(1):32–33, 2005.

EuroCG’20

Bitonicity of Euclidean TSP in Narrow Strips∗

Henk Alkema1, Mark de Berg2, and Sándor Kisfaludi-Bak3

1 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
h.y.alkema@tue.nl

2 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
m.t.d.berg@tue.nl

3 Max Planck Institute for Informatics, Germany
sandor.kisfaludi-bak@mpi-inf.mpg.de

Abstract
We investigate how the complexity of Euclidean TSP for point sets P ⊂ (−∞,+∞) × [0, δ]
depends on the strip width δ. We prove that if the points have distinct integer x-coordinates, a
shortest bitonic tour (which can be computed in O(n log2 n) time using an existing algorithm) is
guaranteed to be a shortest tour overall when δ 6 2

√
2, a bound which is best possible.

1 Introduction

In the Traveling Salesman Problem one is given an edge-weighted complete graph and
the goal is to compute a tour—a simple cycle visiting all nodes—of minimum total weight.
Due to its practical as well as theoretical importance, the Traveling Salesman Problem
and its many variants are among the most famous problems in computer science and
combinatorial optimization. In this paper we study the Euclidean version of the problem.
In Euclidean TSP the input is a set P of n points in Rd, and the goal is to compute
a minimum-length tour visiting each point. Euclidean TSP in the plane was proven to
be np-hard in the 1970s [1, 2]. Unlike the general (metric) version, however, it can be
solved in subexponential time, that is, in time 2o(n). In particular, Kann [3] and Hwang et
al. [4] presented algorithms with nO(

√
n) running time. Smith and Wormald [5] gave a

subexponential algorithm that works in any (fixed) dimension; its running time in Rd
is nO(n1−1/d). Very recently De Berg et al. [6] improved this to 2O(n1−1/d), which is tight up
to constant factors in the exponent, under the Exponential-Time Hypothesis (ETH) [7].

There has also been considerable research on special cases of Euclidean TSP that are
polynomial-time solvable. One example is Bitonic TSP, where the goal is to find a shortest
bitonic tour. (A tour is bitonic if any vertical line crosses it at most twice; here the points
from the input set P are assumed to have distinct x-coordinates.) It is a classic exercise [8]
to prove that Bitonic TSP can be solved in O(n2) time by dynamic programming. De
Berg et al. [9] showed how to speed up the algorithm to O(n log2 n).

Our contribution. The computational complexity of Euclidean TSP in Rd is 2Θ(n1−1/d)

(for d > 2), assuming ETH. Thus the complexity depends heavily on the dimension d. This
is most pronounced when we compare the complexity for d = 2 with the trivial case d = 1:
in the plane Euclidean TSP takes 2Θ(

√
n) time in the worst case, while the 1-dimensional

case is trivially solved in O(n logn) time by just sorting the points. We study the complexity
of Euclidean TSP for planar point sets that are “almost 1-dimensional”. In particular,

∗ The work in this paper is supported by the Netherlands Organisation for Scientific Research (NWO)
through Gravitation-grant NETWORKS-024.002.003.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

39:2 Euclidean TSP in Narrow Strips

we assume the point set P is contained in the strip (−∞,∞) × [0, δ] for some relatively
small δ, and that all points have distinct integer x-coordinates. Bitonic TSP can be solved
in O(n log2 n) time [9]. It is natural to conjecture that for sufficiently small δ, an optimal
bitonic tour on P is a shortest tour overall. We give a (partially computer-assisted) proof
that this is indeed the case: we prove that when δ 6 2

√
2 an optimal bitonic tour is optimal

overall, and we show that the bound 2
√

2 is best possible.

Notation and terminology. Let P := {p1, . . . , pn} be a set of points with distinct integer
x-coordinates in a horizontal strip of width δ—we call such a strip a δ-strip—which we assume
without loss of generality to be the strip (−∞,∞)× [0, δ]. We denote the x-coordinate of a
point p ∈ R2 by x(p), and its y-coordinate by y(p). To simplify the notation, we also write
xi for x(pi), and yi for y(pi). We sort the points in P such that xi < xi+1 for all 1 6 i < n.

For two points p, q ∈ R2, we write pq to denote the directed edge from p to q. The length
of an edge pq is denoted by |pq|, and the total length of a set E of edges is denoted by ‖E‖.

A separator is a vertical line not containing any of the points in P that separates P
into two non-empty subsets. For our purposes, two separators s, s′ that induce the same
partitioning of P are equivalent. Therefore, we can define S := {s1, . . . , sn−1} as the set
of all combinatorially distinct separators, obtained by taking one separator between any
two points pi, pi+1. Let E,F be sets of edges with endpoints in P . The tonicity of E at a
separator s, written as ton(E, s), is the number of edges in E crossing s. We say that E has
lower tonicity than F , denoted by E 4 F , if ton(E, si) 6 ton(F, si) for all si ∈ S. E has
strictly lower tonicity than F , denoted by E ≺ F , if there also exists at least one i for which
ton(E, si) < ton(F, si). Finally, we call E bitonic if ton(E, si) = 2 for all si ∈ S.

2 Bitonicity for points with integer x-coordinates

The goal of this section is to prove the following theorem.

I Theorem 1. Let P be a set of points with distinct and integer x-coordinates in a δ-strip.
When δ 6 2

√
2, a shortest bitonic tour on P is a shortest tour overall. Moreover, for any

δ > 2
√

2 there is a point set P in a δ-strip such that a shortest bitonic tour on P is not a
shortest tour overall.

The construction for the case δ > 2
√

2 is shown in Fig. 1. It is easily verified that, up to
symmetrical solutions, the tours T1 and T2 are the only candidates for the shortest tour.
Observe that ‖T2‖ − ‖T1‖ = |p1p4| − |p4p5| = 3 −

√
1 + δ2. Hence, for δ > 2

√
2 we have

‖T2‖ < ‖T1‖, which proves the second statement of Theorem 1. The remainder of the section
is devoted to proving the first statement.

Let P be a point set in a δ-strip for δ = 2
√

2, where all points in P have distinct integer
x-coordinates. Among all shortest tours on P , let Topt be one that is minimal with respect
to the 4-relation; Topt exists since the number of different tours on P is finite. We claim
that Topt is bitonic, proving the upper bound of Theorem 1.

Suppose for a contradiction that Topt is not bitonic. Let s∗ ∈ S be the rightmost
separator for which ton(Topt, s

∗) > 2. We must have ton(Topt, s
∗) = 4 because otherwise

ton(Topt, s) > 2 for the separator s ∈ S immediately to the right of s∗, since there is only
one point between s∗ and s. Let F be the four edges of Topt crossing s∗, and let E be the
remaining edges of Topt. Let Q be the set of endpoints of the edges in F . We will argue
that there exists a set F ′ of edges with endpoints in Q such that E ∪ F ′ is a tour and
(i) ‖F ′‖ < ‖F‖, or (ii) ‖F ′‖ = ‖F‖ and F ′ ≺ F . We will call such an F ′ superior to F .
Option (i) contradicts that Topt is a shortest tour, and (ii) contradicts that Topt is a shortest

H. Alkema, M. de Berg and S. Kisfaludi-Bak 39:3

p1

p2

p3

p4

p5

δ/2

δ/2

T1

T2

Figure 1 Construction for δ > 2
√

2 for Theorem 1. The grey vertical segments are at distance 1
from each other. If δ > 2

√
2 then T1, the shortest bitonic tour (in blue), is longer than T2, the

shortest non-bitonic tour (in red).

tour, minimal with respect to 4 (since E∪F ′ ≺ E∪F if and only if F ′ ≺ F). Hence, proving
a superior set F ′ exists finishes the proof.

The remainder of the proof proceeds in two steps. In the first step we argue that we
can assume without loss of generality that Q uses consecutive integer x-coordinates. In the
second step we then give a computer-assisted proof that a superior set F ′ exists.

Step 1: Reduction to an instance where Q has consecutive x-coordinates. The goal of
Step 1 is to move the points in Q to obtain a set Q of points with consecutive x-coordinates
in such a way that finding a superior set F ′ for Q also gives us a superior set F ′ for Q. Let
F be the same set as F , but now on the moved point set Q, and define Ẽ, the connectivity
pattern of E, to be the set of edges obtained by contracting each path in E to a single edge.

I Lemma 2. Let Topt, s
∗, E, Ẽ, F, F and Q be defined as above. Then there exists a Q s.t.:

1. Ẽ, F and Q adhere to one of the six cases in Figure 2.
2. If there exists an F ′ superior to F , there exists an F ′ superior to F .

Sketch of proof. We start by taking Q = Q. Now, property 2 trivially holds. We will now
transform Q, making sure that property 2 keeps holding, until property 1 also holds.
Let p be a point of Q which only has one incident edge pq in F . Suppose we move p some
distance d along pq towards q. The total length of any candidate F ′ decreases by at most d
by doing so, while ‖F‖ decreases by exactly d. Similar reasoning can be made about the
tonicity. Therefore, this move does not affect the desired properties. If a point r has two
incident edges pr, rq in F , we can split it into two points r1, r2, and add an edge r1r2 between
them. Then, we can move them towards p and q, respectively. Doing so also does not affect
the desired properties. Since all edges of F cross the separator s∗, the points can be moved
towards each other such that they have consecutive integer x-coordinates. J
The complete proof can be found in the full version of this paper.

Step 2: Finding the set F ′. The goal of Step 2 of the proof is the following: given a
tour Ẽ ∪ F on a point set Q adhering to one of the six cases in Figure 2, show that there
exists a set F ′ of edges superior to F . Lemma 2 then implies that a superior set of edges
exists for any Q,E, F , finishing the proof of Theorem 1.
Each of the six cases has several subcases, depending on the left-to-right order of the

vertices inside the gray rectangles in the figure. Once we fixed the ordering, we can still vary
the y-coordinates in the range [0, δ], which may lead to scenarios where different sets F ′

are required. We handle this potentially huge amount of cases in a computer-assisted

EuroCG’20

39:4 Euclidean TSP in Narrow Strips

65

4

• (nleft, nright) = (2, 2)

• F = {(1, 3), (1, 4), (2, 3), (2, 4)}
• Ẽ = ∅
• X = [{−2}, {−1}, {0}, {1}]

• (nleft, nright) = (3, 2)

• F = {(1, 4), (1, 5), (2, 4), (3, 5)}
• Ẽ = {(2, 3)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {0}, {1}]

1

2

3

4

1

3

2

• (nleft, nright) = (4, 2)

• F = {(1, 6), (2, 5), (3.5), (4, 6)}
• Ẽ = {(1, 2), (3, 4)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {−3,−2,−1},
{0}, {2}]

1

2

3

4

5

4

• (nleft, nright) = (2, 3)

• F = {(1, 3), (1, 5), (2, 3), (2, 4)}
• Ẽ = {(4, 5)}
• X = [{−2}, {−1}, {0}, {1, 2}, {1, 2}]

• (nleft, nright) = (3, 3)

• F = {(1, 4), (1, 5), (2, 4), (3, 6)}
• Ẽ = {(2, 3), (5, 6)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {0}, {1, 2}, {1, 2}]

1

2

3

4

1

3

2
5

5

• (nleft, nright) = (4, 3)

• F = {(1, 6), (2, 5), (3.5), (4, 7)}
• Ẽ = {(1, 2), (3, 4), (6, 7)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {−3,−2,−1},
{0}, {1, 2}, {1, 2}]

1

2

3

6

4
7

5

6

s∗ s∗ s∗

s∗ s∗ s∗

Figure 2 The six different cases that result after applying Step 1 of the proof. Points indicated by
filled disks have a fixed x-coordinate. The left-to-right order of points drawn inside a grey rectangle,
on the other hand, is not known yet. The vertical order of the edges is also not fixed, as the points
can have any y-coordinate in the range [0, 2

√
2].

manner, using an automated prover FindShorterTour(nleft, nright, F , Ẽ,X, δ, ε). The input
parameter X is an array where X[i] specifies the set from which the x-coordinate of the i-th
point in the given scenario may be chosen, where we assume w.l.o.g. that x(s∗) = −1/2; see
Fig. 2. The role of the parameter ε will be explained below.

The output of FindShorterTour is a list of scenarios and an outcome for each scenario. A
scenario contains for each point q an x-coordinate x(q) from the set of allowed x-coordinates
for q, and a range y-range(q) ⊆ [0, 2

√
2] for its y-coordinate, where the y-range is an interval

of length at most ε. The outcome is either Success or Fail. Success means that a set F ′

has been found with the desired properties: Ẽ∪F ′ is a tour, and for all possible instantiations
of the scenario—that is, all choices of y-coordinates from the y-ranges in the scenario—we
have ‖F ′‖ < ‖F‖. Fail means that such an F ′ has not been found, but it does not guarantee
that such an F ′ does not exist for this scenario. The list of scenarios is complete in the sense
that for any instantiation of the input case there is a scenario that covers it.

FindShorterTour works brute-force, by checking all possible combinations of x-coordinates
and subdividing the y-coordinate ranges until a suitable F ′ can be found or until the y-ranges
have length at most ε. The implementation details of the procedure can be found in the full
version of this paper.

Note that case (nleft, nright) = (2, 3) in Fig. 2 is a subcase of case (nleft, nright) = (3, 2),
if we exchange the roles of the points lying to the left and to the right of s∗. Hence, we
ignore this subcase and run our automated prover on the remaining five cases, where we
set ε := 0.001. It successfully proves the existence of a suitable set F ′ in four cases; the

H. Alkema, M. de Berg and S. Kisfaludi-Bak 39:5

4

• X = [{−1}, {−2}, {−3, }, {0}, {1}]
• Y = [[1.61, 1.62], [2.82, 2

√
2],

[0, 0.01], [2.82, 2
√
2], [0, 0.01]]

5

4

5

• X = [{−1}, {−3}, {−2, }, {0}, {1}]
• Y = [[1.41, 1.42], [2.82, 2

√
2],

[0, 0.01], [2.82, 2
√
2], [0, 0.01]]

F
′
1 F

′
1

1

1

2 2

33
F

′
2 F

′
2

Figure 3 Two scenarios covering all subscenarios where the automated prover fails. Each point
has a fixed x-coordinate and a y-range specified by the array Y ; the resulting possible locations
are shown as small grey rectangles (drawn larger than they actually are for visibility). For all
subscenarios, at least one of F ′

1 (in red) and F ′
2 (in blue) is at most as long as F (in black).

case where the prover fails is the case (nleft, nright) = (3, 2). For this case it fails for the
two scenarios depicted in Fig. 3; all other scenarios for these cases are handled successfully
(up to symmetries). For both scenarios we consider two alternatives for the set F ′: the set
F
′
1 shown in red in Fig. 3, and the set F ′2 shown in blue in Fig. 3. We will show that in

any instantiation of both scenarios, either F ′1 or F ′2 is at least as short as F ; since both
alternatives are bitonic this finishes the proof.

For 1 6 i 6 5, let qi be the point labeled i in Fig. 3. We first argue that (for both scenarios)
we can assume without loss of generality that y(q2) = y(q4) = 2

√
2 and y(q3) = y(q5) = 0.

To this end, consider arbitrary instantiations of these scenarios, and imagine moving q2 and
q4 up to the line y = 2

√
2, and moving q3 and q5 down to the line y = 0. It suffices to show,

for i ∈ {1, 2}, that if we have ‖F ′i‖ 6 ‖F‖ after the move, then we also have ‖F i‖ 6 ‖F‖
before the move. This can easily be proven by repeatedly applying the following observation.

I Observation 3. Let a, b, c be three points. Let ` be the vertical line through c, and let us
move c downwards along `. Let α be the smaller angle between ac and ` if y(c) < y(a), and
the larger angle otherwise, and let β be the smaller angle between bc and ` if y(c) < y(b), and
the larger angle otherwise, and suppose α < β throughout the move. Then the move increases
|ac| more than it increases |bc|.

So now assume y(q2) = y(q4) = 2
√

2 and y(q3) = y(q5) = 0. Consider the left scenario in
Fig. 3, and let y := y(q3). If y > (8

√
2)/7 then

|q2q1|+ |q4q5| =
√

1 + (2
√

2− y)2 + 3 6 2 +
√

4 + y2 = |q2q4|+ |q1q5|,

so ‖F ′1‖ 6 ‖F‖. On the other hand, If y 6 (8
√

2)/7 then

|q3q1|+ |q4q5| =
√

4 + y2 + 3 6
√

1 + (2
√

2− y)2 + 4 = |q1q4|+ |q3q5|,

so ‖F ′2‖ 6 ‖F‖. So either F ′1 or F ′2 is at least as short as F , finishing the proof for the left
scenario in Fig. 3. The proof for the right scenario in Fig. 3 is analogous, with cases y >

√
2

and y 6
√

2. This finishes the proof for the right scenario and, hence, for Theorem 1.

3 Concluding remarks

In our paper, we proved that for points with integer x-coordinates in a strip of width δ, an
optimal bitonic tour is optimal overall when δ 6 2

√
2. The proof of this bound, which is

EuroCG’20

39:6 Euclidean TSP in Narrow Strips

tight in the worst case, is partially automated to reduce the potentially very large number
of cases to two worst-case scenarios. It would be interesting to see if a direct proof can be
given for this fundamental result. Finally, we note that the proof of Theorem 1 can easily be
adapted to point sets of which the x-coordinates of the points need not be integer, as long as
the difference between x-coordinates of any two consecutive points is at least 1.

In the full version of this paper, we also investigate the case δ > 2
√

2. We present a
fixed-parameter tractable algorithm with respect to δ. More precisely, our algorithm has
running time 2O(

√
δ)n2 for point sets where each 1 × δ rectangle inside the strip contains

O(1) points. For point sets where the points are chosen uniformly at random from the
rectangle [0, n]× [0, δ], it has an expected running time 2O(

√
δ)n2 +O(n3).

References
1 M.R. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete geometric problems. In

Proc. 8th ACM Symp. Theory Comp. (STOC), pages 10–22, 1976.
2 C.H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret.

Comput. Sci. 4(3): 237–244 (1977).
3 V. Kann. On the approximability of NP-complete optimization problems. Ph.D. Dissertation,

Royal Institute of Technology, Stockholm, 1992.
4 R.Z. Hwang, R.C. Chang, and R.C.T. Lee. The searching over separators strategy to solve

some NP-hard problems in subexponential time. Algorithmica 9(4): 398–423 (1993).
5 W.D. Smith and N.C. Wormald. Geometric separator theorems and applications. In Proc.

39th IEEE Symp. Found. Comput. Sci. (FOCS), pages 232–243, 1998.
6 M. de Berg, H.L. Bodlaender, S. Kisfaludi-Bak, and S. Kolay. An ETH-tight exact algorithm

for Euclidean TSP. In Proc. 59th IEEE Symp. Found. Comput. Sci. (FOCS), pages 450–461,
2018.

7 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2):
367–375 (2001).

8 T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (3rd
edition). MIT Press, 2009.

9 M. de Berg, K. Buchin, B.M.P. Jansen, and G. Woeginger. Fine-grained complexity analysis
of two classic TSP variants. In Proc. 43rd Int. Conf. Automata Lang. Prog. (ICALP), pages
5:1–5:14, 2016.

Experimental Evaluation of Straight Skeleton
Implementations Based on Exact Arithmetic∗

Günther Eder1, Martin Held1, and Peter Palfrader1

1 Universität Salzburg, FB Computerwissenschaften, Salzburg, Austria,
{geder,held,palfrader}@cs.sbg.ac.at

Abstract
We present C++ implementations of two algorithms for computing straight skeletons in the plane,
based on exact arithmetic. One code, named Surfer2, can handle multiplicatively weighted
planar straight-line graphs (PSLGs) while our second code, Monos, is specifically targeted at
monotone polygons. Both codes are available on GitHub. We sketch implementational and
engineering details and discuss the results of an extensive performance evaluation in which we
compared Surfer2 and Monos to the straight-skeleton package included in Cgal. Our tests
provide ample evidence that both implementations can be expected to be faster and to consume
significantly less memory than the Cgal code.

1 Introduction

Straight skeletons were introduced to computational geometry by Aichholzer et al. [2]. Sup-
pose that the edges of a simple polygon P move inwards with unit speed in a self-parallel
manner, thus generating mitered offsets inside of P . Then the (unweighted) straight skele-
ton of P is the geometric graph whose edges are given by the traces of the vertices of the
shrinking mitered offset curves of P . The process of simulating the shrinking offsets is called
wavefront propagation. In the presence of multiplicative weights, wavefront edges no longer
move at unit speed. Rather, every edge moves at its own constant speed; see Figure 1.
Straight skeletons are known to have applications in diverse fields, with the modeling of
roof-like structures being one of the more prominent ones [14, 10, 11]. We refer to Huber
[12] for a detailed discussion of typical applications.

∗ ∗

∗
∗

O O

Figure 1 Left: The (unweighted) straight skeleton (in blue) plus a family of wavefronts (dashed)
for the green polygon. Right: The weighted straight skeleton for the case that edges marked with
∗ have twice the weight and edges marked with O have half the weight of the unmarked edges.

The straight-skeleton algorithms with the best worst-case bounds are due to Eppstein
and Erickson [9] and Vigneron et al. [6, 17]. These algorithms seem difficult to implement.
Indeed, progress on implementations has been rather limited so far. The first comprehensive
code for computing straight skeletons was implemented by Cacciola [5] and is shipped with

∗ Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

40:2 Evaluation of Straight Skeleton Implementations

CGAL [16]. It handles polygons with holes as input. The straight-skeleton code Stalgo by
Huber and Held [13] handles PSLGs as input and runs in O(n log n) time and O(n) space in
practice. (A PSLG is an embedding of a planar graph such that all edges are straight-line
segments which do not intersect pairwise except at common end-points.) However, it would
be difficult to extend to weighted skeletons [7].

2 Implementations

Monotone Polygons. Biedl et al. [4] describe an O(n log n) time algorithm to compute
the straight skeleton of a simple n-vertex x-monotone polygon P. Their algorithm consists
of two steps: (1) The polygon P is split into an upper and lower monotone chain, and the
straight skeleton of each chain is computed individually by means of a classical wavefront
propagation. (2) The final straight skeleton S(P) is obtained by merging these two straight
skeletons.

Weighted PSLGs. Aichholzer and Aurenhammer [1] describe an algorithm for computing
the straight skeleton of general PSLGs in the plane. It carries over to multiplicatively
weighted input in a natural way, provided that all weights are positive. Their approach
constructs the straight skeleton by simulating a wavefront propagation. As the wavefront
sweeps the plane, they maintain a kinetic triangulation of that part of the plane which has
not yet been swept. This triangulation is obtained by triangulating the area inside the
convex hull of all wavefronts. Furthermore, all edges of the convex hull are linked with a
dummy vertex at infinity.

The area of each triangle of this kinetic triangulation changes over time as its vertices,
which are vertices of the wavefront, move along angular (straight-line) bisectors of the input
edges. Every change in the topology of the wavefront is witnessed by a triangle collapse.
(But not all triangle collapses correspond to changes of the wavefront topology.) We refer
to Palfrader et al. [15] for more details of this algorithm.

Codes. Our implementations, Monos and Surfer2, of these two algorithms use Cgal’s
Exact_predicates_exact_constructions_kernel_with_sqrt algebraic kernel, which is
backed by Core’s Core::Expr exact number type. (Surfer2 can also be run with standard
IEEE 754 arithmetic.) Both source codes are provided on GitHub and can be used freely
under the GPL(v3) license: https://github.com/cgalab/monos and https://github.
com/cgalab/surfer2.

3 Engineering Aspects

Careful algorithm engineering was applied to both Monos and Surfer2. Due to lack of
space we only sketch a few of our engineering considerations. For instance, a major compu-
tational task to be carried out by Monos during the merge step are intersection tests and
intersection computations between bisectors and skeleton arcs. Initially, we applied Cgal’s
do_intersect and intersection rather naïvely to an arc segment (seen as a straight-line
segment) and a bisector. However, explicitly deciding whether the end-points of an arc seg-
ment lie on different sides of the supporting line of a merge bisector is sufficient to decide
whether an intersection occurs. Once we know that an intersection occurs then we apply
Cgal’s intersection routine to the supporting lines of the arc and the bisector. Tests
showed average runtime savings of about 9 % when using the latter method. Similarly,

G. Eder, M. Held, and P. Palfrader 40:3

switching from C++’s std::set to a self-developed binary min-heap resulted in an average
performance gain of 5 %.

While the actual collapse time of a triangle of the kinetic triangulation is one of the
roots of a quadratic polynomial, solving quadratics is not always necessary. Avoiding root
finding for quadratic polynomials will increase accuracy when working with limited-precision
data types, and it will result in less complex expression trees when working with exact
numbers as provided by Core’s CORE::Expr. In particular, it will avoid the computation
of another square root. Hence, Surfer2 tries to employ geometric knowledge derived from
local combinatoric properties as much as this is possible. For instance, consider a triangle
with exactly one incident wavefront edge. Its collapse can correspond to an edge event, split
event or flip event but we can determine each such event without computing the roots of
a determinant: The times of split and flip events can be found by considering the distance
between the vertex opposite the wavefront edge to the supporting line of the wavefront edge.
This distance is linear in time and when it passes through zero, we either have a flip or split
event as the vertex comes to lie on the supporting line of the wavefront edge.

The use of Core’s CORE::Expr makes it easy for Surfer2 to know which events happen
simultaneously. The significant price to be paid is that comparisons are no longer unit-cost.
Hence, Surfer2 attempts to reduce the number of actual comparisons of event times where
possible. E.g., if a closed loop partitions the plane into two connected components then
the straight skeleton within one component is entirely independent of the straight skeleton
within the other component, thus allowing Surfer2 to avoid comparing event times if the
events happen within different components.

4 Experimental Results

Setup. All runtime tests were carried out on a 2015 Intel Core i7-6700 CPU. For most
of our tests, memory consumption was limited to 10 GiB. The codes were compiled with
clang++, version 7.0.1, against Cgal 5.0 except where stated otherwise.

The default setting for Cgal’s straight-skeleton package [5] is to use the exact predicates
but inexact constructions kernel that ships with Cgal. The use of this kernel ensures
that the straight skeleton computed is combinatorially correct, even if the locations of the
nodes need not be correct. Cgal’s straight skeleton package can also be run with the exact
predicates and exact constructions kernel. However this causes the runtimes to increase by a
factor of roughly 100. Our codes, Monos and Surfer2, use the Cgal exact predicates and
exact constructions with square-root kernel by default, as we construct wavefront vertices
with velocities, and these computations involve square roots.

We tested both Cgal and Surfer2 on many different classes of polygons. Our test data
consists of real-world (multiply-connected) polygons as well as of synthetic data generated
by Rpg [3] and similar tools provided by the Salzburg Database [8]. For a polygon that has
holes we used Cgal’s straight-skeleton code that supports holes. Otherwise we used the
implementation which only supports simple polygons.

Additionally, we tested both of our codes, Monos and Surfer2, with large monotone
polygons, for up to 106 vertices. (We did not run Cgal on these inputs due to memory
constraints.) Given the lack of a sufficiently large number of monotone real-world inputs,
we used Rpg [3] to automatically generate thousands of monotone input polygons. We also
ran Surfer2 on hundreds of real-world PSLGs. Most of our data came from GIS sources
and represents road and river networks, contour lines and the like. The runtimes on those
inputs are quite comparable to the runtimes for polygons. That is, the test results presented

EuroCG’20

40:4 Evaluation of Straight Skeleton Implementations

here are also representative for Surfer2’s performance on real-world data.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●
●
●●●

●
●
●●●

●
●

●

●●
●
●
●

●●

●

●●

●
●●

●●
●●

●●
●
●●●

●●
●●●●●

●
●

●●

●

●

●

●

●●
●●●●

●●
●
●

●
●

●
●
●●●

●
●

●

●
●
●

●
●
●

●

●●

●
●
●

●●●●●●
●

●●
●●
●

●

●

●
●
●●●
●
●●
●
●

●

●

●
●●

●

●

●
●
●

●

●
●●

●

●

●●

●

●

●

●●

●
●
●

●

●●

●●

●

●

●

●●●

●

●

●
●●

●

●
●●

●
●

●

●

●●

●

●
●●

●
●
●
●
●
●

●
●
●
●●●
●
●
●

●

●●

●

●

●
●
●
●●

●

●

●

●

●●●●

●

●
●●
●

●●

●●
●
●
●●●

●

●

●●
●

●

●

●

●●●
●●

●

●

●
●●

●●
●●
●

●

●
●
●●
●

●

● ●

●●

●

●●

●

●
●

●

●

●

●

●●●●
●

●●
●
●

●

●
●●
●
●●
●●
●
●

●

●●
●●●

●

●

●●
●●
●

●

●

●
●
●
●
●
●

●
●
●●●●●●
●
●
●
●

●
●●●
●
●
●●●

●
●●●

●
●
●●

●●
●
●
●●
●●

●●●

●●●
●
●●
●
●
●

●
●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●
●●
●
●
●●
●
●●●●●
●

●

●●

●

●
●

●
●
●
●●
●●

●
●
●

●●
●

●●

●

●
●●●

●

●

●

●

●

●
●

●
●
●
●●

●●●
●●●●

●

●

●

●●

●

●
●●

●

●

●●
●

●
●
●

●
●●●●●●
●●●●
●

●

●
●
●

●

●

●

●●

●

●

●

●●

●●●
●

●
●●●●

●
●

●

●
●

●●●●

●●

●●●

●●●
●

●●
●
●

●

●

●

●

●●
●
●●
●
●

●
●●

●

●

●

●
●●
●●

●

●
●●
●
●
●●●

●

●

●
●
●
●●●
●●●
●●
●
●●
●

●

●
●

●
●●
●●

●

●
●

●
●
●

●●
●
●
●
●

●

●●●

●

●

●
●
●●

●
●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●
●
●
●
●
●
●●
●●●●●
●

●

●●●●●●
●●●
●
●
●●
●
●
●
●●
●

●●
●●●●●

●

●
●●
●

●●

●

●●

●●
●●

●
●
●●
●

●
●●
●

●
●●
●

●

●●

●●

●

●
●
●
●●●
●

●

●
●
●
●●
●

●

●
●
●
●
●●

●
●
●●●●
●
●
●
●

●
●
●
●

●
●

●
●●●

●
●

●

●●
●

●

●

●

●●●
●
●●●
●●

●

●
●●●
●
●

●

●●
●●●
●●●●●
●
●
●
●●●●
●
●

●
●●●●●

●

●

●
●
●
●●●●●
●

●
●

●

●●
●
●●
●●
●
●
●
●●
●
●
●●
●●
●●

●

●

●

●
●
●●●
●●

●

●

●

●●

●●●
●

●
●

●
●
●●●●
●●●●

●

●●
●
●
●

●

●
●●
●
●
●●●●●

●●
●
●●
●●
●●

●
●●
●

●

●
●●
●●
●
●●
●●●●●

●●

●●

●●●

●
●
●●
●
●
●
●

●●
●
●●●
●●

●

●
●
●●●
●
●

●

●
●●
●
●
●●●
●
●●●
●
●
●
●
●

●
●●●

●
●
●
●
●

●
●●
●

●

●
●●●●●
●●
●
●●●●●
●●
●

●

●

●
●

●
●
●

●
●●●
●
●●
●
●●●●●●
●
●●●
●●●●
●●●●
●
●●
●●
●●●
●
●

●●
●
●
●
●
●●
●
●

●●
●
●●

●

●

●

●
●●●
●

●
●
●●●●

●
●●
●●●
●
●
●
●

●
●

●

●
●
●
●
●
●
●●

●

●●

●

●
●●
●
●
●●●
●●●
●●
●
●●●
●

●

●●
●●
●
●●
●
●
●●●
●
●●
●
●
●
●

●

●

●●●●●●
●
●
●
●●●

●●

●●●
●

●

●
●

●●●
●
●

●●
●●
●
●●
●
●
●
●
●●●●●●●
●●●●●
●
●
●
●

●
●
●●
●
●

●

●●
●●●
●●
●
●
●●●●
●
●
●

●●
●
●●

●
●

●

●●●

●

●
●
●
●●●●
●●
●
●

●●●

●
●●●●
●●●

●●

●

●●
●
●
●
●●●●●
●●●
●

●
●●

●

●
●●
●

●●●●
●●
●
●●
●
●
●
●●

●

●

●●
●

●●
●
●●
●
●
●
●
●

●

●●
●●●
●
●●
●●●

●

●
●

●●
●●●
●●

●

●
●
●

●●●
●●●

●

●●

●

●

●

●

●

●●
●
●
●
●
●
●
●●

●●●
●
●●

●
●
●●●●●
●●
●●
●●
●●●
●

●

●
●
●
●

●●

●

●

●
●●●

●

●●
●
●
●

●

●●

●

●
●●
●●●●●
●

●

●
●
●

●
●●

●

●

●●●

●

●
●●●●
●
●●●●

●●
●
●

●

●
●
●
●●●
●●●●
●
●●
●●
●

●
●
●
●●

●

●

●●●
●

●

●
●●

●

●
●
●●●

●

●●
●
●
●●●

●
●
●

●●

●●●●
●
●
●●●●

●

●
●

●

●●
●

●

●●
●●●●
●●●●
●●●
●
●●
●

●

●
●
●

●

●●
●●

●
●●●
●
●

●●

●

●
●
●

●
●●

●

●
●●

●●

●

●

●
●
●

●

●●●●

●
●

●
●●

●

●
●
●

●
●
●
●

●
●●●
●

●
●●●
●●
●

●

●●
●
●

●

●

●
●
●●●

●

●

●●●

●●
●●

●

●●●

●

●

●
●
●●

●

●
●●
●●●

●
●●

●●

●

●●●

●

●
●
●

●

●
●●●●

●

●●●●●

●

●

●●●
●
●
●●

●●

●
●
●
●●
●●●●●
●
●
●

●

●
●●
●●●
●

●●
●
●●●●●●●

●

●

●●●●●●●●●●●●●●
●●●●●●

●
●●●●●

●●

●●

●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●

●●●
●●●●●●
●

●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●
●●●●

●

●

●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●

●

●

●

●●

●●

●

●
●

●●
●

●
●
●

●
●●●

●

●●●
●●●●●●

●●

●
●●●
●

●

●
●

●●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●●
●●●●

● ●●●
● ●

●

●

●●●
●●

●

●
●

●
●
●
● ●

●
●

●

●

●

●
●●●

●●

●

●●
●

● ●

●●

●

●

●
●
●
●

●

●●●
●●

●●
●●●

●

●

●
●
●●●

●
●●
●●
●
●
●●●●

●●

●

●●
●●●

●
●●

●
●●

●

●●

●

●

●●●●
●
●●

●

●
●
●●

●

●●

●

●●
●

●

●●●
●

●●
●

●
●

●

●

●

●
●

●

●

●●●
●
●

●

●

●●
●
●●●

●
●●

●●

●

●●●
●

●

●

●●
●
●

●

●

●

●
●

●
●
●●●●●●

●
●
●
●●

●

●

●

●

●●

●

●
●

●

●●
●●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●
●●●

●●●●

●●

●

●●
●
●
●●

●

●●
●

●
●
●●●●

●

●
●

●

●●

●
●

●

●
●
●●

●●

●

●

●●

●

●

●●
●
●

●

●
●

●

●
●
●●

●

●
●

●

●●
●

●

●●

●

●●●
●●●

●

●●

●

●●●
●

●

●●
●●●

●

●●
●

●
●●

●

●

●

●

●●

●

●
●●●
●
●

●

●

●
●

●●

●

●
●
●

●
●

●

●●●●
●

●
●●
●●
●●●

●

●

●

●

●

●

●
●●

●

●

●
●

●●●

●

●
●●
●●

●

●

●●
●●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●
●
●
●

●

●
●

●

●

●

●●●
●

●
●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●●

●

●●

●

●●●

●

●
●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●●
●
●●

●

●

●●

●

●
●●●

●

●

●●

●
●●●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●●●

●

●

●
●

●

●
●●
●●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●
●●

●

●

●
●

●
●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●
●●

●
●
●

●●

●

●●

●

●●

●

●●●

●

●

●●●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●●●●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●●
●●●

●
●●●

●

●●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

10−3

10−2

10−1

100

101

102

103

102 103 104 105
Vertices

R
un

tim
e

[s
]

●CGAL (interior−only) Surfer2 (plane) Surfer2 (interior−only) Surfer2 (plane, IEEE 754)

Figure 2 Runtimes of Cgal’s code and different variants of Surfer2.

Runtimes and memory consumption. While Cgal’s code computes the straight skeleton
either in the interior or the exterior of a polygon, Surfer2 can do both in one run because
it treats a polygon as a PSLG. But Surfer2 can also be restricted to just the interior or the
exterior of a polygon. Hence, for the plot in Figure 2 we ran Surfer2 twice, once applied
to the entire plane and once for just the interiors of the polygons that were also handled
by Cgal. Our tests make it evident that Surfer2 is significantly faster than Cgal for a
large fraction of the inputs. In particular, its runtime seems to exhibit an n log n growth,
compared to the clearly quadratic increase of the runtime of Cgal’s code. Figure 3 shows
that Surfer2’s memory consumption grows (mostly) linearly while Cgal’s code requires a
clearly quadratic amount of memory.

The results for Cgal’s straight skeleton package were to be expected because (at least
back in 2010) it computed potential split events for each pair of reflex vertex and wave-
front edge [12, Section 2.5.4]. Indeed, tests carried out in 2010 indicated that it requires
O(n2 log n) time and Θ(n2) space for n-vertex polygons, as discussed in [13]. Our test results
suggest that the same algorithm and implementation are applied in the current Cgal 5.0,
which we used for our tests. The theoretical upper bound on the runtime complexity of
Surfer2 is given by O(n3 log n). Thus, its very decent practical performance is notewor-
thy.

G. Eder, M. Held, and P. Palfrader 40:5

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●
●●●●●

●●
●
●●●●●
●●●●●
●●
●●●●●●
●●●●

●
●●●●●●
●
●
●
●●●

●●●
●
●
●
●●●
●●●●
●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●
●●●
●●●●

●●●●●●●
●●
●●●●●

●●●●
●●●●●●

●●●
●●●●●
●●●●
●

●●●●
●
●
●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●

●●
●●●●●

●●●●●●●
●●●

●●
●●●●●●●●

●●
●●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●●●
●●●●●●●●●

●●●●●
●●●●●●
●●●

●●●●●
●●●
●●●●
●●●●
●●●●
●●●●●
●
●●
●●●●●●●

●●●
●●●●●
●●●●●●
●●
●
●●
●●●
●●
●●●●●●
●●●●
●
●●●●●●

●●●●●●●
●●●●●
●●●●●

●●●●●
●●●●●●
●●●
●●

●●●●
●●●●●
●●●●●
●●●●●
●●●

●●
●●●●●●●●●●●
●●
●●●
●●●●●●●

●●●●
●●●●●●●

●●●●●●
●●●●
●●●●
●●●●●●
●●●●●●●●
●●●●
●●●●
●●
●●●●●
●●●
●●●●

●●●●●
●●
●●●●●●●●●●
●●●●●
●●●●●●●
●●●●
●●●
●●●●●

●●●●●●
●●●●
●●
●●●●●

●●●●
●●●●
●●●●●●●●●●●●
●●
●
●●●●●●●
●●●
●●●●

●●●●●●●●●
●●●●
●●●●●

●●●●●
●●●●
●●●●●●●●
●●●●●
●●
●●●●●●
●●
●●●
●●●●
●●●●●
●●●●
●
●●●
●●●
●●●●
●●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●
●●●
●●●●
●●●●●

●●●●●
●●●●●●●

●●●●
●●●
●●●●●●
●
●●●
●●●●●●●

●●●
●●●●●●

●●●
●●●●●●

●●●
●●●●●●●●●

●●●●●●
●●●●●
●●●●●
●●
●●●
●●●●●
●●●●
●●●
●●●●●●●●
●●
●●
●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●
●●●
●●●
●●●●●

●
●●●●●●
●●●●●

●●●
●●●●●
●●●

●●●
●●●●●
●●
●●●●●

●●
●●●●

●●●●●
●●●
●●●●●●
●●●●●●●
●●●●
●●●●●

●●●
●●●●●
●●●●●●●●

●●●
●●●

●●●●●●
●●●
●●●●●●
●●●●●
●●●●
●●●
●●●●
●●●●
●●●●●●
●●●●●●

●●●●
●●
●●●●
●●●

●●
●●●
●●●●●●●●

●●●●
●●●●●
●●●●●●

●●
●●
●●●●●
●●●●●
●●●●●●●

●●●●●●
●●
●●●
●●●●●●●
●●●●●●

●●●
●●●
●●●●●
●●●●●

●●●●●●
●●●

●●●
●●●●●
●●●●●●●

●●
●●●●●
●●●

●●
●●

●●
●●●●●●●
●●●
●●●●●

●●●
●●●●●●

●●●●●
●●●●●
●●
●●●
●●●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●
●
●
●
●●
●
●●●●●

●
●

●●●●
●●
●
●
●
●

●
●●
●
●
●
●●●
●
●
●
●
●●

●

●●●●
●
●

●

●
●●
●●●

●

●

●
●●●

●●●●
●
●
●
●
●
●
●●●●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●●●●
●
●●●●●

●●●●●●●
●

●●
●

●
●●
●●

●

●

●●●●●
●

●
●

●
●
●
●
●
●
●

●
●

●●
●

●●
●●
●
●●●

●●
●●

●●●●
●
●●●●

●●
●●●●

●

●

●
●●
●
●●
●
●●●●●●
●●
●

●

●●
●
●
●●
●●●
●●
●
●●

●
●●●
●
●

●●

●●
●
●
●

●

●●
●

●●
●

●
●

●
●●●
●
●●●
●●

●

●●
●●●

●
●

●
●
●●
●●
●●

●●●
●●

●
●
●
●●

●●
●
●●●
●

●
●●

●●●
●●●●
●

●

●●
●●

●
●●●
●

●
●●●●●

●
●●
●

●

●

●●
●●
●●●

●
●

●

●●
●●
●●●●●●

●
●

●●●●●
●●
●
●
●

●
●●
●

●
●
●
●●
●●

●

●
●
●
●●●●

●
●●●
●●●●●

●
●

●
●
●●
●
●●●

●
● ●●

●
●

●●●

●
●
●●
●
●
●
●
●●

●●
●
●

●

●
●●●●

●
●

●●
●

●

●
●●●
●●
●●

●

●
●
●
●●
●●●●
● ●

●
●

●
●●

●

●
●

●
●
●●
●●
●

●●
●●
●

●●●●●
●

●

●
●

●

●

●●●●●
●

●●
●
●
●●

●
●●●

●●●●
●●
●●
●●

●
●

●●
●
●

●●
●●●

●●
●
●
●
●
●
●
●

●●
●●

●

●
●

●
●●●
●

●●
●●

●
●
●
●●
●

●

●
●●

●
●●

102

103

104

102 103 104 105
Vertices

M
em

or
y

U
se

 [M
iB

]

●CGAL (interior−only) Surfer2 (plane) Surfer2 (interior−only) Monos Surfer2 (plane, IEEE 754)

Figure 3 Memory use of Cgal, Surfer2 variants, and Monos.

To see the runtime and memory characteristics of the practical costs of using CORE::Expr,
we also ran Surfer2 with IEEE 754 double as a number type; cf. Figures 2 and 3.

The O(n log n) bound for the complexity of Monos is apparent in Figure 4, left. Given
that Monos is a special-purpose code designed specifically for handling monotone polygons,
it had to be expected that it outperforms Surfer2 consistently.

Dependence on input characteristics. There are outliers both in the runtime as well as
in the memory consumption of Surfer2 which are clearly visible in Figures 2 and 3. (To
a lesser extent this noise is visible for Cgal, too.) Given the fact that such outliers do not
show up for the IEEE 754-based version of Surfer2, there is reason to assume that this
behavior is not intrinsic to Surfer2’s algorithm but that it has its roots in the use of exact
arithmetic. To probe this issue further we investigated which input classes trigger these
outliers. Figure 5 shows the runtimes of both codes for three different input classes.

The class of input that was most time-consuming to handle for all implementations were
our random octagonal polygons. All polygons out of this group have interior angles which are
multiples of 45°. We were surprised to see that orthogonal polygons need not be troublesome
per se. The key difference between both groups of polygons is given by the fact that all
octagonal polygons have their vertices on an integer grid while the vertices of the orthogonal
polygons are (random) real numbers. Hence, for the octagonal polygons many events tend
to happen at exactly the same time when opposite edges become incident in different parts

EuroCG’20

40:6 Evaluation of Straight Skeleton Implementations

●

●

●

●

●
●

●

● ● ●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●●●●
●●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●
●●●
●●

●

●
● ●

●
●

●●

●●
●

●

101

102

103

104 105 106

Vertices

R
un

tim
e

[s
]

● Surfer2 (interior−only)
Monos

100

101

102

103 104 105

Vertices

R
un

tim
e

[s
]

Monos CGAL 4.13
Monos CGAL 5.0

Figure 4 Left: Runtime of Monos v. Surfer2 on large monotone inputs.
Right: Runtime of Monos with Cgal 4 v. Cgal 5.

of the polygon. It is apparent that the proper time-wise ordering of these events incurs a
significant cost if CORE::Expr is used. The presence of parallel edges does not automatically
increase the runtime of Surfer2, though. The likely explanation is that many events are
caused by opposite wavefront edges that become incident. In such a scenario, Surfer2
constructs a so-called infinitely-fast vertex. These vertices are easy to sort because they are
handled immediately. For comparison purposes we ran the code on random simple polygons
as a third class of input, with random vertex coordinates. Having any kind of co-temporal
event is highly unlikely for those inputs, as are infinitely-fast vertices.

The excessive amounts of time consumed by ordering simultaneous events became even
more apparent when we studied the impact of multiplicative weights on Surfer2’s runtime.
As expected, a difference in the timings for weighted and unweighted random polygons was
hardly noticeable. For our randomly weighted octagonal polygons we expected reduced
runtimes and fewer outliers even when using exact arithmetic, due to very few truly simul-
taneous events. And, indeed, this was confirmed impressively by our tests; see Figure 5.

Experiences with CGAL. While running our tests, we also compared Cgal versions 4.13
and 5.0, as the latter was released only recently. We witnessed an improvement in the
performance of our codes for the newer version; see Figure 4, right.

References
1 O. Aichholzer and F. Aurenhammer. Straight Skeletons for General Polygonal Figures in

the Plane. In Voronoi’s Impact on Modern Sciences II, volume 21, pages 7–21. Institute of
Mathematics of the National Academy of Sciences of Ukraine, 1998.

2 O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner. A Novel Type of Skeleton
for Polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.

3 T. Auer and M. Held. Heuristics for the Generation of Random Polygons. In Proceedings
of the 8th Canadian Conference on Computational Geometry (CCCG), pages 38–44, 1996.

4 T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader. A Simple Algorithm for Comput-
ing Positively Weighted Straight Skeletons of Monotone Polygons. Information Processing
Letters, 115(2):243–247, 2015.

G. Eder, M. Held, and P. Palfrader 40:7

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

CGAL

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●●●
●
●●

●

●
●

●
●

●

●

●

●●
●
●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●
●

●

●

●●

●
●

●●●

●
●

●
●

●

●

●
●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●
●
●

●

●
●●
●●
●
●
●

●
●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● unweighted rpg_octa
randomly weighted rpg_octa

Figure 5 Top: The effect of different input classes on the runtime of Surfer2 and on Cgal.
Bottom-left: Samples for different input classes (left to right, top to bottom): Octagonal input
(on integer grid), random polygon, orthogonal polygon not on integer grid, and weighted octagonal
input. Bottom-right: Surfer2 runtimes for unweighted and randomly weighted octagonal input.

5 F. Cacciola. 2D straight skeleton and polygon offsetting. In CGAL User and Reference
Manual. CGAL Editorial Board, 5.0 edition, 2019.

6 S.-W. Cheng, L. Mencel, and A. Vigneron. A Faster Algorithm for Computing Straight
Skeletons. ACM Transactions on Algorithms, 12(3):44:1–44:21, 2016.

7 G. Eder and M. Held. Computing Positively Weighted Straight Skeletons of Simple Poly-
gons Based on Bisector Arrangement. Information Processing Letters, 132:28–32, 2018.

8 G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader. On Generating Polygons:
Introducing the Salzburg Database. In Proceedings of the 36th European Workshop on
Computational Geometry, pages 75:1–7, 2020.

9 D. Eppstein and J. Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Appli-
cations of a Data Structure for Finding Pairwise Interactions. Discrete & Computational
Geometry, 22(4):569–592, 1999.

10 M. Held and P. Palfrader. Straight Skeletons with Additive and Multiplicative Weights and
Their Application to the Algorithmic Generation of Roofs and Terrains. Computer-Aided
Design, 92(1):33–41, 2017.

EuroCG’20

40:8 Evaluation of Straight Skeleton Implementations

11 M. Held and P. Palfrader. Skeletal Structures for Modeling Generalized Chamfers and
Fillets in the Presence of Complex Miters. Computer-Aided Design and Applications,
16(4):620–627, 2019.

12 S. Huber. Computing Straight Skeletons and Motorcycle Graphs: Theory and Practice.
Shaker Verlag, 2012. ISBN 978-3-8440-0938-5.

13 S. Huber and M. Held. Theoretical and Practical Results on Straight Skeletons of Planar
Straight-line Graphs. In Proceedings of the 27th Symposium on Computational Geometry
(SoCG), 2011.

14 T. Kelly and P. Wonka. Interactive Architectural Modeling with Procedural Extrusions.
ACM Transactions on Graphics, 30(2):14:1–14:15, Apr. 2011.

15 P. Palfrader, M. Held, and S. Huber. On Computing Straight Skeletons by Means of Kinetic
Triangulations. In Proceedings of the 20th Annual European Symposium on Algorithms
(ESA), pages 766–777, 2012.

16 The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.0
edition, 2019.

17 A. Vigneron and L. Yan. A Faster Algorithm for Computing Motorcycle Graphs. Discrete
& Computational Geometry, 52(3):492–514, 2014.

Finding an Induced Subtree in an Intersection
Graph is often hard∗

Hidefumi Hiraishi1, Dejun Mao2, and Patrick Schnider3

1 Graduate School of Information Science and Technology, The University of
Tokyo
hiraishi1729@is.s.u-tokyo.ac.jp

2 Graduate School of Information Science and Technology, The University of
Tokyo
maodejun001@is.s.u-tokyo.ac.jp

3 Department of Computer Science, ETH Zürich
patrick.schnider@inf.ethz.ch

Abstract
We prove that the induced subtree isomorphism problem is NP-complete for penny graphs and
chordal graphs as text graphs. As a step in the proofs, we reprove that the problem is NP-
complete if the text graph is planar. For many other graph classes NP-completeness follows, as
they contain one of the above three classes as a subclass, e.g., segment intersection graphs and
coin graphs (contain planar graphs) or unit disk graphs (contain penny graphs).

1 Introduction

The Subtree isomorphism problem (STI) takes as input a graph G, called the text graph,
and a tree T , called the pattern graph. The task is to determine whether G contains a copy
of T , that is, a subgraph that is isomorphic to T . Clearly, this problem is in NP. It follows
from the NP-completeness of Hamiltonian path that STI is NP-complete for all graph
classes for which Hamiltonian path is hard. This includes many graph classes that we will
talk about in this work, such as planar graphs, unit disk graphs and chordal graphs [2]. In
some of the literature, such as [7, 9], STI is actually restricted to the case where G is a tree.
In this case, STI allows a polynomial algorithm.

In contrast to STI, the Induced Subtree isomorphism (ISTI) asks whether a text graph
G contains an induced copy of T . While this modification might seem rather minor at first
glance, it can actually change the problem quite significantly. For example, on interval graphs,
STI is NP-complete, whereas ISTI is tractable [4]. On the other hand, NP-completeness
can still follow from the NP-completeness of Hamiltonian path, but only after subdividing
each edge with an additional vertex (see e.g. [6]). The question then reduces to finding a
path of length 2n− 1 in the new graph, which can in turn be reduced to Hamiltonian path.
However, this reduction only works for graph classes that are closed under subdivision of
edges. This includes planar graphs, but not penny graphs or chordal graphs.

In this abstract, we will show that ISTI is still hard for the two latter classes. For chordal
graphs, this answers a question by Heggernes, van’t Hof and Milanič [4]. We will also give
an alternative proof that ISTI is hard for planar graphs. While our proof is arguably more
complicated than the argument above, it is the basis for the other reductions. For many
other classes of intersection graphs, NP-completeness of ISTI follows from our results.

∗ This work was initiated when the third author was visiting the University of Tokyo.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

41:2 Finding an Induced Subtree in an intersection graph is often hard

In general, an intersection graph is a graph whose vertices are subsets of some ground
set and two vertices share an edge if and only if the corresponding sets intersect. The sets
can be geometric objects such as straight-line segments in the plane, giving rise to segment
intersection graphs, or disks in the plane, giving rise to disk graphs. For disk graphs, we can
also enforce that any two disks have disjoint interiors (coin graphs), that all disks have the
same radius (unit disk graphs), or both of these conditions (penny graphs). On the other
hand, the sets can also be of a combinatorial nature. For example, the vertices could be
subtrees of a given tree and two vertices share an edge if the corresponding subtrees share
at least one vertex. These subtree intersection graphs are called chordal graphs. Another
definition for chordal graphs is that every cycle of length at least 4 needs to have a chord,
i.e., an edge that is not part of the cycle but connects two vertices of the cycle. These two
definitions were shown to be equivalent by Gavril [3].

2 Planar graphs

We will use a reduction from a variant of 3-SAT, called Clause-Linked Planar 3-
SAT. Given a CNF formula φ with clause set C and variable set V , the incidence graph
Gφ = (C ∪ V,E) is the graph that contains an edge between a variable and a clause if and
only if the variable or its negation appear as a literal in the clause. We say that φ is planar if
Gφ is a planar graph. The problem Planar 3-SAT is 3-SAT restricted to planar formulas.
Planar 3-SAT is NP-complete [5]. We can enforce even more conditions without making
the problem tractable: we say that a planar 3-CNF formula φ is clause-linked if there exists
a path P (without additional vertices) connecting the clauses in G(φ) such that G(φ) ∪ P
is still a planar graph. Clause-Linked Planar 3-SAT, which is 3-SAT restricted to
clause-linked planar formulas, is still NP-complete, see for example [8].

I Theorem 2.1. Induced Subtree Isomorphism is NP-complete even when restricted to
planar graphs.

We will only describe the construction of the gadgets, the correctness is rather straight-
forward.

Proof. It is straight-forward to see that ISTI is in NP, so the rest of the proof will be dedicated
to prove NP-hardness. We will do this by reduction from Clause-Linked Planar 3-SAT.
For any clause-linked planar 3-SAT formula φ we construct a planar graph H with the
property that there is an assignment satisfying φ if and only if H contains an induced copy
of a certain tree.

Let φ be a clause-linked planar 3-SAT formula and let G(φ) be its associated graph and
P the path through its clauses. Consider a plane drawing of G(φ) ∪ P . We will mimic the
formula φ by constructing subgraphs, called gadgets, that serve as variables, negations and
clauses, and concatenating them according to the drawing of the graph G(φ). We start with
the construction of the variable and negation gadgets.

Let v be a variable with k occurrences (v, C1), . . . , (v, Ck) in φ, where the order of the
occurrences is according to the rotational order of the respective edges in the drawing of
G(φ) ∪ P . For an illustration of the construction, see Figure 1. We first construct a path
W = (w1, w2, . . . , w2k) of length 2k. We then add k vertices x1, . . . , xk and connect each xi
to w2i−1 and w2i. Consider the star on 5 vertices (4 leafs). We call this star the variable
signature. For each xi, construct a copy of the variable signature and connect one of its leafs
to xi. Finally, extend a path pi = (wi, pi,1, . . . , pi,l1 , . . . , pi,l) of length l = l1 + l2 from each
wi, where l1 and l2 are some large enough numbers (that are still polynomial in the number

H. Hiraishi, D. Mao and P. Schnider 41:3

of variables), which we will define later. We call the vertices p2i−1,l and p2i,l the endpoints of
(v, Ci). For every pair of such paths p2i−1, p2i, add two vertices ai, bi. If (v, Ci) is a positive
occurrence, connect both ai and bi to p2i−1,l1 , otherwise connect them to p2i,l1 . We call such
two vertices an edge signature.

x1 x2 xi xk

p1 p2 p3 p4 p2i−1 p2i p2k−1 p2k

w1 w2 w3 w4 w2k−1
w2k

edge
signature

variable
signature

Figure 1 A variable gadget. The variable is negated in the clause Ck.

The idea behind this construction is that we will choose for each variable all the variable
signatures and either the paths p1, p3, . . . , p2k−1 or the paths p2, p4, . . . , p2k in the induced
subtree. Also choosing the edge signature for a path will then mean that the variable is set
to true. Note that every variable gadget admits a plane drawing in a disk of some radius
such that only the paths pi leave the disk and they do so according to the rotational order of
the respective edges in the drawing of G(φ) ∪ P .

We will now construct the clause gadgets. For an illustration see Figure 2. Let C1, . . . , Cm
be the clauses in the order in which they appear along P . For every clause Ci, draw a
vertex ci and connect them with a path c1, . . . , cm. For some clause Ci, let v1, v2 and v3 be
the variables occurring in Ci. Connect ci to the endpoints of (v1, Ci), (v2, Ci) and (v3, Ci).
Again, this gadget admits a plane drawing that agrees with the rotational order around each
Ci in the drawing of G(φ) ∪ P .

v1 v2

v3

ci

ci+1

ci−1

Figure 2 A clause gadget.

EuroCG’20

41:4 Finding an Induced Subtree in an intersection graph is often hard

The union of all the gadgets will be the text graph H. As every gadget admits a planar
drawing that agrees with the original rotational order, H admits a plane drawing. See Figure
3 for an example of the whole construction. We will now define our pattern graph T . Start
with a path M of length m (the number of clauses). From each vertex of M , extend three
paths of length l and connect each of them to a variable signature and exactly one of them
to an edge signature.

It now follows from the construction that H contains an induced copy of T if and only if
φ is satisfiable.

v1 ∨ v2 ∨ ¬v3 ¬v2 ∨ v3 ∨ v4

v1 v2

v3 v4

φ H

T

Figure 3 A drawing of a planar formula φ with the corresponding text graph H and pattern
graph T .

J

I Corollary 2.2. Induced Subtree Isomorphism is NP-complete even when restricted to
coin graphs or segment intersection graphs.

Proof. The Koebe-Andreev-Thurston circle packing theorem states that every planar graph
is a coin graph (and vice versa). Further, every planar graph is a segment intersection graph
[1]. J

3 Penny graphs

In this section we will modify our reduction to fit penny graphs. It is again straightforward
to check that ISTI is in NP, so we will only show NP-hardness. Again, we will only describe
the construction of the gadgets, as all other arguments are analogous to the case of planar
graphs.

I Theorem 3.1. Induced Subtree Isomorphism is NP-complete even when restricted to
penny graphs.

H. Hiraishi, D. Mao and P. Schnider 41:5

Proof. We first show that we can draw unit disks with disjoint interiors such that their
induced embedded penny graph coincides with the drawing of a variable gadget as constructed
above. For an illustration of the construction see Figure 4. Place the centers of the disks the
path W on a circle with very large radius, i.e., the disks will only cover a very small part of
the circle. The disks corresponding to the xi’s and the variable signatures can then be placed
inside the circle without any intersections. Further, the paths pi can be placed outside the
circle, and choosing l large enough, we can make enough space for the edge signatures. As
for the clause gadgets, note that in our original construction, each vertex ci is the center of
an induced star on 9 vertices (8 leafs). However, the largest induced star induced star in a
penny graph can have 6 vertices (5 leafs). So, instead of connecting the endpoints of p2i−1
and p2i directly to ci, we will connect them to a new vertex d and then connect this vertex to
ci by a path of some length l3. Similarly, we will also connect ci to ci+1 by a path of length
l4. Here, l3 and l4 are chosen large enough to have enough room the place the corresponding
unit disks without unwanted intersections. Defining the pattern graph H accordingly, it is
straight-forward to check that all the above arguments still go through.

Figure 4 A variable gadget (left) and a clause gadget (right) for penny graphs.

J

Clearly, every penny graph is a unit disk graph, so we immediately get the following
corollary:

I Corollary 3.2. Induced Subtree Isomorphism is NP-complete even when restricted to
unit disk graphs.

4 Chordal graphs

In this section we will modify our reduction to fit chordal graphs. It is again straightforward
to check that ISTI is in NP, so we will only show NP-hardness. We will again only change
the gadgets slightly, but we will include a large number of additional edges to make the
graph chordal. As above, we will only describe the modifications in the construction.

I Theorem 4.1. Induced Subtree Isomorphism is NP-complete even when restricted to
chordal graphs.

EuroCG’20

41:6 Finding an Induced Subtree in an intersection graph is often hard

Proof. We make the two following modifications to the variable gadgets for planar graphs:
first, we place an additional vertex yi on the edge between wi and wi+1. So, the path W is
now w1, y1, w2, y2, . . . , w2k−1, y2k−1, w2k. Secondly, instead of placing an edge signature at
one place on a path pi, we place one at every vertex. We further add an additional vertex for
every vertex on some pi, connecting it to only this vertex. We call these vertices edge leafs.
The clause gadgets we extend by constructing a set of k paths of length 3 for each clause
and connecting each of them to the respective ci. We call these k 3-paths clause signatures.

Now, we will add chords to all cycles in our current graph. There are two types of cycles:
(i) cycles defined by p2i−1 and p2i for some variable and (ii) cycles inherited from cycles
in G(φ) ∪ P . For (i), we add a complete bipartite graph between the vertices of p2i−1 and
p2i. Further, we connect all vertices of p2i−1 and p2i to y2i−1. As every such cycle must
contain vertices from both p2i−1 and p2i and possibly yi, any such cycle will now have a
chord. Similarly we add a complete bipartite graph between the vertices of p2i and p2i+1 and
connect all vertices of p2i and p2i+1 to y2i. This does not destroy any existing cycles, but it
also does not introduce any chordless cycles. These edges will be helpful for the correctness
proof, as they ensure that not both p2i and p2i+1 can be chosen.

For (ii), recall that every edge in G(φ) corresponds to some pair of paths p2i−1 and p2i for
some variable. Further recall that all edges of P correspond to single edges in our constructed
graph. Thus, every cycle in G(φ) ∪ P that uses t edges of G(φ) induces 2t cycles in our
constructed graph. Further, each of these cycles in the constructed graphs will go through
some vertices yj and paths pi. For every pi and every yj , we connect all vertices on pi to yj .
Again, this puts a chord in every cycle.

Denote by H the chordal graph that we get from the above construction. We will now
define our pattern graph T , which will be very similar to the pattern graph in the reduction
for planar graphs. Start with a path M of length m (the number of clauses). From each
vertex of M , connect it to a clause signature and three paths of length l. Add an edge leaf
to each vertex on these paths. Finally, connect each of the paths to a variable signature and
for exactly one path per clause, connect each vertex on the path to an edge signature.

Similar to above it can now be shown that H contains an induced copy of T if and only
if φ is satisfiable.

We claim that H contains an induced copy of T if and only if φ is satisfiable. Finding
a copy of T given a satisfying assignment of φ is analogous to the proof for planar graphs.
For the other direction, we will again show that every induced copy of T corresponds to a
satisfying assignment of φ. For this, we first note that T contains 3m disjoint paths of length
l with edge leafs, each connected to a variable signature. On the other hand, H contains
6m paths of length l with edge leafs, always two of which (p2i−1 and p2i for every variable)
are connected to the same variable signature. In particular, every induced copy of T must
contain either p2i−1 or p2i and it cannot contain both. Further, due to the complete bipartite
graph between p2i and p2i+1, T cannot contain both of them. Thus, T either contains
p1, p3, . . . , p2k−1 or p2, p4, . . . , p2k. Again, we set the corresponding variable to TRUE in the
first case, and to FALSE in the second case. Note that each the clause signatures ensure
that ci is the endpoint of three such paths and necessarily in T . By construction, each of
these paths is connected to an edge signature if and only if the corresponding literal on the
connected clause is positive. In particular, each ci being incident to a path connected to an
edge signature implies that under this assignment, each clause contains at least one positive
literal, i.e., φ is satisfiable, which concludes the proof.

J

H. Hiraishi, D. Mao and P. Schnider 41:7

References
1 Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection graph of

segments in the plane. In Proceedings of the forty-first annual ACM symposium on Theory
of computing, pages 631–638. ACM, 2009.

2 H. N. de Ridder et al. Information system on graph classes and their inclusions.
www.graphclasses.org, 2016.

3 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47 – 56, 1974. URL: http://www.
sciencedirect.com/science/article/pii/009589567490094X, doi:https://doi.org/
10.1016/0095-8956(74)90094-X.

4 Pinar Heggernes, Pim van’t Hof, and Martin Milanič. Induced subtrees in interval graphs.
In International Workshop on Combinatorial Algorithms, pages 230–243. Springer, 2013.

5 D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–
343, 1982. doi:10.1137/0211025.

6 Jiří Matoušek and Robin Thomas. On the complexity of finding iso-and other morphisms
for partial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992.

7 David W. Matula. Subtree isomorphism in o(n5/2). In B. Alspach, P. Hell, and D.J. Miller,
editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics,
pages 91 – 106. Elsevier, 1978. URL: http://www.sciencedirect.com/science/article/
pii/S0167506008703248, doi:https://doi.org/10.1016/S0167-5060(08)70324-8.

8 A. Pilz. Planar 3-SAT with a clause/variable cycle. CoRR, abs/1710.07476, 2017. URL:
http://arxiv.org/abs/1710.07476, arXiv:1710.07476.

9 Ron Shamir and Dekel Tsur. Faster subtree isomorphism. Journal of Algorithms,
33(2):267 – 280, 1999. URL: http://www.sciencedirect.com/science/article/pii/
S0196677499910441, doi:https://doi.org/10.1006/jagm.1999.1044.

EuroCG’20

Scaling and compressing melodies using geometric
similarity measures
L. E. Caraballo1, J.M. Díaz-Báñez1, F. Rodríguez1, V.
Sánchez-Canales1, and I. Ventura1

1 University of Seville
lcaraballo@us.es,dbanez@us.es,fabrodsan@us.es,vscanales@us.es,iventura@us.es

Abstract
Melodic similarity measurement is of key importance in Music Information Retrieval. In this

paper, we use geometric matching techniques to measure the similarity between two monophonic
melodies. We propose efficient algorithms for optimization problems inspired in two operations on
melodies: scaling and compressing. In the scaling problem, an incoming query melody is scaled
forward until the similarity measure between the query and the reference melody is minimized.
The compressing problem asks for a subset of notes of a given melody so that the matching cost
between the selected notes and the reference melody is minimized.

1 Introduction

Musicological and computational studies on rhythmic and melodic similarity have given rise
to a number of geometric problems [6]. A melody can be codified as a consecutive sequence
of musical notes and each note can be represented by a point (point-representation) [3] or
a horizontal segment (segment-representation) in a time pitch value [5]. In this paper we
study two problems that arise in Musical Information Retrieval (MIR): scaling and melody
compressing. Scaling is used for tempo variation [4] and compression for clustering [2]. Given
a reference melody, a query melody and a similarity measure, in the scaling problem the
incoming query is scaled forward in the horizontal direction to find the minimum similarity
measure between it and the reference melody. The compressing problem of a given melody
asks to select k notes of such melody so that the similarity measure between the reference
and the simplified melody is minimized. The study of measures for melodic similarity is
of key importance for a music retrieval system. Techniques based on geometric similarity
measures have been used in the literature. In [1], the following geometric matching technique
for music similarity measurement was proposed: Each note is represented as a horizontal
line segment so that a sequence of notes can be described as a rectangular contour in a 2D
coordinate system, in which the horizontal and vertical coordinates correspond to time and
pitch value, respectively. Then, the used similarity measure between two melodies is the
minimum area between them. They solve the problem of searching a query melodic segment
of length m into a reference melody of length n in O(nm logn) time. The optimal matching
is obtained by moving from left to right and bottom to up the query segment until the
matched area is minimized.

This research has been supported by the project GALGO (Spanish Ministry of Economy and
Competitiveness, MTM2016-76272-R AEI/FEDER,UE) and the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
No 734922.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

42:2 Scaling and compressing melodies using geometric similarity measures

1.1 Problems statement
Let R = (R1, R2, ..., Rn) and Q = (Q1, Q2, ..., Qm) be sequences representing two melodies
with m < n. R is the reference melody from the data set and Q is the query melody to be
matched. In the point-representation, we assume that the points representing the notes are
just the middle points of the horizontal segments in the corresponding segment-representation.
We also call melodic contour to a segment-representation.

In the following, we introduce two geometric measures to compute similarity and two
operations on a melody that are the main ingredients of the problems.

Area: The region between two melodies with the same duration in the segment-
representation can be partitioned into rectangles with vertical edges supported by vertical
straight lines passing through the ending points of the segments. The area between two
melodies is defined as the sum of the areas of the rectangular regions of the partition. See
Figure 1a).

t-Monotone Matching: Let R = {Ri = (xi, pi), i = 1, · · · , n} and Q = {Qj =
(tj , qj), j = 1, · · · ,m } be two melodies within the point-representation. In a t-monotone
matching between R and Q, we map each point of R to its nearest t-coordinate point in
Q, that is, the left- or the right-point in time. The unmatched points of Q are associated
to their t-coordinate nearest in R. See Figure 1b). Note that this matching is designed for
music matching and does not use the Euclidean distance. The cost of the note Qj , φ(Qj), is
given by the sum of the l1-distances between Qj and its matched points in R and the total
cost of the matching is

φ(R,Q) =
∑

Qj∈Q

φ(Qj).

ε-scaling: Consider a segment-representation of two melodies R and Q. Let X =
(x0 = 0, x1, x2, ..., xn) and T = (t0 = 0, t1, t2, ..., tm) be the partitions on time given by the
R and Q, respectively. Given ε > 0, we define the ε-scaling on the query Q, Sε(Q), as
the operation of increasing by ε the length of each segment of Q but keeping static the
starting point of Q. Thus, after an ε-scaling, X does not change and T is transformed to
T + ε = (t0, t1 + ε, t2 + 2ε, t3 + 3ε, · · · , tm +mε). The query can be scaled forward until the
two melodies have the same time duration. Thus, 0 ≤ ε ≤ xn−tm

m . Note that the pitch of the
notes are unchanged in the scaling operation. Now, for a point-representation of R and Q,
R = {(xi, pi), i = 1, · · · , n} and Q = {(tj , qj), j = 1, · · · ,m }, the ε-scaling of Q is given by
Sε(Q) = {(t1 + ε

2 , q1), (t2 + ε, q2), · · · , (tm + m
2 ε, qm))}.

k-compressed melody: Given a melody R with n notes in the segment-representation,
a k-compressed melody, Qk, is a melody composed by k segments such that Qk and R have
the same duration and each segment of Qk contains at least a segment of R. Figure 2b). For
the point-representation, a k-compressed melody Qk is a subset of k notes of R. Figure 2a).

In this paper we study the following optimization problems:
I Problem 1.1. Given two melodies R and Q in the segment-representation, compute the
value of ε > 0 such that the area between R and Sε(Q) is minimized.
I Problem 1.2. Given two melodies R and Q in the point-representation, compute the value
of ε > 0 such that the cost of the t-monotone matching between R and Sε(Q) is minimized.
I Problem 1.3. Given a melody R in the point-representation, compute a k-compressed
melody Qk so that the cost of the t-monotone matching between R and Qk is minimized.
I Problem 1.4. Given a melody R with n notes in the segment-representation, compute a
k-compressed melody Qk so that the area between R and Qk is minimized.

Caraballo, Díaz-Báñez et al. 42:3

Note that in the scaling problems, the reference melody is fixed whereas the query melody
is dynamic. However, the compressing problems ask for an optimal selection of the notes in
the reference melody. Figures 1 and 2 illustrate the problems.

0 t1 t2 t3 t4x1 x2 x3 x4 (x5, t5)

RQ

0 x1 x2 x3 x4 x5 x6 x7 x8t1 t2 t3 t4 t5

a) b)

Figure 1 a) Area between the reference R and the query Q, Problem 1.1. b) t-Monotone matching
between the reference R (blue) and the query Q (red), Problem 1.2.

x5 x6 x7x1 x2 x3 x4 x9 x100 x8 0 x1 x2 x3 x4 x5 x6 x7 x8

R

Q2

a) b)

Figure 2 a) A 3-compressed melody from an input of 10 notes, Problem 1.3. b) Area between a
melody R and a 2-compressed melody Q2, Problem 1.4.

2 Scaling

2.1 Area as similarity measure
We assume that the last segment of the scaled query Sε(Q) is extended so that the duration
of R and Sε(Q) is the same. Thus, the area between the melody R and Sε(Q) is the sum of
O(m+ n) rectangles as illustrated in Fig 1a). Denote by ARQ(ε) the area between R and
Sε(Q) as a function of ε. Observe that after an ε-scaling of the query for a big enough ε,
at least one pair of vertical edges coincide, that is, xi = tj for some i, j. At this instant, a
rectangle disappears and after that, a new rectangle appears. We call this value of ε an event.

EuroCG’20

42:4 Scaling and compressing melodies using geometric similarity measures

Also note that between two events, the area of some rectangles increase, others decrease and
others are unaffected. In fact, the type of a rectangle can be determined by its vertical edges.
Rectangles can be classified in four types: Type C0, with vertical edges [xi, xi+1]; type C1,
with vertical edges [tj , tj+1]; type C2, with vertical edges [xi, tj] and type C3, with vertical
edges [tj , xi]. Figure 3 illustrates an event in which a rectangle of type C3 disappears.

...

...

...

...

...

...
xi xi+1tj+1tj (xi, tj)

...

...

...

...

...

...
xi+1tj+1

ε

εrj+11

rj+12

rj2rj1 r′j1
rj+11

rj+12

a) b)

R

Q

R

Sε(Q)

Figure 3 a) Rectangles between R and Q. b) After the scaling Sε(Q), an event is found when tj

touches xi. Rectangle rj1 disappears and rj2 is renamed as r′j1 .

The following result allows us to discretize the problem:

I Lemma 2.1. ARQ(ε) is a piecewise linear function.

As a consequence of Lemma 2.1, the minimum area is reached at the events and our
approach is to efficiently reevaluate the area in each event and take the minimum value.

I Lemma 2.2. ARQ(ε) can be updated between two consecutive events in O(1) time.

I Theorem 2.3. Problem 1.1 can be solved in O(nm logm) time.

2.2 t-Monotone matching as similarity measure
Let R = {(xi, pi), i = 1, · · · , n} and Q = {(tj , qj), j = 1, · · · ,m } be two melodies in the
point-representation. The t-Monotone matching between R and Q generates two sets of pairs
of points. Let P1(resp. P2) be the set of pairs such that xi ≤ tj (resp. xi > tj). Observe
that for a small ε > 0, after the scaling Sε(Q) of Q, the costs related to pairs in P1 (resp.
P2) increase (decrease). The sets P1 and P2 are dynamics in the scaling operation, that is,
tj is moving from left to right but xi is static. For the sake of simplicity, for any ε in the
scaling process, we use (xi, tj) or (i, j) to refer the pair with abscissas xi and tj . We call
events to the values of ε > 0 where the pair (i, j) can change. We have three type of events:

1. The instant at which xi = tj : the pair (i, j) changes from P2 to P1.
2. The instant at which the bisector of tj and tj+1 passes through xi: the pair (i, j + 1) in

P2 becomes the pair (i, j) in P1.
3. The instant at which tj passes trough the bisector of xi and xi+1: the pair (i, j) in P1

becomes the pair (i+ 1, j) in P2.

I Lemma 2.4. The cost φ(R,Sε(Q)) is a linear function between two consecutive events.

I Lemma 2.5. The cost φ(R,Sε(Q)) can be updated between two consecutive events in O(1)
time.

Caraballo, Díaz-Báñez et al. 42:5

Using Lemma 2.4 and Lemma 2.5, the problem can be solved by efficiently updating the
local optimum values reached at the events and we can prove:

I Theorem 2.6. Problem 1.2 can be solved in O(nm log(n+m)) time.

3 Compressing

3.1 t-Monotone matching as similarity measure
LetR = {Ri = (xi, pi), i = 1, · · · , n} be a sequence of notes according the point-representation
and k ∈ {1, · · · , n}. Let Ck = {c1, . . . , ck} ⊆ R be a k-set of R. Consider a t-monotone
matching between R and Ck and set φ(R,Ck) =

∑
ci∈Ck

φ(ci).

I Definition 3.1. Let Ck = {c1, . . . , ck} be a k-set of R.
1. Set ←−R = {Ri ∈ R : x(Ri) ≤ x(ck)}. The left partial evaluation of Ck is defined as:

←−
φ (R,Ck) = φ(←−R,Ck).

2. We say that Ck is left optimal if ←−φ (Ck) ≤ ←−φ (C ′k) for all C ′k = {c′1, . . . , c′k} where c′k = ck.
3. The j-prefix of Ck, is the j-set formed by the first j points of Ck.

The following result can be easily proven by contradiction:

I Lemma 3.2. Let C∗k = {c∗1, . . . , c∗k} be an optimal k-set of S. Then, for all 1 ≤ j ≤ k the
j-prefix of C∗k is left optimal.

I Corollary 3.3. Let Cj = {c1, . . . , cj} be a j-set which is left optimal. Then every prefix of
Cj is also left optimal.

Above properties allow us to solve the problem with dynamic programming. A sketch
of the idea is as follows. Let pi and pi′ be two consecutive points in a k-set. Let Wii′

be the cost of the t-monotone matching for points between pi and pi′ . Then, for a k-set
Ck = {pi1 , . . . , pik

}, where 1 ≤ ij ≤ k and ij < ij+1, the total cost φ(Ck) can be rewritten as
W0,i1 +Wi1,i2 + · · ·+Wik,(n+1), where W0,i1 (resp. Wik,(n+1)) denotes the assignment cost
of the points to the left (resp. right) of pi1 (resp. pik

).
Now, assume that we have preprocessed the values Wii′ , for all 0 ≤ i < i′ ≤ n + 1.

Consider the tables C[i, j] and P [i, j] whose keys i and j are integers in the intervals [1, n]
and [1, k]. The cell C[i, j] stores the cost of the left optimal j-set Cj that ends using pi as the
j-th point of the subset. The cell P [i, j] stores the index i′ < i of the (j − 1)-th point of Cj .

I Theorem 3.4. Assuming that the values Wi′,i are already known, the optimum k-set can
be computed in O(kn2) time.

I Lemma 3.5. We can compute all the values Wi′,i in O(n2) time.

I Theorem 3.6. Problem 1.3 can be solved in O(kn2) time.

3.2 Area as similarity measure
Given a melodic contour R with n notes, we want to find a k-compression Qk of R that
minimizes the area between R and Qk. Let X = (x0 = 0, . . . , xn) and T = (t0 = 0, . . . , tk) be
the partitions on the time interval [0, xn = tk] of R and Qk, respectively. Let P = (p1, . . . , p`),
` ≤ n be the set of different pitch values among the notes of R.

EuroCG’20

42:6 Scaling and compressing melodies using geometric similarity measures

I Lemma 3.7. Let R be a melodic contour with time partition X = (x0 = 0, . . . , xn). Let
0 < k ≤ n be a natural number. There exists a melody contour Q∗k of k notes and time
partition T = {t0 = 0, . . . , tk = xn} that minimizes the area difference with R overall all
the melodic contours of k notes starting at time x0 and ending at time xn and fulfills the
following two properties:
1. T ⊆ X and,
2. each note of Q∗k contains at least a note of R.

Recall that the notes of a k-compression of R contain notes of R. The previous lemma
says that there exists an optimal melodic contour with k notes that is a k-compression.

Let R be a melodic contour with time partition X = {x0, . . . , xn}. For every x0 ≤ t ≤ xn,
we denote by R←−

t
the prefix melody of R with time partition X←−

t
= {x0, . . . , xi, t}, where

xi < t ≤ xi+1. The following result establishes an optimal substructure of a solution.

I Lemma 3.8. Given three values 1 ≤ j ≤ k, j ≤ i ≤ n and p ∈ P , denote by Sp(i, j) the
set of all the melodies formed by j notes starting at time x0 and ending at time xi whose last
note µ has pitch p ∈ P and starts at some time x ∈ X, x < xi. Then, there exists a melody
C ∈ Sp(i, j) that minimizes the area difference with R←−xi

over all the melodies in Sp(i, j) such
that C←−xi′

is an optimum (j − 1)-compression melody of R←−xi′
, where xi′ is the starting time

of the last note of C.

Based on the previous result, dynamic programming can be used and we can prove:

I Theorem 3.9. Problem 1.4 can be solved in O(k`n) time, where ` is the number of different
pitch values of R.

References
1 G. Aloupis, T. Fevens, S. Langerman, T. Matsui, A. Mesa, Y. Nuñez, D. Rappaport,

and G. Toussaint. Algorithms for computing geometric measures of melodic similarity.
Computer Music Journal, 30(3):67–76, 2006.

2 R. Cilibrasi, P. Vitányi, and R. de Wolf. Algorithmic clustering of music based on string
compression. Computer Music Journal, 28(4):49–67, 2004.

3 R. Clifford, M. Christodoulakis, T. Crawford, D. Meredith, and G. A. Wiggins. A fast,
randomised, maximal subset matching algorithm for document-level music retrieval. In
ISMIR, pages 150–155, 2006.

4 J.-S. Roger Jang, H.-R. Lee, and Ming-Yang K. Content-based music retrieval using linear
scaling and branch-and-bound tree search. In IEEE International Conference on Multime-
dia and Expo, 2001. ICME 2001., pages 74–74, 2001.

5 D. O. Maidín. A geometrical algorithm for melodic difference. Computing in musicology:
a directory of research, (11):65–72, 1998.

6 G. Toussaint. Computational geometric aspects of rhythm, melody, and voice-leading.
Computational Geometry, 43(1):2–22, 2010.

Rotational symmetric flexible placements of
graphs∗

Sean Dewar1, Georg Grasegger1, and Jan Legerský2,3

1 Johann Radon Institute for Computational and Applied Mathematics
(RICAM), Austrian Academy of Sciences
sean.dewar@ricam.oeaw.ac.at, georg.grasegger@ricam.oeaw.ac.at

2 Johannes Kepler University Linz, Research Institute for Symbolic
Computation (RISC)
jan.legersky@risc.jku.at

3 Department of Applied Mathematics, Faculty of Information Technology,
Czech Technical University in Prague

Abstract
We study the existence of an n-fold rotational symmetric placement of a symmetric graph in
the plane allowing a continuous deformation that preserves the symmetry and the distances
between adjacent vertices. We show that such a flexible placement exists if and only if the graph
has a NAC-colouring satisfying an additional property on the symmetry; a NAC-colouring is a
surjective edge colouring by two colours such that every cycle is either monochromatic, or there
are at least two edges of each colour.

Rigid graphs are those which have only finitely many non-congruent placements in the
plane with the same edge lengths as a generic placement. These graphs can, however, have
non-generic special choices of a placement such that there are infinitely many non-congruent
placements in the plane with the same edge lengths. We call such a placement flexible.

The study of flexible placements of generically rigid graphs has a long history. Dixon
found two types of flexible placements of the bipartite graph K3,3 [3, 17, 14]. Walter and
Husty [15] proved that these are indeed all (assuming that vertices do not overlap). Figure 1
shows some special symmetric cases of these two constructions applied to K4,4. Further
examples of graphs with flexible placements are Burmester’s focal point mechanism [1], a
12-vertex graph studied by Kempe [11], and two constructions by Wunderlich [16, 18].

Figure 1 The vertices of K4,4 can be placed symmetrically on orthogonal lines to make the graph
flexible with 2-fold rotational symmetry (left). A 2-fold rotationally symmetric flexible instance of
K4,4 is obtained by placing the vertices of each part to a rectangle so that the two rectangles have
the same intersection of diagonals and parallel/orthogonal edges (middle). Although there is a 4-fold
rotationally symmetric choice of rectangles (right), the deformed placements preserving the edge
lengths are only 2-fold symmetric. The colours indicate equality of edge lengths in a placement.

∗ This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 675789. The project was partially
supported by the Austrian Science Fund (FWF): P31061, P31888 and W1214-N15.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

43:2 Rotational symmetric flexible placements of graphs

In recent works [7, 8, 4] a deeper analysis of existence of flexible placements is done via
graph colourings. There is a special type of edge colourings, called NAC-colourings (“No
Almost Cycles”, see [7]), which classify the existence of a flexible placement in the plane
and give a construction of the motion. Furthermore, determining the NAC-colourings of a
given graph and the possible constructions that come from it can be done easily by using the
SageMath package FlexRiLoG [5]. In [6] we used these methods for constructing flexible
placements for symmetric graphs as in Figure 2. However, we did not take advantage of the
symmetry for the construction, and instead had to construct the framework manually.

Figure 2 A symmetric graph which has a 3-fold rotationally symmetric flexible placement.

Symmetry plays an important role in art and design, and often appears in nature also.
Due to this, there is a large body of work focused on symmetric frameworks and their
properties in the context of rigidity theory; see [10, 12]. In particular, we shall be focusing
on graphs and frameworks that display n-fold rotational symmetry, such as in Figure 2.

In this extended abstract, we formalise the NAC-colouring method for rotationally sym-
metric flexible placements, i. e. in such a way that the motion preserves the symmetry. By
combining Theorem 3.1 and Theorem 3.2, we obtain the following result:

Let G be a Cn-symmetric connected graph. Then G has a Cn-symmetric NAC-colouring
if and only if there exists a Cn-symmetric flexible framework (G, p) in R2.

1 Preliminaries

We briefly recall some basic notions from rigidity theory and define NAC-colourings in this
section. All graphs G = (V (G), E(G)) in the paper are connected and |E(G)| ≥ 1.

I Definition 1.1. A framework in R2 is a pair (G, p) where G is a (finite simple) graph
and p : V (G) → R2 is a placement of G, a possibly non-injective map such p(u) 6= p(v) if
uv ∈ E(G). We define frameworks (G, p) and (G, q) to be equivalent if for all uv ∈ E(G),

‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ . (1)

We define two placements p, q of G to be congruent if (1) holds for all u, v ∈ V (G).

An equivalent definition for congruence is as follows; p and q are congruent if there exists
an Euclidean isometry M of R2 such that Mq(v) = p(v) for all v ∈ V (G).

I Definition 1.2. Let (G, p) be a framework. A flex (in R2) of (G, p) is a continuous
path t 7→ pt, t ∈ [0, 1], in the space of placements of G such that p0 = p and each (G, pt) is
equivalent to (G, p). If pt is congruent to p for all t ∈ [0, 1] then pt is trivial. We define (G, p)
to be flexible if there is a non-trivial flex of (G, p) in R2, and rigid otherwise.

Sean Dewar, Georg Grasegger and Jan Legerský 43:3

It was shown in [13] that a framework (G, p) with a generic placement of vertices (see [9])
is rigid if and only if G contains a Laman graph as a spanning subgraph. This does not
inform us whether a graph will have a flexible placement; for example, any generic placement
of K4,4 is rigid, however as shown by Figure 1 we can construct flexible placements for it.
To determine whether a graph has flexible placements we introduce the following.

I Definition 1.3. An edge colouring δ : E(G)→ {red,blue} of a graph G is a NAC-colouring
if δ(E(G)) = {red, blue} and for each cycle in G, either all edges have the same colour, or
there are at least two red and two blue edges. NAC-colourings δ, δ of G are conjugated if
δ(e) 6= δ(e) for all e ∈ E(G).

I Remark. The colourings considered within this paper are not required to have incident
edges coloured differently, contrary to the common graph-theoretical terminology.

Having these definitions, we can recall the result [7, Theorem 3.1].

I Theorem 1.4. A graph has a flexible placement in R2 if and only if it has a NAC-colouring.

2 Rotational symmetry

The following definitions specify the rotational symmetric setting where Definition 2.1 gives
a combinatorial description of symmetry of a graph and Definition 2.2 describes geometric
symmetry of a framework. Note, that in figures we describe vertices in graphs by filled disks
and in frameworks with circles.

I Definition 2.1. Let G be a graph and n ≥ 2. Let the n-fold rotation group, Cn :=
〈ω : ωn = 1〉 act on G, i.e., there exists an injective group homomorphism θ : Cn → Aut(G),
where Aut(G) is the automorphism group of G. We define γv := θ(γ)(v) for γ ∈ Cn;
similarly, for any edge e = uv ∈ E(G), we define γe := γuγv. We shall define v ∈ V (G) to
be an invariant vertex if γv = v for all γ ∈ Cn, and partially invariant if γv = v for some
γ ∈ Cn, γ 6= 1. The graph G is called Cn-symmetric if:

(a) a vertex is invariant if and only if it is partially invariant, and
(b) the set of invariant vertices of G forms an independent set.

I Definition 2.2. Let (G, p) be a framework in R2, G be Cn-symmetric and τ : Cn → O(2,R)
be a symmetry map, i.e., an injective group homomorphism, given by

τ(ω) =
[

cos(2π/n) sin(2π/n)
− sin(2π/n) cos(2π/n)

]
.

If p(γv) = τ(γ)p(v) for each v ∈ V (G) and γ ∈ Cn, then (G, p) is a Cn-symmetric framework;
likewise, we define p to be a Cn-symmetric placement of G.

We note that if (G, p) is Cn-symmetric then it is Cm-symmetric for all m|n.
I Definition 2.3. Let (G, p) be a Cn-symmetric framework in R2. If there is a non-trivial
flex pt of (G, p) such that each (G, pt) is Cn-symmetric, then (G, p) is Cn-symmetric flexible
(or n-fold rotation symmetric flexible), and Cn-symmetric rigid otherwise.

We define the following for edge colourings of Cn-symmetric graphs.

I Definition 2.4. Let G be a Cn-symmetric graph with colouring δ. A red, resp. blue, com-
ponent is a connected component of Gδred := (V (G), {e ∈ E(G) : δ(e) = red}), resp. Gδblue.
A blue or red component H ⊂ G is partially invariant if there exists γ ∈ Cn \ {1} such that
γH = H, and invariant if γH = H for all γ ∈ Cn (see Figure 3 for an example).

EuroCG’20

43:4 Rotational symmetric flexible placements of graphs

Figure 3 A partially invariant (but not invariant) red component on the left and an invariant
red component (and therefore also partially invariant) on the right for C6-symmetry. The symmetry
is indicated by the graph layout.

We focus on the following class of NAC-colourings suitable for dealing with symmetries.

I Definition 2.5. Let G be a Cn-symmetric graph with NAC-colouring δ. We define δ to
be a Cn-symmetric NAC-colouring if δ(γe) = δ(e) for all e ∈ E(G) and γ ∈ Cn and no
two distinct blue, resp. red, partially invariant components are connected by an edge (see
Figure 4 for examples).

C2 C3 C3 C4

Figure 4 Valid Cn-symmetric NAC-colouring for some graphs. For the first three graphs the
symmetry is indicated by the layout. There is a C4-symmetry for the graph on the right which is
not geometrically visible in the figure; see Figure 8 for a C4-symmetric placement.

I Example 2.6. The cartesian product of K4 and K2 has a single NAC-colouring (up to
conjugation) δ, see Figure 5. The graph is C2-symmetric under the symmetry θ, where θ(ω)
is the permutation (1, 6)(2, 5)(3, 8)(4, 7); further, the NAC-colouring δ is a C2-symmetric
NAC colouring with respect to θ. The graph is also C4-symmetric under the symmetry θ′,
where θ′(ω) is the permutation (1, 6, 3, 8)(5, 2, 7, 4); however, the NAC-colouring δ is not a
C4-symmetric NAC colouring with respect to θ′, since the blue partially invariant components
are connected by edges.

7

2

4

1 5

8

6

3

1

2

4

3

5

6

8

7

Figure 5 The cartesian product of K4 and K2 has only one NAC-colouring. It is C2-symmetric
(left) but not C4-symmetric (right). The symmetries are indicated by the graph layout.

Sean Dewar, Georg Grasegger and Jan Legerský 43:5

3 Necessary and sufficient conditions for rotationally symmetric
flexibility

In this section we show the construction of Cn-symmetric motions from Cn-symmetric NAC-
colourings. The inverse direction is also true.

I Theorem 3.1. If (G, p) is a Cn-symmetric flexible framework in R2, G being a connected
graph, then G has a Cn-symmetric NAC-colouring.

The proof of Theorem 3.1 follows in a similar vein to the proof of [7, Theorem 3.1] by
using methods from valuation theory. There are more complexities involved however, since
we also require that the colouring obtained respects the symmetry of the graph and partially
invariant components are not connected by edges.

I Theorem 3.2. Let G be a Cn-symmetric connected graph. If G has a Cn-symmetric NAC-
colouring δ, then there exists a Cn-symmetric flexible framework (G, p) in R2.

Proof. The proof is based on the “zigzag” grid construction from [7] with a specific choice
of the grid. Let R0

1, . . . , R
n−1
1 , . . . , R0

m, . . . , R
n−1
m be the red components of Gδred that are not

partially invariant. We can assume that Rij = ωiR0
j for 0 ≤ i < n and 1 ≤ j ≤ m. Similarly,

let B0
1 , . . . , B

n−1
1 , . . . , B0

k, . . . , B
n−1
k be the blue components of Gδblue that are not partially

invariant and Bij = ωiB0
j for 0 ≤ i < n and 1 ≤ j ≤ k.

Let a1, . . . , am and b1, . . . , bk be points in R2 \ {(0, 0)} such that aj 6= τ(ω)iaj′ and
bj 6= τ(ω)ibj′ for j 6= j′ and 1 ≤ i < n arbitrary. We define functions a, b : V (G)→ R2 by

a(v) =
{
τ(ω)iaj if v ∈ Rij
(0, 0) otherwise,

and b(v) =
{
τ(ω)ibj if v ∈ Bij
(0, 0) otherwise.

We note that a vertex is mapped to the origin by a (respectively, b) if and only if it lies in
a red (respectively, blue) partially invariant component. We now obtain for each t ∈ [0, 2π]
a placement pt of G, where

pt(v) :=
(

cos t − sin t
sin t cos t

)
a(v) + b(v) . (2)

Let uv ∈ E(G). If δ(uv) is red (resp. blue) then a(u) = a(v) (resp. b(u) = b(v)). Hence,
the edge length ‖pt(u)− pt(v)‖ is independent of t.

Next, we have to show that no two adjacent vertices are mapped to the same point by
the placement p0. Assume that

(
a(u), b(u)

)
=
(
a(v), b(v)

)
for some vertices u, v. Suppose

this is due to the fact that u and v belong to the same red and same blue (possibly partially
invariant) component. Hence, uv /∈ E(G), otherwise δ is not a NAC-colouring (uv would
yield a cycle with a single edge in one color). On the other hand, if u and v are in two
different red (resp. blue) components, then a(u) = a(v) = (0, 0) (resp. b(u) = b(v) = (0, 0)).
By our construction of a (resp. b), it follows that u, v both lie in partially invariant red
(resp. blue) components. Since these components are partially invariant, uv /∈ E(G) by the
assumption that δ is Cn-symmetric.

As edge lengths are preserved and no two vertices connected by an edge are mapped to
the same point, (G, p) := (G, p0) is a framework with a flex pt. Further, the flex is not trivial
by surjectivity of δ, thus (G, p) is a flexible framework.

Finally, we show that pt is Cn-symmetric. If v ∈ Rij ∩Bk` , then

ωv ∈ τ(ω)Rij ∩ τ(ω)Bk` = R
(i+1 modn)
j ∩B(k+1 modn)

` .

EuroCG’20

43:6 Rotational symmetric flexible placements of graphs

Hence, a(ωv) = τ(ω)a(v) and b(ωv) = τ(ω)b(v). The same equalities hold also if v belongs
to a partially invariant component, since then ωv is also in a partially invariant component.
Using commutativity of rotation matrices, we conclude the proof by (2):

pt(ωv) = τ(ω)
(

cos t − sin t
sin t cos t

)
a(v) + τ(ω)b(v) = τ(ω)pt(v). J

I Example 3.3. By using the construction described in Theorem 3.2 we can construct the
Cn-symmetric flexible frameworks given in Figures 6, 7 and 8.

Figure 6 A flexible C2-symmetric placement for a given C2-symmetric NAC-colouring.

Figure 7 A flexible C3-symmetric placement for a given C3-symmetric NAC-colouring.

Figure 8 A flexible C4-symmetric placement for a given C4-symmetric NAC-colouring.

I Example 3.4. We consider the graph in Figure 9 with the given C3-symmetric NAC-
colouring. Then the red 3-cycle forms a red partially invariant component. Therefore its
position is fixed during the motion.

Figure 9 A flexible C3-symmetric placement for a given C3-symmetric NAC-colouring.

The constructed framework given by the proof of Theorem 3.2 may not be proper flexible,
i.e., have no overlapping vertices, see Figure 10. As outlined in [8], there are necessary and
sufficient conditions for determining when a graph will or will not have a proper flexible
placements, although they have as of yet not been adapted fully to the symmetric case.

Sean Dewar, Georg Grasegger and Jan Legerský 43:7

Figure 10 A flexible C2-symmetric placement for a given C2-symmetric NAC-colouring for which
two vertices overlap.

I Remark. While we have only dealt with frameworks with rotational symmetry, there are
other types of symmetry for the plane, namely reflectional and translational symmetry. Al-
though flexible placements that preserve translational symmetry have very recently been
investigated [2], not much is known for flexible placements that preserve reflectional sym-
metry or preserve both reflectional and rotational symmetry.

References
1 L. Burmester. Die Brennpunktmechanismen. Zeitschrift für Mathematik und Physik,

38:193–223, 1893.
2 S. Dewar. Flexible placements of periodic graphs in the plane, 2019. arXiv:1911.05634.
3 A. C. Dixon. On certain deformable frameworks. Messenger, 29(2):1–21, 1899.
4 M. Gallet, G. Grasegger, J. Legerský, and J. Schicho. On the existence of paradoxical

motions of generically rigid graphs on the sphere, 2019. arXiv:arXiv:1908.00467.
5 G. Grasegger and J. Legerský. FlexRiLoG — SageMath package for Flexible and Rigid

Labelings of Graphs. Zenodo, May 2019. doi:10.5281/zenodo.3078758.
6 G. Grasegger, J. Legerský, and J. Schicho. Animated Motions of Exceptional Flexible

Instances of Generically Rigid Graphs. In Bridges Linz 2019 Conference Proceedings, pages
255–262, Phoenix, Arizona, 2019. Tessellations Publishing. doi:10.5281/zenodo.3518805.

7 G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings. Discrete &
Computational Geometry, 62(2):461–480, 2019. doi:10.1007/s00454-018-0026-9.

8 G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings allowing Injective
Realizations. Discrete Mathematics, in press, 2019. doi:10.1016/j.disc.2019.111713.

9 Jack Graver, Brigitte Servatius, and Herman Servatius. Combinatorial rigidity. Graduate
Studies in Mathematics. American Mathematical Society, 1993. doi:10.1090/gsm/002.

10 T. Jordán, V. E. Kaszanitzky, and S. Tanigawa. Gain-sparsity and symmetry-forced rigidity
in the plane. Discrete Comput. Geom., 55(2):314–372, March 2016.

11 A. B. Kempe. On Conjugate Four-piece Linkages. Proceedings of the London Mathematical
Society, s1-9(1):133–149, 11 1877. doi:10.1112/plms/s1-9.1.133.

12 J. Owen and S. Power. Frameworks symmetry and rigidity. International Journal of
Computational Geometry & Applications, 20, 04 2012. doi:10.1142/S0218195910003505.

13 H. Pollaczek-Geiringer. Über die Gliederung ebener Fachwerke. Zeitschrift für Angewandte
Mathematik und Mechanik (ZAMM), 7:58–72, 1927. doi:10.1002/zamm.19270070107.

14 H. Stachel. On the flexibility and symmetry of overconstrained mechanisms. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 372, 2013. doi:10.1098/rsta.2012.0040.

15 D. Walter and M. L. Husty. On a nine-bar linkage, its possible configurations and conditions
for paradoxical mobility. In 12th World Congress on Mechanism and Machine Science,
IFToMM 2007, 2007.

16 W. Wunderlich. Ein merkwürdiges Zwölfstabgetriebe. Österreichisches Ingenieur-Archiv,
8:224–228, 1954.

EuroCG’20

43:8 Rotational symmetric flexible placements of graphs

17 W. Wunderlich. On deformable nine-bar linkages with six triple joints. Indagationes Math-
ematicae (Proceedings), 79(3):257–262, 1976. doi:10.1016/1385-7258(76)90052-4.

18 W. Wunderlich. Mechanisms related to Poncelet’s closure theorem. Mechanisms and Ma-
chine Theory, 16:611–620, 1981. doi:10.1016/0094-114X(81)90067-7.

Augmenting Polygons with Matchings∗

Alexander Pilz1, Jonathan Rollin2, Lena Schlipf3, and André
Schulz2

1 Graz University of Technology
apilz@ist.tugraz.at

2 FernUniversität in Hagen
{jonathan.rollin | andre.schulz}@fernuni-hagen.de

3 Universität Tübingen
schlipf@informatik.uni-tuebingen.de

Abstract
We study disjoint compatible noncrossing geometric matchings of simple polygons. That is, given
a simple polygon P we want to draw a set of pairwise disjoint straight line edges with endpoints
on the vertices of P such that these new edges neither cross nor contain any edge of the polygon.
We prove NP-completeness of deciding whether there is such a perfect matching. For any n-vertex
polygon we show that such a matching with ≤ (n − 4)/8 edges is not maximal, that is, it can
be extended by another compatible matching edge. Complementing this we construct polygons
with maximal matchings with n/6 edges. Finally we consider a related problem. We prove that
it is NP-complete to decide whether a noncrossing geometric graph G admits a set of compatible
noncrossing edges such that G together with these edges has minimum degree five.

1 Introduction

A geometric graph is a graph drawn in the plane with straight-line edges. Throughout this
paper we additionally assume that all geometric graphs are noncrossing. Let G be a given
(noncrossing) geometric graph G. We want to augment G with a geometric matching on
the vertices of G such that no edges cross in the augmentation. We call such a (geometric)
matching compatible with G. Note that our definition of a compatible matching implies that
the matching is noncrossing and avoids the edges of G. Questions regarding compatible
matchings were first studied by Rappaport et al. [13, 14]. Rappaport [13] proved that it is
NP-hard to decide whether for a given geometric graph G there is a compatible matching M

such that G + M is a (spanning) cycle. Recently Akitaya et al. [3] confirmed a conjecture
of Rappaport and proved that this holds even if G is a perfect matching. Note that in
this case also M is necessarily a perfect matching. However, for some compatible perfect
matchings M the union G + M might be a collection of several disjoint cycles. There are
graphs G that do not admit any compatible perfect matching, even when G is a matching.
Such matchings were studied by Aichholzer et al. [1] who proved that each m-edge perfect
matching G admits a compatible matching of size at least 4

5 m. Ishaque et al. [9] confirmed
a conjecture of Aichholzer et al. [1] that any perfect matching G with an even number of
edges admits a compatible perfect matching. For a geometric graph G let d(G) denote
the size of a largest compatible matching of G and for a family F of geometric graphs
let d(F) = min{d(G) | G ∈ F}. Aichholzer et al. [2] proved that for the families Tn

and Pn of all n-vertex geometric trees, respectively n-vertex polygons, 1
10 n ≤ d(Tn) ≤ 1

4 n

and n−3
4 ≤ d(Pn) ≤ 1

3 n holds.

∗ This work was initiated during the 15th European Research Week on Geometric Graphs in Pritzhagen,
Germany.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

44:2 Augmenting Polygons with Matchings

(a) (b)

Figure 1 (a) This gadget allows for simulating a “bend” in the polygon without a vertex that
needs to be matched. The construction is scaled such that the eight points marked with squares
do not see any other point outside of the gadget (in particular, narrowing it horizontally). (b) A
possible matching is shown.

We continue this line of research and consider the following problems. Given a geometric
cycle, i.e., a polygon, we first show that it is NP-complete to decide whether the polygon
admits a compatible perfect matching. Then we ask for the “worst” compatible matchings
for a given polygon. That is, we search for small maximal compatible matchings.

The first studied problem can also be phrased as follows: Given a geometric cycle, can
we add edges to obtain a cubic geometric graph? In the last section, we consider a related
augmentation problem. Given a geometric graph, we show that it is NP-complete to decide
whether the graph can be augmented to a graph of minimum degree five. The corresponding
problem for the maximal vertex degree asks to add a maximal set of edges to the graph such
that the maximal vertex degree is bounded by constant. This problem is also known to be
NP-complete for maximum degree at most seven [10].

A survey of Hurtado and Tóth [8] discusses several other augmentation problems for
geometric graphs. Besides the problems mentioned in that survey decreasing the diameter [5]
and the continuous setting (where every point along the edges of an embedded graph is
considered as a vertex) received considerable attention [4, 7].

2 Compatible perfect matchings in polygons

I Theorem 2.1. Given a simple polygon, it is NP-complete to decide whether it admits a
compatible perfect matching.

Proof. The problem is obviously in NP, as a certificate one can merely provide the added
edges. NP-hardness is shown by a reduction from positive planar 1-in-3-SAT. In this
problem, shown to be NP-hard by Mulzer and Rote [11], we are given an instance of 3-
SAT with a planar variable-clause incidence graph and no negative literals; the instance is
considered satisfiable if and only if there is exactly one true variable per clause.

For a given 1-in-3-SAT formula, we take an embedding of its incidence graph and replace
its elements by gadgets. We first show that finding compatible matchings for a set of disjoint
simple polygons is hard and then show how to connect the individual polygons to obtain a
single polygon.

Our construction relies on a gadget that restricts the possible matching edges of vertices.
In particular, we introduce a polygonal chain, whose vertices need to be matched to each
other. This is achieved by the twin-peaks gadget as shown in Fig. 1. The gadget is scaled
such that the eight vertices in its interior (which are marked with squares in Fig. 1) do not

A. Pilz, J. Rollin, L. Schlipf, A. Schulz 44:3

(a) (b) (c)

(d)

FALSE FALSETRUE

Figure 2 (a) A wire gadget and its two truth states (one in dashed, the other in dotted). (b)
A bend in a wire gadget. (c) A split gadget that transports the truth setting of one wire to two
other ones. This is used for representing the variables. (d) A clause gadget. The visibility among
the vertices of degree two is indicated by the lighter lines. Exactly one vertex of degree two of the
part in the circle must be connected to a wire above that carries the true state.

see any edges outside of the gadget. The two topmost vertices must have an edge to the
vertices directly below as the vertices below do not see any other (non-adjacent) vertex. The
remaining six “square” vertices do not have a geometric perfect matching on their own, so
any perfect geometric matching containing them must connect them to the two bottommost
vertices. Clearly, there is such a matching.

We now present the remaining gadgets (wire, split, and clause) for our reduction. The
ideas are inspired by the reduction of Pilz [12]. In the following illustrations, vertices of
degree two are drawn as a dot. Vertices in the figures without a dot represent a sufficiently
small twin-peaks gadget.

The wires propagate the truth assignment of a variable. A wire consists of a sequence of
polygons, each containing four vertices of degree two. There are only two possible global
matchings for the vertices of degree two; see Fig. 2(a). A bend in a wire can be drawn as
shown in Fig. 2(b). The truth assignment of a wire can be duplicated by a split gadget; see
Fig. 2(c). A variable is represented by a cyclic wire with split gadgets. The clause gadget
is illustrated in Fig. 2(d), where the wires enter from the top. The vertices there can be
matched if and only if one of the vertices is connected to a wire that is in the true state.
The vertices at the bottom of the gadget make sure that if there are exactly two wires in the
false state, then we can add an edge to them. Hence, this set of polygons has a compatible
perfect matching if and only if the initial formula was satisfiable.

It remains to “merge” the polygons of the construction to one simple polygon. The
elements of the clause gadget are connected to the last polygons of the wires entering it.
Observe that two neighboring polygons of a wiring gadget can be connected by adding four

EuroCG’20

44:4 Augmenting Polygons with Matchings

Figure 3 A polygon (black) with a maximal matching (gray) with only n
3 matched vertices.

Notice that there is exactly one compatible edge between the six vertices in the gray area.

bends (using four twin-peaks gadgets). We can consider the incidence graph to be connected
(otherwise the reduction splits into disjoint problems). Hence, we can always connect two
disjoint polygons to one, until there is only a single polygon left. J

3 Compatible maximal matching in polygons

For a geometric graph G let mm(G) denote the size of a minimal maximal compatible
matching of G and for a family F of geometric graphs let mm(F) = min{mm(G) | G ∈ F}.

I Theorem 3.1. Let Pn denote the family of all n-vertex polygons. Then mm(Pn) ≥ n−4
8

for all n and mm(Pn) ≤ 1
6 n for infinitely many values of n.

Proof. The construction in Fig. 3 shows that for infinitely many values of n there is an
n-vertex polygon with a compatible maximal matching of size n

6 . This shows mm(Pn) ≤ n
6

for infinitely many values of n.
It remains to prove the lower bound. Let P be an n-vertex polygon with a maximal

compatible matching M . As the claim clearly holds for any triangle P we assume that n ≥ 4.
We shall subdivide the plane into cells with further edges as follows. First draw a rectangle
enclosing P in the outer face. Then, for each reflex angle in P + M (one after the other)
draw a straightline edge starting at the incident vertex such that the edge cuts the reflex
angle into two convex angles and stops when it hits some already drawn edge (but not a
vertex). See Figure 4. The final drawing D contains at most 2 + |E(M)|+ n bounded cells.
Indeed, each edge on top of P subdivides some cell into two, where |E(M)| such edges are
in M and each vertex of P gives rise to at most one further such edge through a reflex angle.
Moreover, all bounded cells in D are convex regions. Hence, any two unmatched vertices
of P incident to a common cell F in D are connected by a side of P (within the boundary
of F) as otherwise M is not maximal. This shows that each cell is incident to at most two
unmatched vertices of P , since P is not a triangle. Each unmatched vertex of P is incident
to exactly three bounded cells of D. Therefore, 3(n − |V (M)|) ≤ 2 (2 + |E(M)| + n) and
hence |E(M)| ≥ (n− 4)/8. J

A. Pilz, J. Rollin, L. Schlipf, A. Schulz 44:5

Figure 4 A polygon (black) with a maximal matching (gray) where each reflex angle is cut by a
dotted edge.

4 Augmenting to Minimum Degree Five

In this section, we show that augmenting to a graph with minimum degree five is NP-
complete. A related result states that it is NP-hard to decide whether a geometric graph can
be augmented to a cubic graph [12].

I Theorem 4.1. Given a geometric crossing-free graph G, it is NP-complete to decide whether
there is a set of compatible edges E such that G + E has minimum degree five.

Proof. The problem is obviously in NP, a certificate provides the added edges. NP-hardness
is shown by a reduction from montone planar rectilinear 3-SAT. In this problem,
shown to be NP-hard by de Berg and Khosravi [6], we are given an instance of monotone
(meaning that each clause has only negative or only positive variables) 3-SAT with a planar
incidence graph. In this graph, the variable and clause gadgets are represented by rectangles.
All variable rectangles lie on a horizontal line. The clauses with positive variables lie above
the variables and the ones with negative variables below. The edges connecting the clause
gadgets to the variable gadgets are vertical line segments and no edges cross. See Fig. 5 (a).

(b) (c)

variables

clause

clause

clause

clause

clause

clause

clause

(a) (d)

Figure 5 (a) A montone rectilinear representation of a planar 3SAT instance. (b) A wire gadget
(vertices of degree four are drawn with dots) and its (c) two truth states (one in bold, the other
dotted). Vertices incident to a gray region have degree at least five. This can be achieved by adding
edges and vertices (of degree at least five) inside the gray regions – as shown in one gray square. (d)
A split gadget with edges for the truth assignment (bold).

For a given 3-SAT formula, we take an embedding of its incident graph (as discussed)
and replace its elements by gadgets. Again, we have a wire gadget that propagates the truth
assignments; see Fig. 5(b–c). It consists of a sequence of similar subgraphs, each containing

EuroCG’20

44:6 Augmenting Polygons with Matchings

(a) (b)

Figure 6 (a) A clause gadget, the three bold segments represent that the corresponding literals
are set to true. The central 7-gon can be augmented to a subgraph of degree at least five if and only
if at least one literal is true. (b) The three possibilities to augment the 7-gon if one literal is true.

four vertices of degree four (the other vertices have at least degree five). The main idea is
that we need to add an edge to each of the vertices of degree four surrounding the big gray
squares. But due to blocked visibilities this can only be achieved by a “windmill” pattern
which has to align with the neighboring parts. Thus, we have exactly two ways to add edges
in order to augment the wire to a graph with minimum degree five. The truth assignment
of a wire can be duplicated by the split gadget shown in Fig. 5(d). The clause gadget is
illustrated in Fig. 6(a). The wires enter from left, right and below (respectively above). The
7-gon in the middle of the clause gadget can be augmented to a subgraph with minimum
degree five if and only if it is connected to at least one wire in the true state. See also
Fig. 6(b). J

Acknowledgments. We thank Kevin Buchin, Michael Hoffmann, Wolfgang Mulzer and
Nadja Seiferth for helpful discussions.

References
1 Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo García, Clemens Huemer,

Ferran Hurtado, Mikio Kano, Alberto Márquez, David Rappaport, Shakhar Smorodinsky,
Diane Souvaine, Jorge Urrutia, and David R. Wood. Compatible geometric matchings.
Comput. Geom., 42(6-7):617–626, 2009. doi:10.1016/j.endm.2008.06.040.

2 Oswin Aichholzer, Alfredo García, Ferran Hurtado, and Javier Tejel. Compatible matchings
in geometric graphs. In Proc. XIV Encuentros de Geometría Computacional, pages 145–148,
Alcalá, Spain, 2011.

3 Hugo A. Akitaya, Matias Korman, Mikhail Rudoy, Diane L. Souvaine, and Csaba D. Tóth.
Circumscribing polygons and polygonizations for disjoint line segments. In Proc. of the
35th International Symposium on Computational Geometry (SoCG 2019), volume 129 of
LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 9, 17. Schloss Dagstuhl, 2019. doi:
10.4230/LIPIcs.SoCG.2019.9.

4 Sang Won Bae, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, and Christos
Levcopoulos. Shortcuts for the circle. Comput. Geom., 79:37–54, 2019. doi:10.1016/j.
comgeo.2019.01.006.

5 Nathann Cohen, Daniel Gonçalves, Eun Jung Kim, Christophe Paul, Ignasi Sau, Dim-
itrios M. Thilikos, and Mathias Weller. A polynomial-time algorithm for outerplanar diam-
eter improvement. J. Comput. System Sci., 89:315–327, 2017. doi:10.1016/j.jcss.2017.
05.016.

6 Mark de Berg and Amirali Khosravi. Optimal binary space partitions in the plane. In Proc.
of the 16th Annual International Conference on Computing and Combinatorics (COCOON

A. Pilz, J. Rollin, L. Schlipf, A. Schulz 44:7

2010), volume 6196 of Lecture Notes in Computer Science, pages 216–225, 2010. doi:
10.1007/978-3-642-14031-0_25.

7 Jean-Lou De Carufel, Carsten Grimm, Stefan Schirra, and Michiel Smid. Minimizing the
continuous diameter when augmenting a tree with a shortcut. In Proc. of the Algorithms
and Data Structures Symposium (WADS 2017), volume 10389 of Lecture Notes in Comput.
Sci., pages 301–312. Springer, Cham, 2017. doi:10.1007/978-3-319-62127-2_26.

8 Ferran Hurtado and Csaba D. Tóth. Plane geometric graph augmentation: a generic
perspective. In Thirty essays on geometric graph theory, pages 327–354. Springer, New
York, 2013. doi:10.1007/978-1-4614-0110-0_17.

9 Mashhood Ishaque, Diane L. Souvaine, and Csaba D. Tóth. Disjoint compatible ge-
ometric matchings. Discrete & Computational Geometry, 49(1):89–131, 2013. doi:
10.1007/s00454-012-9466-9.

10 Klaus Jansen. One strike against the min-max degree triangulation problem. Comput.
Geom., 3:107–120, 1993. doi:10.1016/0925-7721(93)90003-O.

11 Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. J. ACM,
55(2):11:1–11:29, 2008. doi:10.1145/1346330.1346336.

12 Alexander Pilz. Augmentability to cubic graphs. In Proc. 28th European Workshop on
Computational Geometry (EuroCG 2012), pages 29–32, Assisi, Italy, March 2012.

13 David Rappaport. Computing simple circuits from a set of line segments is NP-complete.
SIAM J. Comput., 18(6):1128–1139, 1989. doi:10.1137/0218075.

14 David Rappaport, Hiroshi Imai, and Godfried T. Toussaint. On computing simple circuits
on a set of line segments. In Alok Aggarwal, editor, Proc. of the Proceedings of the 2nd
Annual Symposium on Computational Geometry (SoCG 1986), pages 52–60. ACM, 1986.
doi:10.1145/10515.10521.

EuroCG’20

Covering a set of line segments with a few squares
Joachim Gudmundsson1, Mees van de Kerkhof2, André van
Renssen3, Frank Staals4, Lionov Wiratma5, and Sampson Wong6

1 University of Sydney, Australia
joachim.gudmundsson@sydney.edu.au

2 Utrecht University, Netherlands
m.a.vandekerkhof@uu.nl

3 University of Sydney, Australia
andre.vanrenssen@sydney.edu.au

4 Utrecht University, Netherlands
f.staals@uu.nl

5 Utrecht University, Netherlands
l.wiratma@uu.nl

6 University of Sydney, Australia
swon7907@uni.sydney.edu.au

Abstract
We study the problem of covering a set of line segments with a few (up to four) axis-parallel, unit-
sized squares in the plane. Covering line segments with two squares has been previously studied,
however, little is known for three or more squares. Our original motivation for the line segment
covering problem comes from trajectory analysis. We study two trajectory covering problems:
a data structure on the trajectory that efficiently answers whether a query subtrajectory is
coverable, and an algorithm to compute its longest coverable subtrajectory.

1 Introduction

Geometric covering problems are a classic area of research in computational geometry. The
traditional geometric set cover problem is to decide whether one can place k axis-parallel
unit-sized squares to cover n points in the plane. If k is part of the input, the problem is
known to be NP -hard [3, 7]. Thus, efficient algorithms are only known for small values
of k. For k = 2 or 3, there are linear time algorithms [2, 11], and for k = 4 or 5, there are
O(n log n) time algorithms [8, 10].

Motivated by trajectory analysis we study a line segment variant of the geometric set
cover problem where the input is a set of n line segments, see Figure 1.

Figure 1 An example a set of n segments which is 3-coverable.

I Problem 1. Decide if a set of line segments is k-coverable, for k = 2, 3, 4.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

45:2 Covering a set of line segments with a few squares

A key difference in the line segment variant is that each segment need not be covered by a
single square, as long as the k squares together cover all n segments. Sadhu et al. [9] recently
provided a linear time algorithm for k = 2. Hoffman [6] provides a linear time algorithm for
k = 3, however the proof was not included in the extended abstract. We provide a proof for
a k = 3 algorithm and a new O(n log n) time algorithm for k = 4.

Next, we study trajectory coverings, which was the original motivation for studying line
segment coverings. A trajectory is a polygonal curve in the plane parametrised by time, and
models the movement of an object through time and space. Trajectory analysis has been
used to study data sets in animal ecology [1], meteorology [12] and sports analytics [4]. Our
trajectory analysis task is to compute a small region where a moving object spends a large
amount of time. Such a region is known as a hotspot and has applications in segmentation,
clustering, or enriching trajectory data with locations of interest [5].

If the hotspot is modelled by k unit-sized axis-parallel squares, then the subtrajectory
that it covers is a k-coverable subtrajectory. Formally, a subtrajectory is the trajectory
restricted to a contiguous time window. Note that the start and end points of the subtrajectory
need not be vertices of the original trajectory, see Figure 2. The two problems we study are:
I Problem 2. Construct a data structure on a trajectory, so that given any query subtrajectory,
it can efficiently answer whether the subtrajectory is k-coverable, for k = 2, 3.
I Problem 3. Given a trajectory, compute its longest k-coverable subtrajectory, for k = 2.

Figure 2 A trajectory (thin) and its longest 2-coverable subtrajectory (thick).

Previous work focuses on hotspots regions modelled by a single square [5]. To the best
of our knowledge, this paper is the first to study k-coverable subtrajectories for k ≥ 2.

The results of this paper and their relevant sections are summarised in Table 1.

k = 2 k = 3 k = 4
Problem 1 Section 2.1 Section 2.2 Section 2.3
Problem 2 Section 3.1 Section 3.2
Problem 3 Section 4.1

Table 1 The results of this paper and their relevant sections.

2 Problem 1: The Decision Problem

2.1 Is a set of segments 2-coverable?
This section restates known results which are useful for the recursive step in Section 2.2 and
for the data structure in Section 3.1. Recall that a bounding box of a set of segments is the

J. Gudmundsson, M. van de Kerkhof, A. van Renssen, F. Staals, L. Wiratma, S. Wong 45:3

smallest axis-aligned rectangle that contains all segments. Observation 1 uses the bounding
box to decide if a set of segments is 2-coverable:

I Observation 1. A set of segments is 2-coverable if and only if there is a covering with
squares in opposite corners of the bounding box of the set of segments.

Figure 3 A covering with squares in opposite corners of the bounding box of the set of segments.

Observation 1 is due to Sadhu et al. [9]. See Figure 3 for an illustration. The algorithm is
therefore to compute the bounding box, and for each pair of opposite corners, to check if
squares placed in these corners cover every segment. This takes linear time in total. Thus:

I Theorem 2. One can decide whether a set of segments is 2-coverable in O(n) time.

2.2 Is a set of segments 3-coverable?
We start off with a similar observation to Observation 1, but for 3-coverable segments:

I Observation 3. A set of segments is 3-coverable if and only if there is a covering with a
square in a corner of the bounding box of the set of segments.

Figure 4 A partial covering with a square in a corner of the bounding box of the set of segments.

Proof. Any 3-covering touches all four sides of the bounding box, in fact, one square in the
3-covering must touch at least two sides. If the two sides are opposite then the bounding
box has width less than or equal to one and there is a straightforward one-dimensional
algorithm. Otherwise, without loss of generality let the adjacent sides be the top and left
sides. If the square is not already in the topleft corner of the bounding box, move the square

EuroCG’20

45:4 Covering a set of line segments with a few squares

to the corner position shown in Figure 4. The new square covers more than the previous
position, so the modified positions is 3-covering with a square in a corner. J

Now, we can use Observation 3 to place the first square into one of four possible positions.
We compute up to two uncovered subsegments for each original segment. The set of
uncovered subsegments has linear complexity. We then use Theorem 2 to recursively check
if the uncovered subsegments are 2-coverable. All steps in this algorithm take linear time.

I Theorem 4. One can decide whether a set of segments is 3-coverable in O(n) time.

2.3 Is a set of segments 4-coverable?
For any 4-covering, each side of the bounding box is touched by one of the 4-covering squares.
We make a similar observation to k = 2 and k = 3 but we have two cases: either we have a
square which touches two sides, or each square touches exactly one side.

I Observation 5. A set of segments is 4-coverable if and only if one of the following hold:
There is a covering with a square in a corner of the bounding box.
There is a covering with each square touching exactly one side of the bounding box.

If the covering has a square in a corner of the bounding box, we can use the same strategy
as in the k = 3 case and try all four positions of the first square and then recurse. Hence,
for the remainder of this section, we assume we are in the second case.

I Definition 6. Define L, B, T and R to be the square that touches the left, bottom, top
and right sides of the bounding box respectively. See Figure 5.

L

T

R

B

Figure 5 The squares L, T, B, R touch the left, top, bottom and right sides of the bounding box.

Without loss of generality, suppose that T is to the left of B. Then the left to right
order of the squares is L, T, B, R. Suppose for now there were a way to compute the initial
placement of L. The rest of the algorithm would be as follows. Compute the remaining
uncovered subsegments, then place T in its topleft corner of its bounding box. We can
do this since T is the leftmost and topmost of the remaining squares. Next, compute the
remaining uncovered subsegments, then place B in the bottomright corner of its bounding
box. Finally, cover the remaining uncovered subsegments with R, if possible.

Our approach is to simulate the above algorithm for variable positions of L. Let yL be
the y-coordinate of the top side of L, and let xT be the x-coordinate of the left side of T .

I Lemma 7. The variable xT as a function of variable yL is piecewise linear and can be
computed in O(n log n) time.

J. Gudmundsson, M. van de Kerkhof, A. van Renssen, F. Staals, L. Wiratma, S. Wong 45:5

Proof. We know from our algorithm above that xT is the leftmost uncovered point of the
set of segments after placing L. We divide the uncovered region inside the bounding box
into three separate regions: A above L, B below L and C to the right of L. See Figure 6.
By definition, all these regions are uncovered. We consider the leftmost points of A, B and
C separately, and then compute their minimum to obtain xT .

yL
A

C

B

Figure 6 The region above, below, and to the right of L are A, B and C respectively.

As yL increases, the leftmost point of A moves monotonically to the right. This polygonal
curve is shown in Figure 7, and we call this curve the skyline of the set of segments. In the
full version we show an O(n log n) divide and conquer algorithm to compute the skyline.

yL

xT

Figure 7 The leftmost point xT as a function of yL forming a “skyline”.

A similar algorithm for the skyline gives the function for the leftmost point in B as a
function of yL. The leftmost point of C does not depend on yL and can be computed in linear
time. The value of xT is the minimum value of the leftmost points of A, B and C. Since
each is piecewise linear and can be computed in O(n log n) time, so is their minimum. J

We define xB to be the leftmost uncovered point after placing L at yL and T at xT .
In the full version of this paper, we show that xB is a piecewise linear function of yL and
can be computed in O(n log n) time. Additional skylines need to be computed but a similar
approach works. The same is also true for yR1 and yR2 , which are defined to be the topmost
and bottommost points after placing L, T and B at yL, xT and xB respectively. Finally,
we check if there exists a yL so that yR1 − yR2 attains a value less than or equal to 1. If so,
there is a position for L, T, B, R that covers the set of segments. This yields Theorem 8.

I Theorem 8. One can decide whether a set of segments is 4-coverable in O(n log n) time.

An open problem is to provide a polynomial time algorithm that decides if a set of
segments is k-coverable for k ≥ 5. Significantly new ideas are required as Observation 5
does not seem to extend to larger values of k.

EuroCG’20

45:6 Covering a set of line segments with a few squares

3 Problem 2: The Subtrajectory Data Structure Problem

In the full version of this paper, we provide the details of the following data structures,
i.e., their construction and query procedures and corresponding running times. Given a
piecewise linear trajectory of complexity n, we build:

I Tool 9. A bounding box data structure that preprocesses a trajectory in O(n) time, so that
given a query subtrajectory, returns its bounding box in O(log n) time.

I Tool 10. An upper envelope data structure that preprocesses a trajectory in O(n log n)
time, so that given a query subtrajectory and a query vertical line, returns the highest
intersection between the subtrajectory and the vertical line (if one exists) in O(log n) time.

I Tool 11. A highest vertex data structure that preprocesses a trajectory in O(n log n) time,
so that given a query subtrajectory and a query axis-parallel rectangle, returns the highest
vertex of the subtrajectory inside the rectangle (if one exists) in O(log n) time.

Figure 8 Tool 10 (left) returns the highest intersection between a vertical line and a subtrajectory.
Tool 11 (right) returns the highest subtrajectory vertex in a query rectangle.

3.1 Is a query subtrajectory 2-coverable?
Our data structure is built like so. At preprocessing, we construct Tools 9 and 10 in
O(n log n) time. At query time, we use Tool 9 to compute the bounding box of the
subtrajectory in O(log n) time. By Observation 1, the subtrajectory is coverable only if
there is a covering with squares in opposite corners of the bounding box. Consider the
union of the two squares in opposite corners of the bounding box, as shown in the left
diagram of Figure 9.

Figure 9 The union of the pair of squares (left) and its complement (right).

J. Gudmundsson, M. van de Kerkhof, A. van Renssen, F. Staals, L. Wiratma, S. Wong 45:7

To check if this pair of squares covers the subtrajectory, we only need to check if its
complement is empty. The complement is shaded in purple in Figure 9. We use Tool 10
to return the highest intersection of the subtrajectory with one of the sides of the purple
rectangle, as shown in the same figure. This detects whether there is a subtrajectory edge
which pierces any side of any of the purple rectangles. We check all sides of the rectangles
in O(log n) time, and do this for both choices of pairs of opposite corners. Thus:

I Theorem 12. There exists a data structure that preprocesses a trajectory in O(n log n)
time, so that given a query subtrajectory, it answers whether the subtrajectory is 2-coverable
in O(log n) time.

3.2 Is a query subtrajectory 3-coverable?
We provide a sketch of the algorithm for k = 3, see the full version for details. In
preprocessing time, we construct Tools 9, 10 and 11. At query time, we use Tool 9 to
compute the bounding box of the subtrajectory. By Observation 3 there is a square in one
of the corners of the bounding box. We then use a combination of Tool 10 and 11 to compute
the bounding box of the uncovered subsegments. See Figure 10.

Figure 10 The two choices for the last two squares, as given by their bounding box (thin green).

The bounding box of the uncovered subsegments gives two possible positions for the last
two squares. It remains only to check if the three squares cover the subtrajectory. For this
final step we use Tool 10 to check for any edges piercing the boundary of the union of the
three squares. We require one final check using Tool 11 to detect if the trajectory exits the
top of the purple square in the right diagram of Figure 10. Putting this together yields:

I Theorem 13. There exists a data structure that preprocesses a trajectory in O(n log n)
time, so that given a query subtrajectory, it answers whether the subtrajectory is 3-coverable
in O(log n) time.

4 Problem 3: The Longest Coverable Subtrajectory Problem

4.1 The longest 2-coverable subtrajectory
Suppose we were given the starting point of the longest coverable subtrajectory. Then by
parametric search in conjunction with the data structure in Theorem 12, we can compute
the latest ending point so that the subtrajectory is still coverable.

Hence, the problem reduces to finding a set of points so that the starting point of the
longest coverable subtrajectory is guaranteed to be inside the set. In the full version of the
paper, we show that there is a set of size O(n2α(n)) that can be computed in O(n2α(n) log2 n)
time that is guaranteed to contain the optimal starting point. Hence, we have:

EuroCG’20

45:8 Covering a set of line segments with a few squares

I Theorem 14. There is an O(n2α(n) log2 n) time algorithm to compute the longest 2-
coverable subtrajectory of the trajectory.

An open problem is whether there is a polynomial time algorithm to compute the longest
3-coverable subtrajectory of a given trajectory. New ideas are required to compute the set
of additional starting points for 3-coverable subtrajectories.

References
1 Maria Luisa Damiani, Hamza Issa, and Francesca Cagnacci. Extracting stay regions with

uncertain boundaries from GPS trajectories: A case study in animal ecology. In Proceedings
of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 253–262, 2014.

2 Zvi Drezner. On the rectangular p-center problem. Naval Research Logistics (NRL),
34(2):229–234, 1987.

3 Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal packing and covering
in the plane are NP-complete. Information Processing Letters, 12(3):133–137, 1981.

4 Joachim Gudmundsson and Michael Horton. Spatio-temporal analysis of team sports. ACM
Computing Surveys (CSUR), 50(2):22, 2017.

5 Joachim Gudmundsson, Marc van Kreveld, and Frank Staals. Algorithms for hotspot
computation on trajectory data. In Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pages 134–143,
2013.

6 Michael Hoffmann. Covering polygons with few rectangles. In Abstracts 17th European
Workshop Computational Geometry, pages 39–42, 2001.

7 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric
location problems. SIAM Journal of Computing, 13(1):182–196, 1984.

8 Doron Nussbaum. Rectilinear p-piercing problems. In Proceedings of the 1997 International
Symposium on Symbolic and Algebraic Computation, ISSAC, pages 316–323, 1997.

9 Sanjib Sadhu, Sasanka Roy, Subhas C. Nandy, and Suchismita Roy. Linear time algorithm
to cover and hit a set of line segments optimally by two axis-parallel squares. Theoretical
Computer Science, 769:63–74, 2019.

10 Michael Segal. On piercing sets of axis-parallel rectangles and rings. International Journal
of Computional Geometry and Applications, 9(3):219–234, 1999.

11 Micha Sharir and Emo Welzl. Rectilinear and polygonal p-piercing and p-center problems.
In Proceedings of the 12th Annual Symposium on Computational Geometry, pages 122–132,
1996.

12 Andreas Stohl. Computation, accuracy and applications of trajectories—A review and
bibliography. Developments in Environmental Science, 1:615–654, 2002.

Monotone Arc Diagrams with few Biarcs∗

Steven Chaplick†1, Henry Förster2, Michael Hoffmann‡3, and
Michael Kaufmann2

1 Universität Würzburg, Germany and Maastricht University, the Netherlands
s.chaplick@maastrichtuniversity.nl

2 Universität Tübingen, Germany
{foersth,mk}@informatik.uni-tuebingen.de

3 Department of Computer Science, ETH Zürich, Switzerland
hoffmann@inf.ethz.ch

Abstract
We show that every planar graph can be represented by a monotone topological 2-page book
embedding where at most 15n/16 (of potentially 3n− 6) edges cross the spine exactly once.

1 Introduction

Arc diagrams (Figure 1) are drawings of graphs that represent vertices as points on a hor-
izontal line, called spine, and edges as arcs, consisting of a sequence of halfcircles centered
on the spine. A proper arc consists of one single halfcircle. In proper arc diagrams all arcs
are proper. In plane arc diagrams no two edges cross. Note that plane proper arc diagrams
are also known as 2-page book embeddings in the literature. Bernhard and Kainen [2] char-
acterized the graphs admitting plane proper arc diagrams: subhamiltonian planar graphs,
i.e., subgraphs of planar graphs with a Hamiltonian cycle. In particular, non-Hamiltonian
maximal planar graphs do not admit plane proper arc diagrams.

(a) (b) (c)

Figure 1 Arc diagram (a), monotone arc diagram (b), proper arc diagram (c) of the octahedron.

To represent all planar graphs, it suffices to allow each edge to cross the spine at most
once [9]. The resulting arcs composed of two halfcircles are called biarcs (see Figure 1a).
Additionally, all edges can be drawn as monotone curves w.r.t. the spine [6]; such a drawing
is called amonotone topological (2-page) book embedding. A monotone biarc is either down-up
or up-down, depending on if the left halfcircle is drawn above or below the spine, respectively.
Note that a monotone topological 2-page book embedding is not necessarily a 2-page book
embedding even though the terminology suggests it.

In general, biarcs are needed, but some edges can be drawn as proper arcs. Cardinal et
al. [3] gave bounds on the required number of biarcs showing that every planar graph on

∗ This work started at the workshop Graph and Network Visualization 2017. We would like to thank
Stefan Felsner and Stephen Kobourov for useful discussions.

† Partially supported by DFG grant WO 758/11-1.
‡ Supported by the Swiss National Science Foundation within the collaborative DACH project Arrange-

ments and Drawings as SNSF Project 200021E-171681.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

46:2 Monotone Arc Diagrams with few Biarcs

n ≥ 3 vertices admits a plane arc diagram with at most b(n− 3)/2c biarcs (not necessarily
monotone). They also described a family of planar graphs on ni = 3i+8 vertices that cannot
be drawn as a plane biarc diagram using less than (ni−8)/3 biarcs for i ∈ N. However, they
use arbitrary biarcs. When requiring only monotone biarcs, Di Giacomo et al. [6] gave an
algorithm to construct a monotone plane arc diagram that may create close to 2n biarcs for
an n-vertex planar graph. Cardinal et al. [3] improved this bound to at most n− 4 biarcs.

Results. As a main result, we improve the upper bound on the number of monotone biarcs:

I Theorem 1.1. Every n-vertex planar graph admits a plane arc diagram with at most⌊ 15
16n− 5

2
⌋
biarcs that are all down-up monotone. Such a diagram is computable in O(n) time.

For general arc diagrams, b(n−8)/3c biarcs may be needed [3], but it is conceivable that
this number increases for monotone biarcs. We investigated the lower bound with a SAT
based approach (based on [1]), with the following partial result; details will appear in the
full version.

I Observation 1.2. Every Kleetope on n′ = 3n − 4 vertices derived from triangulations of
n ≤ 14 vertices admits a plane arc diagram with b(n′ − 8)/3c monotone biarcs.

Note that a Kleetope is derived from a planar triangulation T by inserting a new vertex
vf into each face f of T and then connecting vf to the three vertices bounding f .

Related Work. Giordano et al. [8] showed that every upward planar graph admits an
upward topological book embedding where edges are either proper arcs or biarcs. One of their
directions for future work is to minimize the number of spine crossings. Note that these
embeddings are monotone arc diagrams with at most one spine crossing per edge respecting
the orientations of the edges. Everett et al. [7] used monotone arc diagrams with only down-
up biarcs to construct small universal point sets for 1-bend drawings of planar graphs. This
result was extended by Löffler and Tóth [10] by restricting the set of possible bend positions.
They use monotone arc diagrams with at most n− 4 biarcs to build universal points set of
size 6n− 10 (vertices and bend points) for 1-bend drawings of planar graphs on n vertices.
Using Theorem 1.1, we can slightly decrease the number of points by approximately n/16.

2 Overview of our Algorithm

To prove Theorem 1.1 we describe an algorithm to incrementally construct an arc diagram
for a given planar graph G on n vertices. W.l.o.g. we assume that G is a (combinatorial)
triangulation, i.e., a maximal planar graph. Our algorithm is a (substantial) refinement of
the algorithm of Cardinal et al., which is based on the notion of a canonical ordering. A
canonical ordering is defined for an embedded triangulation. Every triangulation on n ≥ 4
vertices is 3-connected, so selecting one facial triangle as the outer face embeds it into the
plane which determines a unique outer face (cycle) for every biconnected subgraph. A cano-
nical ordering [5] of an embedded triangulation G is a total order of vertices v1, . . . , vn s.t.

– for each i ∈ {3, . . . , n}, the induced subgraph Gi = G[{v1, . . . , vi}] is biconnected and
internally triangulated (i.e., every inner face is a triangle);

– for each i ∈ {3, . . . , n}, (v1, v2) is an edge of the outer face Ci of Gi;
– for each i ∈ {3, . . . , n− 1}, vi+1 lies in the interior of Ci and the neighbors of vi+1 in Gi

form a sequence of consecutive vertices along the boundary of Ci.

Steven Chaplick, Henry Förster, Michael Hoffmann and Michael Kaufmann 46:3

Every triangulation admits a canonical ordering [5] and one can be computed in O(n)
time [4]. We say that a vertex vi covers an edge e (a vertex v, resp.) if and only if e
(v, resp.) is an edge (vertex, resp.) on Ci−1 but not an edge (vertex, resp.) on Ci.

We iteratively process the vertices in a canonical order v1, . . . , vn. Every vertex vi arrives
with α credits that we can either spend to create biarcs (at a cost of one credit per biarc)
or distribute on edges of the outer face Ci for later use. We prove our claimed bound by
showing that each biarc drawn can be paid for s.t. at least seven credits remain in total.

There are two types of proper arcs: mountains (above the spine) and pockets (below the
spine). The following invariants hold after processing vertex vi, for every i ∈ {3, . . . , n}.

(I1) Every edge is either a proper arc or a down-up biarc.
(I2) Every edge of Ci is a proper arc. Vertex v1 is the leftmost and v2 is the rightmost

vertex of Gi. Edge (v1, v2) forms the lower envelope of Gi, i.e., no point of the drawing
is vertically below it. The other edges of Ci form the upper envelope of Gi.

(I3) Every mountain whose left endpoint is on Ci carries 1 credit.
(I4) Every pocket on Ci carries π credits, for some constant π ∈ (0, 1).
(I5) Every biarc in Gi carries (that is, is paid for with) 1 credit.

Usually, we insert vi between its leftmost neighbor `i and rightmost neighbor ri along
Ci−1. The algorithm of Cardinal et al. [3] gives a first upper bound on the insertion costs.

I Lemma 2.1. If vi covers at least one pocket, then we can insert vi maintaining (I1) to (I5)
using ≤ 1 credit. If degGi

(vi) ≥ 4, then 1− π credits are enough.

Proof (Sketch). We place vi in the rightmost covered pocket and pay for at most 1 moun-
tain; see Figures 2a and 2b. If degGi

(vi) ≥ 4, at least 1 covered pocket’s credits is free. J

vip`
pr
ri

`i

(a)

vip` pr
`i ri

(b)

vim`

mr

`i

ri

(c)

Figure 2 Inserting a vertex vi using 1− π, 1, and 1 + π credits, resp. (Lemma 2.1–2.2).

I Lemma 2.2. If vi covers mountains only, then we can insert vi maintaining (I1) to (I5)
using ≤ 1 + π credits. If degGi

(vi) ≥ 4, then 5− degGi
(vi) credits suffice.

Proof (Sketch). If degGi
(vi) < 4, we push down the leftmost mountain and place vi on the

created biarc paying for 1 mountain and 1 pocket each; see Figure 2c. If degGi
(vi) ≥ 4, we

push down the rightmost mountain saving the credit of a covered mountain; see Figure 3. J

vi
`i ri

Figure 3 An alternative drawing to insert a degree four vertex.

EuroCG’20

46:4 Monotone Arc Diagrams with few Biarcs

Full proofs of Lemmas 2.1 and 2.2 will appear in the full version. We only steal credits
from arcs on Ci−1 in both proofs. If left endpoints of proper arcs not on Ci−1 are covered,
there is slack.

In the following, we prove that we can choose π = 1/8, so that to achieve the bound of
Theorem 1.1, we insert a vertex at an average cost of 1−π/2. Lemmas 2.1 and 2.2 guarantee
this bound only in certain cases, e.g., a sequence of three degree two (in Gi) vertices stacked
onto mountains costs 1+π per vertex and produces three biarcs, see Figure 4a. A symmetric
scheme with up-down biarcs realizes the same graph with one biarc; see Figure 4b.

(a) (b)

Figure 4 A sequence of degree two vertices in forward (a) and reverse drawing (b).

To exploit this behavior, we consider the instance in both a forward drawing, using only
proper arcs and down-up biarcs, and a reverse drawing that uses only proper arcs and
up-down biarcs (and so (I1) and (I3) appear in a symmetric formulation). Out of the two
resulting arc diagrams, we choose one with a fewest number of biarcs. To prove Theorem 1.1,
we need to insert a vertex at an average cost of α = 2− π credits into both diagrams.

The outer face, a sequence of pockets and mountains, can evolve differently in both draw-
ings because edges covered by a vertex may not be drawn the same way in both drawings.
Further, it does not suffice to consider a single vertex in isolation. For instance, consider a
degree three vertex inserted above two mountains in both the forward and reverse drawings;
see Figure 5b. In each drawing, this costs 1 + π credits, or 2(1 + π) in total. W.r.t. our
target value α = 2− π, these costs incur a debt of 3π credits. Indeed, there are several such
open configurations, listed in Figure 5, for which our basic analysis does not suffice.

Each open configuration C consists of up to two adjacent vertices on the outer face whose
insertion incurred a debt and their incident edges. It specifies the drawing of these edges, as
pocket, mountain, or biarc in forward and in reverse drawing, as well as the drawing of the
edges covered by the vertices of the open configuration. When a vertex vi covers (part of)
an open configuration, we may alter the placement of the vertices and/or draw the edges of
the open configuration differently. The associated debt d(C) is the amount of credits paid in
addition to α credits per vertex. As soon as any arc of an open configuration is covered, the
debt must be paid or transferred to a new open configuration. We enhance our collection of
invariants as follows.

(I6) A sequence of consecutive arcs on Ci may be associated with a debt. Each arc is part
of at most one open configuration; refer to Figure 5 for a full list of such configurations.

To prove Theorem 1.1 we show that the credit total carried by arcs in both drawings
minus the total debt of all open configurations does not exceed αi− 5 after inserting vi.

Steven Chaplick, Henry Förster, Michael Hoffmann and Michael Kaufmann 46:5

c1 c1

(a) d(Ca) = 3π

c1 c1

(b) d(Cb) = 3π

c1 c1

(c) d(Cc) = 3π

c1 c1

(d) d(Cd) = π

c1 c1

(e) d(Ce) = π

c1 c1

(f) d(Cf) = π

c1 c1

(g) d(Cg) = 2π

c1 c1

(h) d(Ch) = 2π

c1 c2 c1 c2

(i) d(Cι) = 4π

c1 c2 c1 c2

(j) d(Cj) = 5π

c2 c1c2 c1

(k) d(Ck) = 5π

Figure 5 The set of open configurations. Each subfigure shows the forward drawing (left) and
the reverse drawing (right) and is captioned by the debt incurred.

3 Default insertion of a vertex vi

If vi does not cover any arc of an open configuration, we use procedures from Lemmas 2.1
and 2.2. If degGi

(vi) ≥ 4 and vi covers any pocket in either drawing, by Lemmas 2.1 and 2.2
the insertion costs are at most 2− π = α. If degGi

(vi) ≥ 5 and vi only covers mountains in
both drawings, the costs are 0 (Lemma 2.2). If degGi

(vi) = 4 and vi covers mountains only in
both drawings, we obtain the open configuration in Figure 5a with cost 2 + 2π and debt 3π.

If degGi
(vi) = 2 and vi covers a pocket in one drawing, insertion in this drawing costs π

resulting in total cost ≤ 1 + 2π or at most α if π ≤ 1/3. If degGi
(vi) = 2 and vi covers only

mountains, we have the open configuration in Figure 5c with cost 2 + 2π and debt 3π.

It remains to consider degGi
(vi) = 3. There are four pocket-mountain configurations for

two arcs of Gi−1 covered by vi: MM , MP , PM , and PP (using M for mountain and P for
pocket). Pattern PP costs 1 − π, pattern MM costs 1 + π. Each drawing has its favorite
mixed pattern (PM for forward and MP for reverse) with cost 0; the other pattern costs 1.

There is only one forward|reverse combination,MM |MM , with cost 2+2π and debt 3π,
leading to the open configuration in Figure 5b. Two combinations,MM |PM andMP |MM ,
have cost 2+π and debt 2π resulting in open configurations in Figure 5g and 5h, resp. Also,
the combinations MM |PP , PP |MM , and MP |PM with costs 2 and a debt π lead to open
configurations in Figure 5d, 5e, and 5f, resp. All other combinations cost at most α.

EuroCG’20

46:6 Monotone Arc Diagrams with few Biarcs

vi vi

Figure 6 Alternative drawing to handle an open configuration Cι for degGi
(vi) = 2.

4 When and how to pay your debts

In this section, we describe the insertion of vi if it covers an arc of an open configuration.
Note that (1) every open configuration contains at least one mountain and at least one
pocket in both drawings; (2) the largest debt incurred by one open configuration is 5π.
Open configurations Cι, Cj , Ck (with highest debts) are introduced in the discussion below.

Case 1: degGi
(vi) = 2. If vi covers a pocket of an open configuration C in either drawing,

the insertion costs of π + (1 + π) cover d(C), as long as 1 + 2π + 5π ≤ α, that is, π ≤ 1/8.
Assume vi covers a mountain of open configuration C in both drawings; i.e., C ∈ {Cg, Ch, Cι}.
If C ∈ {Cg, Ch}, we obtain the open configurations in Figure 5j and 5k, resp., with cost
4 + 3π (for both vertices) and debt 5π. Otherwise C = Cι, and we use the drawings shown
in Figure 6 (where vi is inserted on the left mountain; the other case is symmetric). The
costs are 2 + 3π (forward) and 3 + 2π (reverse), totaling 5 + 5π ≤ 3α, for π ≤ 1/8.

Case 2: degGi
(vi) ≥ 5 and Case 3: degGi

(vi) ∈ {3, 4}. In the full version, we will discuss
both cases in detail while we only mention the main ideas here. Each open configuration
includes a mountain that can pay the debt if the configuration is entirely covered. We only
focus on the left- and rightmost open configurations C` and Cr. In both cases, we mainly
carefully move vertices vi, c1 and c2 of Cr to avoid covered mountains from becoming biarcs,
i.e., saving their credits.

5 Summary & Conclusions

Proof of Theorem 1.1. As previously shown, if π ≤ 1/8, we maintain all invariants with α
credits per vertex. G3 is a triangle with two pockets on C3 in both orientations, i.e. G3 costs
4π. As v1,v2 and v3 contribute 3α credits, there are 6− 7π > 5 unused credits after drawing
G3. If there remains an open configuration in Gn, there is a mountain with a credit paying
its debt. Hence, the 5 unused credits of G3’s drawing remain. As a canonical ordering is
computable in O(n) time and we backtrack O(1) steps if needed, the runtime follows. J

We proved the first upper bound of the form c · n, with c < 1, for the total number
of monotone biarcs in arc diagrams of n-vertex planar graphs. In our analysis, only three
subcases require π ≤ 1/8, i.e., a refinement may provide a better upper bound. Also, it
remains open if there is a planar graph that requires more biarcs in a monotone arc diagram
than in a general arc diagram. Finally, narrowing the gap between lower bn−8

3 c and upper
b 15

16n− 5
2c bounds would be interesting, particularly from the lower bound side.

References
1 Michael A. Bekos, Michael Kaufmann, and Christian Zielke. The book embedding problem

from a SAT-solving perspective. In Graph Drawing, volume 9411 of Lecture Notes in
Computer Science, pages 125–138. Springer, 2015.

Steven Chaplick, Henry Förster, Michael Hoffmann and Michael Kaufmann 46:7

2 Frank Bernhart and Paul C. Kainen. The book thickness of a graph. J. Combin. Theory
Ser. B, 27:320–331, 1979. URL: http://dx.doi.org/10.1016/0095-8956(79)90021-2.

3 Jean Cardinal, Michael Hoffmann, Vincent Kusters, Csaba D. Tóth, and Manuel Wettstein.
Arc diagrams, flip distances, and Hamiltonian triangulations. Comput. Geom. Theory
Appl., 68:206–225, 2018. URL: https://doi.org/10.1016/j.comgeo.2017.06.001.

4 Marek Chrobak and Thomas H. Payne. A linear-time algorithm for drawing a planar graph
on a grid. Inform. Process. Lett., 54:241–246, 1995. URL: http://dx.doi.org/10.1016/
0020-0190(95)00020-D.

5 Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990. URL: http://dx.doi.org/10.1007/BF02122694.

6 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath. Curve-
constrained drawings of planar graphs. Comput. Geom. Theory Appl., 30(1):1–23, 2005.
URL: http://dx.doi.org/10.1016/j.comgeo.2004.04.002.

7 Hazel Everett, Sylvain Lazard, Giuseppe Liotta, and Stephen K. Wismath. Universal sets of
n points for one-bend drawings of planar graphs with n vertices. Discrete & Computational
Geometry, 43(2):272–288, 2010. URL: https://doi.org/10.1007/s00454-009-9149-3,
doi:10.1007/s00454-009-9149-3.

8 Francesco Giordano, Giuseppe Liotta, Tamara Mchedlidze, Antonios Symvonis, and Sue
Whitesides. Computing upward topological book embeddings of upward planar digraphs.
J. Discrete Algorithms, 30:45–69, 2015. URL: https://doi.org/10.1016/j.jda.2014.
11.006, doi:10.1016/j.jda.2014.11.006.

9 Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends suffice
for planar graphs. J. Graph Algorithms Appl., 6(1):115–129, 2002. URL: http://dx.doi.
org/10.7155/jgaa.00046.

10 Maarten Löffler and Csaba D. Tóth. Linear-size universal point sets for one-bend drawings.
In Graph Drawing, volume 9411 of Lecture Notes in Computer Science, pages 423–429.
Springer, 2015.

EuroCG’20

Colouring bottomless rectangles and
arborescences
Dömötör Pálvölgyi1 and Narmada Varadarajan2

1 MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of
Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
dom@cs.elte.hu

2 MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of
Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
narmadavrn@gmail.com

Abstract
We study problems related to colouring bottomless rectangles. We show that there is no number
m and semi-online algorithm to colour a family of nested bottomless rectangles from below with
a bounded number of colours such that every m-fold covered point is covered by at least two
colours. We also prove several similar results that follow from a more abstract arborescence
colouring problem, which is interesting on its own. Our key result is that there is no semi-online
algorithm to colour the vertices of an arborescence without producing a long monochromatic
path when the vertices are presented in a leaf-to-root order. The lower bounds are complemented
with simple optimal upper bounds for semi-online algorithms from other directions.

1 Introduction

The systematic study of polychromatic colourings and cover-decomposition of geometric
ranges was initiated by Pach over 30 years ago [5, 6]. The field has gained popularity in the
new millennium, with several breakthrough results; for a (slightly outdated) survey, see [7], or
see the up-to-date interactive webpage http://coge.elte.hu/cogezoo.html (maintained
by Keszegh and the first author).

Our paper focuses on the colouring of one particular geometric family, known as bottomless
rectangles. A subset of R2 is called a (closed) bottomless rectangle if it consists of the points
{(x, y) | l ≤ x ≤ r, y ≤ t} for some parameters (l, r, t). These range spaces were first defined
by Asinowski et al. [1], who showed that for any positive integer k, any finite set of points in
R2 can be k-coloured such that any bottomless rectangle with at least 3k− 2 points contains
all k colors. They also showed that the optimal number that can be written in place of 3k− 2
in the above statement is at least 1.67k. Their upper bound giving 3k − 2 is a very neat
semi-online algorithm.

Our paper studies the dual of the above problem. Our goal is to find the optimal mk

for which any finite collection of bottomless rectangles can be k-colored such that any
mk-fold covered region is covered by all k colors. About this question much less is known;
the best upper bound mk = O(k5.09) is a corollary of a more general result [2] about octants
(combined with an improvement of the base case [4] that slightly lowered the exponent). The
general conjecture, however, is that mk = O(k) for any family [7]. It was also proved in [2]
that there is no semi-online algorithm “from above” for colouring bottomless rectangles. An
algorithm is said to colour bottomless rectangles “from above” if it is presented the rectangles
in decreasing order of height; “from below” is defined analagously. Similarly, an algorithm
is said to colour bottomless rectangles “from the left” if it is presented the rectangles in
increasing order of left endpoint (→), and “from the right” if it is presented the rectangles in
decreasing order of right endpoint (←). A semi-online algorithm is one where the vertices
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

47:2 Colouring bottomless rectangles and arborescences

are presented in some order, and the algorithm need not colour a vertex as soon as it is
presented, but may not recolour previously coloured vertices. This is a natural generalisation
of online algorithms, which must colour vertices as soon as they are presented.

Our main result for bottomless rectangles is a generalisation of the non-existence of a
semi-online algorithm from above.

I Theorem 1.1. For any numbers k and m, for any semi-online algorithm that k-colours
bottomless rectangles from above, below, the left, or the right, there is a family of bottomless
rectangles that the algorithm colours such that there will be a m-fold covered point that is
covered by at most one colour.
Moreover, the family of the bottomless rectangles can be such that the boundaries of the
rectangles are pairwise disjoint.

These are complemented by positive results, where we show that for each of four “natural”
bottomless rectangle configurations there is a direction from which there is an optimal online
algorithm. Our proof is much more complicated than the one in [2]; while they use an
Erdős-Szekeres type incremental argument [3], we need a certain diagonalisation method. In
particular, we reduce the semi-online bottomless rectangle colouring problem to a question
about semi-online colourings of arborescences, which is interesting in its own right.

I Theorem 1.2. For any numbers k and m, and any semi-online algorithm that k-colours
the vertices of an arborescence in a leaf-to-root order, there is an arborescence such that the
algorithm produces a directed path on m vertices that contains at most one colour.

In Section 2 we present our main result, and in Section 3 we present our results on
polychromatic colourings of bottomless rectangles. The full proofs and other related results can
be found in the full version of our paper available at https://arxiv.org/abs/1912.05251.

2 Arborescences

An arborescence is a directed tree with a distinguished vertex called a root such that all
the edges are directed away from the root, i.e., there is exactly one directed path to any
vertex from the root. (See Figure 1.) A disjoint union of arborescences is an arborescence
forest, also called a branching. We say that an ordering of the vertices of a branching is
root-to-leaf if every vertex is preceded by its in-neighbors and succeeded by its out-neighbors;
in particular, from every component first the root is presented and last a leaf. The following
claim easily generalises the notion of a proper colouring for arborescences.
I Claim 2.1. The vertices of any arborescence can be k-coloured by an online algorithm in a
root-to-leaf order such that any directed path on k vertices contains all k colours.

We call the reversal of a root-to-leaf ordering a leaf-to-root ordering; in particular, from
every component first a leaf is presented and last the root.

r

u1

u3u2
v1

v2

r′

u′
v′

Figure 1 A branching with roots r and r′. A leaf-to-root ordering might present the vertices
u′, v′ and r′ before u3, so it is not necessary that the roots of the branching are the last vertices
presented.

D. Pálvölgyi and N. Varadarajan 47:3

Our main result, Theorem 1.2, shows that a similar semi-online polychromatic k-colouring
algorithm that takes the vertices in a leaf-to-root order cannot exist, moreover, any such
algorithm will even leave an arbitrarily long path monochromatic. To be able to apply this
result for bottomless rectangles, we will need (and prove) a slightly stronger notion.

Denote the roots of the branching before a new vertex u is presented by v1, v2, . . . indexed
in the order in which they were presented. We say that a leaf-to-root ordering is geometric if
the parents of u form an interval in this order, i.e., for every u, {vi | ul vi} = {vi | l < i < r}
for some l and r.

I Theorem 2.2. There is no semi-online k-colouring algorithm that receives the vertices
of an arborescence in a geometric leaf-to-root order, and maintains at any stage (without
recolouring any vertices) that all directed paths on m vertices contain at least two colours.

The key idea of the proof is to exploit that any path of length m must contain at least 2
colours. Further, when a new vertex p is presented, we only need to consider paths of length
m rooted at p to check that the colouring is proper. These two conditions show that the
algorithm can produce “essentially” only finitely many colourings. More precisely, when p

is presented, we “trim” the arborescence of depth m rooted at p to remove any repetitions
(see Figure 2 for an example). After this trimming process, we are left with only finitely
many different trees. Then we assume that an algorithm has already forced all “achievable”
isomorphic trees to appear, and present a new vertex below the root of each. The newly
obtained tree must be isomorphic to one of its parents’, which leads to a contradiction. For
the detailed proof, see the full version of the paper.

p

q
q2

q1

q′ →
step 1

p

q
q2

q1

q′ →
step 2

p

q
q2

q1

q′ →
step 3

p

q

q1

q′

Figure 2 Example for trimming with m = k = 2. In step 1, we delete uncoloured points at distance
> 2 from p. In step 2, we “trim” the repeated blue parents of q′. In step 3, the subtrees rooted at q1
and q2 are isomorphic, so we delete q2. After this process, we have not lost any information about
the paths of length 2 rooted at p.

3 Bottomless rectangles

3.1 Bottomless rectangle configurations

Using the classical result of Erdős and Szekeres [3] that any length (r − 1)(s − 1) + 1
sequence of numbers contains either an increasing subsequence of length r or a decreasing
subsequence of length s, we will define four configurations of bottomless rectangles as follows.

Ordering the rectangles first by left, then by right endpoints, we obtain that any point
contained in (m − 1)4 + 1 rectangles is contained in m bottomless rectangles in an Erdős
Szekeres configuration. We name these configurations increasing/decreasing steps, towers and
nested rectangles.

EuroCG’20

47:4 Colouring bottomless rectangles and arborescences

R1

R2

Rm

increasing m-steps

R1
R2

Rm

decreasing m-steps

R1

R2

Rm

m-tower

R1
R2

Rm

m-nested rectangles

Figure 3 Erdős-Szekeres configurations.

Restricting the colouring problem, we obtain that mk = k for each fixed configuration.
That is, for example, any family of bottomless rectangles can be k-coloured with an online
algorithm from the right so that any point covered by increasing k-steps is covered by
all k colours. Although these configurations have a seemingly simple structure, we apply
the arborescence colouring problem to show that the existence of a semi-online colouring
algorithm depends on the order in which the rectangles are coloured.

For a full summary, see the table below.

left(→) right(←) below(↑) above(↓)

inc. steps ∞ = k ∞ = k

dec. steps = k ∞ ∞ = k

towers = k = k = k ∞

nested = k = k ∞ = k

3.2 Colouring algorithms
I Corollary 3.1. There is no semi-online colouring algorithm for towers from above, i.e.,
for any numbers k and m, for any semi-online algorithm that k-colours bottomless rectangles
from above, there is a family of bottomless rectangles such that any two intersecting rectangles
form a tower, and the algorithm colours them such that there will be a m-fold covered point
that is covered by at most one colour.

In order to apply Theorem 2.2, we need to show that any branching can be realised as a
family of towers so that

1. ordering the rectangles from above corresponds to a geometric leaf-to-root order of the
branching, and

2. a semi-online colouring algorithm for towers from above corresponds to an appropriate
semi-online k-colouring algorithm for branchings in this order.

D. Pálvölgyi and N. Varadarajan 47:5

We construct this realisation by induction on the number of vertices of the branching. We
will need the geometric property of the leaf-to-root ordering to ensure that each isolated
vertex is realised as a disjoint rectangle to the right of the former ones. Thus, when a new
vertex s is presented, its parents will correspond to some geometrically adjacent rectangles,
and s can be realised as a rectangle in the desired configuration.

p q r

→

p q r

s

Figure 4 Each time a disjoint element (such as r) is presented, we realise it as a disjoint rectangle
to the right. We are then able to realise s as a minimal element that forms a tower with q and r. We
need the ordering to be geometric so that the parents of s are consecutive rectangles.

An analagous construction with nested rectangles shows that the same statement holds
for nested rectangles from below.

I Corollary 3.2. There is no semi-online k-colouring algorithm from the left or from below for
increasing steps. More precisely, for any integers k and m, there is no semi-online algorithm
to k-colour rectangles from the left (or from below) so that at every step, any point covered
by m-increasing steps is covered by at least 2 colours. Similarly, there is no semi-online
colouring algorithm for decreasing steps from the right or from below.

p q r

→

p q r

s

Figure 5 When a disjoint element (r) is presented, we realise it in decreasing steps with the other
minimal elements. We are then able to realise s in increasing steps with q and r (once again relying
on the geometric ordering).

Note that this statement is slightly weaker than Theorem 1.1 or Corollary 3.1 because
we do not exclude the other kind of configurations from the family. Figure 5 shows the
modification of this construction for increasing steps from the left.

For online algorithms from other directions, we can prove an optimal upper bound.

I Theorem 3.3. Each configuration can be k-coloured so that mk = k.

These algorithms are simple compared to the proof of non-existence of algorithms from
other directions. For example, when colouring with respect to k-towers from below, the

EuroCG’20

47:6 Colouring bottomless rectangles and arborescences

algorithm proceeds as follows. When we present a rectangle Rt, define yi to be maximal so
that any point in Rt below yi is already covered by colour i (and to be −∞ if this does not
exist). Then if y1 ≥ y2 ≥ . . . yk, we colour Rt with colour k. The algorithms for the other
configurations are analagous, as depicted in Figures 6 and 7, while the detailed proofs can
again be found in the full version.

(↑)

Rt

y1

y2

p

(↓)
Rt

y2

y1

p

Figure 6 Colouring algorithms for k-towers and k-nested sets, respectively.

Rt

x1

x2

(←)

p

Rt

x1

x2

(→)

p

Figure 7 Colouring algorithms for increasing and decreasing k-steps, respectively.

3.3 An improved lower bound

Finally, we prove the following lower bound for general bottomless rectangle families.

I Theorem 3.4. mk ≥ 2k − 1 for bottomless rectangles, i.e., for any k there is a family of
bottomless rectangles such that for every k-colouring of the family there is a point of the plane
that is contained in at most k − 1 of the colors, although it is covered by 2k − 2 rectangles.

Our lower bound construction proceeds in two steps.

1. If mk < mk−1 + 2, then every family has a polychromatic k-colouring that is proper (see
Figure 8).

2. There is a family so that no polychromatic k-colouring is proper (see Figure 9).

This contradiction shows that mk ≥ mk−1 + 2, so by induction mk ≥ 2k − 1. Again, for the
details see the full paper.

D. Pálvölgyi and N. Varadarajan 47:7

G G

G

Figure 8 If no polychromatic colouring of F is proper, place disjoint thin copies of a test family
G around every 2-covered point in F to obtain a contradiction.

p

R

Figure 9 No polychromatic colouring of this family will be proper.

3.4 Concluding remarks
To summarise, our main result shows that by considering arborescences instead of

hypergraphs associated to bottomless rectangles, there is no semi-online algorithm to properly
colour bottomless rectangles from any of the four “natural” directions. In fact, with a slight
modification, we can show that there is no semi-online algorithm to properly colour bottomless
rectangles from any other direction either (i.e. along a line).

However, since online algorithms show that mk = k for each fixed configuration, the next
natural step is to attempt to combine these colourings for general families. The strongest
such result we have been able to prove is that if a family of bottomless rectangles contains
no towers, then it can be k-coloured so that mk = O(k2). The crux of the proof is to exploit
that (1) adding nested sets to a family can increase mk by a factor of at most k, and (2)
colouring steps with respect to points turns out to be a special case of the primal problem -
colouring points with respect to bottomless rectangles. For more details on these and other
results, we again refer to the full version of the paper on arXiv.

References
1 A. Asinowski, J. Cardinal, N. Cohen, S. Collette, T. Hackl, M. Hoffmann, K. Knauer, S.

Langerman, M. Lason, P. Micek, G. Rote, T. Ueckerdt. “Coloring Hypergraphs Induced by
Dynamic Point Sets and Bottomless Rectangles”. Algorithms and Data Structures, Lecture
Notes in Computer Science Volume 8037. 2013. pp. 73-84.

2 J. Cardinal, K. Knauer, P. Micek, Torsten Ueckerdt. “Making octants colorful and related
covering decomposition problems”. SIAM J. on Discrete Math. 2014. pp. 1948-1959.

3 P. Erdős, G. Szekeres. “A combinatorial problem in geometry”. Compositio Math 2. 1935.
pp. 463-470.

4 B. Keszegh, D. Pálvölgyi. “More on decomposing coverings by octants”. J. of Computa-
tional Geometry, 6(1). 2015. pp. 300-315.

EuroCG’20

47:8 Colouring bottomless rectangles and arborescences

5 J. Pach: “Decomposition of multiple packing and covering” Diskrete Geometrie, 2. Kolloq.
Math. Inst. Univ. Salzburg. 1980. pp. 169-178.

6 J. Pach. “Covering the plane with convex polygons”. Discrete & Computational Geometry
1. 1986. pp. 73-81.

7 J. Pach, D. Pálvölgyi, G. Tóth. “Survey on the Decomposition of Multiple Coverings”.
Geometry, Intuitive, Discrete, and Convex (I. Bárány, K. J. Böröczky, G. Fejes Tóth,
J. Pach eds.), Bolyai Society Mathematical Studies, Vol. 24. Springer-Verlag. 2014. pp.
219-257.

On Minimal-Perimeter Lattice Animals∗

Gill Barequet1 and Gil Ben-Shachar1

1 Dept. of Computer Science
The Technion—Israel Inst. of Technology
Haifa 3200003, Israel
{barequet,gilbe}@cs.technion.ac.il

Abstract
A lattice animal is a connected set of cells on a lattice. The perimeter of a lattice animal A
consists of all the cells that do not belong to A, but that have a least one neighboring cell of A.
We consider minimal-perimeter lattice animals, that is, animals whose periemeter is minimal for
all animals of the same area, and provide a set of conditions that are sufficient for a lattice to
have the property that inflating all minimal-perimeter animals of a certain size yields (without
repetitions) all minimal-perimeter animals of a new, larger size. We demonstrate this result
for polyhexes (animals on the two-dimensional hexagonal lattice). In addition, we provide two
efficient algorithms for counting minimal-perimeter polyhexes.

1 Introduction

An animal on a d-dimensional lattice is a connected set of lattice cells, where connectivity is
through (d−1)-dimensional faces of the cells. Specifically, in two dimensions, connectivity is
through lattice edges. Two animals are considered identical if one can be obtained from the
other by translation only, without rotations or flipping.

Lattice animals attracted interest as combinatorial objects [4] and as key players in a
model in statistical physics and chemistry [9]. In this paper, we consider lattices in two
dimensions, specifically, the hexagonal, triangular, and square lattices, where animals are
called polyhexes, polyiamonds, and polyominoes, respectively.

Let AL(n) denote the number of animals of size n, that is, animals composed of n cells,
on the lattice L. A major research problem in the study of lattices is understanding the
nature of AL(n), either by finding a formula for it as a function of n, or by evaluating it
for specific values of n. This problem is to this date still open for any nontrivial lattice L.
Redelmeier [7] introduced the first algorithm that generates (and counts) all polyominoes of
a given size, with no polyomino being generated more than once. The first algorithm for
counting lattice animals without generating all of them was introduced by Jensen [6]. Using
his method, the number of animals on the 2-dimensional square, hexagonal, and triangular
lattices were computed up to size 56, 46, and 75, respectively.

An important property of lattice animals is the size of their perimeter (sometimes called
“site perimeter”). The perimeter of a lattice animal is defined as the set of empty cells
adjacent to the cells of the animal.

In this paper, we consider minimal-perimeter animals, that is, animals with the minimal
perimeter within all animals of the same size. Altshular et al. [1] and Sieben [8] characterized
all polyominoes with maximum size for their perimeter, and provided a formula for the
minimum perimeter of a polyomino of size n. Similar results for polyiamonds and polyhexes
were given by Fülep and Sieben [5] and by Vainsencher and Bruckstein [10], respectively.

∗ Work on this paper by both authors has been supported in part by ISF Grant 575/15. Work on this
paper by the first author has also been supported in part by BSF Grant 2017684.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

49:2 On Minimal-Perimeter Lattice Animals

Q I(Q)

Figure 1 An example of a polyomino Q and its inflated polyomino I(Q). Polyomino cells are
colored in gray, perimeter cells are colored in white.

Q I(Q) D(Q)

Figure 2 A polyhex Q, its inflated polyhex I(Q), and its deflated polyhex D(Q). The gray cells
belong to Q, the white cells are its perimeter, and its border cells are marked with a pattern of dots.

Recently, we studied properties of minimal-perimeter polyominoes [2, 3]. A key notion in
our findings was the inflation operation. Simply put, inflating a polyomino is adding to it all
its perimeter cells (see Figure 1). We showed that inflating all minimal-perimeter polyominoes
of some size yields all minimal-perimeter polyominoes of some larger size. In other words,
the inflation operation induces a bijection between sets of minimal-perimeter polyominoes.
Other results include efficient algorithms for counting minimal-perimeter polyominoes of a
given size. In this paper, we provide a nontrivial generalization of this result to any lattice
and find a sufficient set of conditions for such a bijection to exist. We also provide efficient
counting algorithms for minimal-perimeter polyhexes.

2 Preliminaries

Let L be a lattice, and Q be an animal on L. The perimeter of Q, denoted by P(Q), is the
set of all empty lattice cells that are neighbors of at least one cell of Q. Similarly, the border
of Q, denoted by B(Q), is the set of all cells of Q that are neighbors of at least one empty
cell.

The inflated version of Q is defined as I(Q) := Q ∪ P(Q). Similarly, the deflated version
of Q is defined as D(Q) := Q\B(Q). These operations are demonstrated in Figure 2.

Denote by εL(n) the minimum size (number of cells) of the perimeter of n-cell animals
on L, and by ML

n the set of all minimal-perimeter n-cell animals on L.
Let S be the two-dimensional square lattice. As mentioned above, animals on S are

usually called polyominoes. For this lattice, we know the following.

I Theorem 2.1. [2, Thm. 4]
∣∣MS

n

∣∣ =
∣∣∣MS

n+εS(n)

∣∣∣ (for n ≥ 3).

This theorem is a corollary of another theorem that states that the inflation operation
induces bijections between sets of minimal-perimeter polyominoes. This is demonstrated in
Figure 3. The proof of Theorem 2.1 is based directly on properties of the square lattice. In
this paper, we present a nontrivial generalization of this theorem to animals on any lattice
which fulfils a set of conditions. This result is stated in Theorem 3.1.

G. Barequet and G. Ben-Shachar 49:3

(a) All minimal-perimeter polyominoes of
size 7 (up to rotations)

(b) All minimal-perimeter polyominoes of size 17 (up to
rotations)

Figure 3 A demonstration of Theorem 2.1.

3 Inflation of Minimal-Perimeter Animals

Our main result consists of a set of conditions, which is sufficient for minimal-perimeter
animals to satisfy a claim similar to the one stated in Theorem 2.1. Throughout this section,
we consider animals on some specific lattice L.

3.1 A Bijection
I Theorem 3.1. Consider the following set of conditions for some lattice L.

(1) The function εL(n) is weakly monotone increasing.
(2) There exists some constant c ≥ 0, for which, for any minimal-perimeter animal Q on L,

we have that |P(Q)| = |B(Q)|+ c and |P(I(Q))| ≤ |P(Q)|+ c.
(3) If Q is a minimal-perimeter animal, then D(Q) is a valid (connected) animal.

If all the above conditions hold for L, then
∣∣ML

n

∣∣ =
∣∣∣ML

n+εL(n)

∣∣∣. If these conditions are not
satisfied for only a finite amount of sizes of animals on L, then the claim holds for all sizes
greater than some nominal size n0. �

Remark. Obviously, no lattice fulfills condition (2) with c < 0, and only trivial lattices
(e.g., the 1-dimensional lattice) fulfill it with c = 0.

The full proof is omitted due to lack of space. However, we detail here the main lemmata
which are part of the proof, and which are interesting on their own right.

First, inflating a minimal-perimeter animal preserves this property of the animal.

I Lemma 3.2. If Q is a minimal-perimeter animal, then I(Q) is a minimal-perimeter animal
as well. �

Next, under the inflation operation, no two different minimal-perimeter animals are
mapped into the same animal.

I Lemma 3.3. Let Q1, Q2 be two different minimal-perimeter animals. Then, regardless of
whether or not Q1, Q2 have the same size, the animals I(Q1) and I(Q2) are different as well.

Finally, for any minimal-perimeter animal of size n+ εL(n) (that is, the size obtained
by inflating a minimal-perimeter animal of size n), there exists only a single source animal
of size n under the inflation map. Specifically, this source is the animal that is obtained by
deflating the original animal.

I Lemma 3.4. For any Q ∈ML
n+εL(n), we also have that I(D(Q)) = Q.

Using the above lemmata, we can wrap up the proof of Theorem 3.1. In Lemma 3.2, we
have shown that for any minimal-perimeter animal Q ∈Mn, we have that I(Q) ∈Mn+εL(n).
In addition, Lemma 3.3 states that the inflation of two different minimal-perimeter animals
results in two other different minimal-perimeter animals. Combining the two lemmata, we

EuroCG’20

49:4 On Minimal-Perimeter Lattice Animals

Figure 4 A demonstration of Theorem 3.1 for polyhexes. The top row contains all polyhexes
in MH

9 (minimal-perimeter polyhexes of size 9) up to rotations, while the bottom row contains their
inflated versions, all members (up to rotations as well) of MH

23.

obtain that |Mn| ≤
∣∣Mn+εL(n)

∣∣. On the other hand, in Lemma 3.4, we have shown that
if Q ∈Mn+εL(n), then I(D(Q)) = Q, and, thus, for any animal inMn+εL(n), there is a unique
source in Mn (specifically, D(Q)), whose inflation yields Q. Hence, |Mn| ≥

∣∣Mn+εL(n)
∣∣.

Combining the two relations, we conclude that |Mn| =
∣∣Mn+εL(n)

∣∣.
We can also show that all the premises of Theorem 3.1 are fulfilled for animals on the

hexagonal lattice, and, thus, inflating the set of all minimal-perimeter polyhexes of a certain
size yields another set of minimal-perimeter polyhexes of another, larger, size. The proofs
are omitted due to lack of space. This result is demonstrated in Figure 4.

For polyiamonds, the second condition in Theorem 3.1 does not hold, and indeed, inflating
a minimal-perimeter polyiamond does not necessarily result in another minimal-perimeter
polyiamond. However, if we slightly modify the triangular lattice to the one in which two
cells which share only a vertex are also considered adjacent, then the theorem holds. This
is not surprising since under the modified definition, the lattice is homomorphic to the
hexagonal lattice. For cubical lattices in three or more dimensions, we know that the second
condition does not hold. However, we do not know whether or not the bijection between sets
of minimal-perimeter animals on these lattices exists.

3.2 Inflation Chains
Theorem 3.1 implies that there exist infinitely-many chains of sets of minimal-perimeter
animals, each one obtained from the previous one by inflation, while the cardinalities of all
sets in a single chain are identical. Obviously, there are sets of minimal-perimeter animals
that are not created by inflating any other set. We call the size of animals in such sets an
inflation-chain root. Using the definitions and proofs in the previous section, we are able to
characterize which sizes are these roots. The result is stated in the following theorem, while
the proof is omitted due to lack of space.

I Theorem 3.5. Let L be a lattice for which the three premises of Theorem 3.1 are satisfied,
and, in addition, the following condition holds.

(4) The inflation operation preserves for an animal the property of having a maximum size
for a given perimeter.

Then, if n is the minimum size for a minimal-perimeter size p, or equivalently, if there exists
a perimeter size p, such that n = min

{
n ∈ N | εL(n) = p

}
, then n is an inflation-chain root.

�

As mentioned above, we already provided a similar result for the restricted context of
polyominoes [3]. We were not able to identify any lattice for which Theorem 3.1 holds while
Theorem 3.5 does not hold, therefore, we suspect that the latter theorem can be inferred
from the conditions of the former.

G. Barequet and G. Ben-Shachar 49:5

Figure 5 An example of the split of a minimal-perimeter polyhex into its body (grey) and caps
(red). Note that the body is composed of 12 “lines” of cells, half of which are aligned with the
main three directions (e.g., the left and right edges), and the other half are toggling between two
directions, thereby creating three other “lines” (e.g., the top and bottom edges).

4 Counting Minimal-Perimeter Polyhexes

Following Theorem 3.5, one may ask how many minimal-perimeter animals exist for a given
inflation-chain root. We describe here two efficient algorithms for counting minimal-perimeter
polyhexes of a given size. In fact, it is sufficient to apply these algorithms only to the root of
an inflation-chain in order to compute the number of minimal-perimeter polyhexes of the
entire chain.

4.1 Bulk Counting
An interesting property of minimal-perimeter polyhexes is the following. Any minimal-
perimeter polyhex can be separated into two parts: (1) A dodecagon-like polyhex, with
the same perimeter as the original minimal-perimeter polyhex; and (2) Some other cells on
the edges of the dodecagon, which do not change the perimeter of the dodecagon. We call
these two parts the “body” and the “caps” of the polyhex. This concept is demonstrated in
Figure 5.

We can use this property for designing an efficient algorithm for counting minimal-
perimeter polyhexes. The algorithm considers all possible bodies with a given perimeter, and
calculates the number of different possible caps which yield minimal-perimeter polyhexes.
The number of caps fitting each edge is computed by using a rather simple recursive formula,
which is quite similar to the formula for Motzkin paths. The time complexity of this
algorithm, O(n6), is pseudo-polynomial. (That is, it is polynomial in n, which is the only
input to the algorithm.)

4.2 Column Counting
A polyhex is convex if any sequence of its cells along any of the three main directions of the
hexagonal lattice is contiguous. A sample convex polyhex is shown in Figure 6.

A better algorithm is based on the following lemma.

I Lemma 4.1. Minimal-perimeter polyhexes are convex. �

Lemma 4.1 implies a simple algorithm for counting minimal-perimeter polyhexes. Simply
put, we add cells to the polyhex, one column at a time, in a manner that preserves convexity
along the vertical direction, while keeping track of the current area and perimeter. This
process is demonstrated in Figure 7.

EuroCG’20

49:6 On Minimal-Perimeter Lattice Animals

Figure 6 A sample convex polyhex.

Figure 7 A demonstration of the column-counting algorithm. Each polyhex is generated by one
iteration of the algorithm.

Note that in any stage of the algorithm, the possible completions of the animal depend
only on the size and perimeter of the animal in the current state, and on the contents of the
last two added columns. This property is exemplified in Figure 8. Using this property, we
can memoize the results of the computations for each state and reuse them whenever we
encounter again the same state. Using this method, we achieve, again, a pseudo-polynomial
algorithm with a better running time of O(n4). The full complexity analysis of the algorithm
is omitted due to lack of space.

4.3 Results
Running the column-counting algorithm overnight on a home laptop produced the results
shown in Figure 9. One can clearly notice the patterns in the graph, which are very similar
to those observed for polyominoes [3]. A natural question which arises from this graph
is whether there exists a growth constant for the number of minimal-perimeter polyhexes
(when we consider only the roots of the inflation chain). This question is relevant as well for
polyominoes, and is still open.

References
1 Y. Altshuler, V. Yanovsky, D. Vainsencher, I.A. Wagner, and A.M. Bruckstein. On minimal

perimeter polyminoes. In Discrete Geometry for Computer Imagery, 13th International
Conference, Szeged, Hungary, pages 17–28. Springer, October 2006.

2 G. Barequet and G. Ben-Shachar. Properties of minimal-perimeter polyominoes. In Int.
Computing and Combinatorics Conference, pages 120–129, Qingdao, China, July 2018.
Springer.

3 G. Barequet and G. Ben-Shachar. Minimal-perimeter polyominoes: Chains, roots, and
algorithms. In Conf. on Algorithms and Discrete Applied Mathematics, pages 109–123,
Kharagpur, India, 2019. Springer.

4 M. Eden. A two-dimensional growth process. Dynamics of Fractal Surfaces, 4:223–239,
1961.

5 G. Fülep and N. Sieben. Polyiamonds and polyhexes with minimum site-perimeter and
achievement games. The Electronic J. of Combinatorics, 17(1):65, 2010.

G. Barequet and G. Ben-Shachar 49:7

Figure 8 Two possible partial states of the algorithm (created from left to right). Since the
size and perimeter, as well as the last two columns of both examples are identical, the possible
completions of the polyhex into a minimal-perimeter polyhex are the same.

0 50 100 150 200 250 300 350 400

100

101

102

103

104

105

106

Figure 9 The number of minimal-perimeter polyhexes as a function of the size. Inflation chain
roots are colored red.

6 I. Jensen and A.J. Guttmann. Statistics of lattice animals (polyominoes) and polygons. J.
of Physics A: Mathematical and General, 33(29):L257, 2000.

7 D.H. Redelmeier. Counting polyominoes: Yet another attack. Discrete Mathematics,
36(2):191–203, 1981.

8 N. Sieben. Polyominoes with minimum site-perimeter and full set achievement games.
European J. of Combinatorics, 29(1):108–117, 2008.

9 H.N.V. Temperley. Combinatorial problems suggested by the statistical mechanics of do-
mains and of rubber-like molecules. Physical Review, 103(1):1, 1956.

10 D. Vainsencher and A.M. Bruckstein. On isoperimetrically optimal polyforms. Theoreti-
cal Compututer Science, 406(1-2):146–159, 2008. URL: https://doi.org/10.1016/j.tcs.
2008.06.043, doi:10.1016/j.tcs.2008.06.043.

EuroCG’20

Shape Formation in a Three-dimensional Model
for Hybrid Programmable Matter∗

Kristian Hinnenthal1, Dorian Rudolph2, and Christian Scheideler3

1 Paderborn University
krijan@mail.upb.de

2 Paderborn University
dorian@mail.upb.de

3 Paderborn University
scheideler@upb.de

Abstract
We present the first three-dimensional model for hybrid programmable matter, in which small
active robots with the computational capabilities of finite automata and very limited sensing
operate on a structure of passive tiles. The model is an extension of the two-dimensional model
of Gmyr et al. [DNA 2018], whose hexagonal tiles on the triangular lattice translate to hollow
rhombic dodecahedral tiles on the face-centered cubic lattice. Following the idea of Gmyr et al.,
we initiate the research in this model by considering a single robot that can navigate through
the structure, pick up tiles, and place them somewhere else to transform the structure. Contrary
to the two-dimensional case, where the robot can always find a tile to move while preserving
connectivity, we show that such a tile cannot be found in the three-dimensional model without
an additional helper tile. We then show how the robot can construct a line with the help of such a
tile in O(n3) rounds, where n is the number of tiles. A line lends itself as an intermediate structure
to build more complex objects such as triangles or cubes. Our presentation is accompanied by
an implementation in a 3D simulator we specifically developed for our hybrid model.

1 Introduction

Programmable matter is envisioned as a system of small particles that act in coordination
to mimic a programmable physical material [15]. A variety of models and algorithms for
programmable matter has been proposed within the last years, typically focussing on active
agents with very limited computational, sensing, and movement capabilities. Notable
examples are the nubot model [17], metamorphic robots [4, 16], and the amoebot model [7].
For the amoebot model, problems such as leader election, shape formation, coating, and
shape sealing have been investigated (see, e.g., [3, 5, 6, 8]). Very recently, a hybrid variant
of the amoebot model has been proposed, in which active agents similar to amoebots move
on a structure of passive hexagonal tiles on the triangular lattice [7, 9, 10]. Contrary to
programmable matter only comprised of active elements, here the goal is to have only few
active elements that act on a potentially large structure of passive elements. As a potential
application, such systems may be used to construct or repair structures in complex or hardly
accessible environments such as the human body, narrow pipe systems, or space [11].

Our Contribution. We present a three-dimensional model for hybrid programmable
matter. Whereas the three-dimensional case has been intensively studied in related areas
such as modular self-reconfigurable robot systems (see, e.g., [13], or [1, 14] and the references

∗ Supported by DFG Project SCHE 1592/6-1 (Algorithms for Programmable Matter in a Physiological
Medium).

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

50:2 Shape Formation in Three Dimensions

therein) and molecular self-assembly (see, e.g., [12, 2]), to the best of our knowledge, there
does not exist a model for our vision of programmable matter. Our model naturally extends
the two-dimensional model for hybrid programmable matter presented by Gmyr et al. [10] to
three dimensions: instead of robots moving on hexagonal tiles on the triangular lattice, the
robots move through (hollow) rhombic dodecahedral tiles on the face-centered cubic (FCC)
lattice, i.e., the adjacency graph of the FCC sphere-packing (see Fig. 1).

Note that the space-filling tesselation of the rhombic dodecahedron is precisely the Voronoi
tesselation of the FCC lattice. Compared to cubic structures as an apparent alternative
space-filling tiling, the rhombic dodecahedral structures are stronger connected and therefore
more sturdy, as every node has 12 neighbors and each pair of adjacent cells shares a common
face. Furthermore, this allows robots to move from a tile to each adjacent tile through
the incident face and without having to leave the tile structure. Note that whereas in the
two-dimensional model tiles can be moved by carrying them over the tile structure, we
require the robot to carry tiles through existing tiles. Therefore, in a practical setting, the
robot needs to be able to fold and unfold carried tiles to squeeze them through other tiles.

(a) Subgraph of the FCC lattice that
corresponds to a single cube.

(b) Larger subgraph of the FCC lattice (contained
within 8 cubes).

(c) Two voronoi cells (blue rhombic dodecahedra)
of the subgraph of (b).

Figure 1 Rhombic dodecahedral tiles in the FCC lattice.

K. Hinnenthal, D. Rudolph and C. Scheideler 50:3

We follow the idea of Gmyr et al. and initiate the research in this model by considering
the problem of forming a line with a single robot. Specifically, we present an algorithm that
transforms any initially connected structure into a line in O(n3) rounds while preserving
connectivity at all times. Similar to the two-dimensional case, a line can be used as an
intermediate structure to build a triangle, and simple three-dimensional structures such as
pyramids and cubes can be constructed in a very similar fashion; due to space constraints,
we leave out the exact description of these algorithms. As our results indicate, moving
tiles in three dimensions without violating connectivity requires much more sophisticated
behavior. Specifically, we show that the robot cannot locally decide which tile can be moved
at all without violating connectivity, which we address by providing the robot with an
additional helper tile. Our algorithm has been implemented in a three-dimensional hybrid
programmable matter simulator that we developed for visualization and evaluation purposes.
A few screenshots of the formation of a line, as well as the transformation of the line into a
pyramid, can be found in Fig. 2.

(a) (b) (c)

(d) (e) (f)

Figure 2 Simulator screenshots of constructing a line (d) and transforming it into a pyramid (f).

EuroCG’20

50:4 Shape Formation in Three Dimensions

Model. As in the two-dimensional model [10], we assume that a single robot r operates
on a finite set of n tiles. In our model, each tile forms a hollow rhombic dodecahedron and
occupies exactly one node of the infinite FCC lattice G = (V, E). For ease of presentation, we
regard G as a stack of hexagonal layers, where each layer can be represented in the triangular
lattice (see gray scale layers in Fig. 3).

Figure 3 Example configuration with three layers depicted in 3D (left) and as a stack of hexagonal
structures in the corresponding triangular lattices (right). The robot is shown as a black circle.

A configuration (T, p) consists of a set T ⊆ V of all nodes occupied by tiles, and the
robot’s position p ∈ V . We assume that the initial position of the robot is occupied by a
tile and that the robot initially carries one of the n tiles. Every node u ∈ V is adjacent to
twelve neighbors, and, as indicated in Fig. 4, we describe the relative positions of adjacent
nodes by the cardinal directions N, NE, SE, S, SW, NW, as well as the “up-directions” USE,
UNE, UW, and the “down-directions” DE, DNW, and DSW. The robot must always be on
or adjacent to a node occupied by a tile. Additionally, if the robot does not carry a tile, we
require the subgraph of G induced by T to be connected; otherwise, the subgraph induced
by T ∪ {p} must be connected. This restriction prevents the configuration from falling apart
in a practical scenario.

Figure 4 Tiles are labeled with the direction from the robot’s point of view. The three layers are
depicted separately. The center one also shows the grid.

The robot has only constant memory, which gives it the computational capabilities of a
finite automaton, and operates in rounds of Look-Compute-Move cycles. In the Look phase
of a round, the robot can observe its node p and the twelve neighbors of that node. For
each of these nodes, it can determine whether the node is occupied or not. In the Compute
phase, the robot may change its internal state (or terminate) and determines its next move
according to the observed information. In the Move phase, the robot can either (1) pick up
a tile from p, if p ∈ T , (2) place a tile it is carrying at p if p /∈ T , or (3) move to an adjacent

K. Hinnenthal, D. Rudolph and C. Scheideler 50:5

node while possibly carrying a tile with it. The robot can carry at most one tile.

2 Safely Movable Tiles

As shown by Gmyr et al. for the two-dimensional model [10, Theorem 1], a single robot
cannot find a safely removable tile, i.e., a tile on a node v such that the subgraph induced by
T \ {v} is connected. Gmyr et al. circumvent this issue by repeatedly locating and moving
a safely movable tile to transform the structure, i.e., a tile at some node v for which there
exists an adjacent node v′ such that the subgraph induced by (T \ {v}) ∪ {v′} is connected.
Specifically, the robot moves tiles to adjacent nodes without even violating connectivity in
the tile’s local neighborhood, which obviously also preserves global connectivity. Formally,
we call a tile at node v locally safely movable if it has an adjacent node v′ such that the
graph induced by N(v) ∪ {v′} is connected, where N(v) ⊆ T is the set of occupied nodes
adjacent to v.

As an example, in two dimensions, a hollow hexagon of tiles can be transformed into a
triangle by repeatedly moving locally safely movable tiles (i.e., the hexagon’s corners) inwards
until there is no hole anymore [10]. At this point, it is very easy to find safely removable tiles
and rearrange them into the target structure (e.g., a triangle). Since a safely removable tile
cannot be found in general [10, Theorem 1], the strategy of moving locally safely movable
tiles to create an intermediate structure proves to be very useful. However, the impossibility
result for safely removable tiles does not only translate to the three-dimensional case as well,
there even exists a configuration that does not have any locally safely movable tile in our
model (see Fig. 5), making it impossible to use the approach for two dimensions. Even worse,
the following theorem shows that the robot cannot find a safely movable tile in general, even
though it might exist.

Figure 5 A tile configuration without any locally movable tile (i.e., a tile that can be moved
without disconnecting its local neighborhood) and the truncated octahedron that it resembles. Note
that whereas each tile is in fact safely movable, this cannot be decided locally by the robot.

I Theorem 2.1. There does not exist a robot that terminates on a safely movable tile on
every initial configuration without ever moving a tile.

EuroCG’20

50:6 Shape Formation in Three Dimensions

Proof sketch. Construct a tree G (i.e., the graph induced by T is a tree) whose only safely
movable tiles are its leaves, and which a robot cannot distinguish from a variation H of Fig. 5
with sufficiently long edges. Roughly speaking, a finite automaton robot cannot “measure”
the length of a line, therefore the robot will behave exactly the same on G as it does on H.
Since it terminates on H after having traversed a constant number of edges (otherwise it
would enter an infinite loop), it must also terminate on G before having reached its leaves
(which are the only safely movable tiles in G). J

This implies that it is impossible for the robot to select a tile to move in general, which
justifies our choice to equip the robot with an initial tile. As we show in the following section,
the robot can use the additional tile to transform the structure without violating connectivity.

3 Line Formation Algorithm

In this section, we present our algorithm to transform any initial configuration into a line
in O(n2 · h) ⊆ O(n3) rounds, where h is the height (i.e., number of layers) of the initial tile
configuration. The basic idea is to repeatedly merge columns, i.e., maximal lines of occupied
nodes in the N/S direction, until only a single column remains. The robot cycles through
the following phases, starting with phase FC :

FC (find column): Find a column without neighbors (i.e., adjacent tiles) above (i.e.,
USE, UNE or UW) or west (i.e., NW or SW) by traversing columns from N to S and
moving up or west whenever possible. Eventually, the robot will find such a column. If
that column has a neighbor below (i.e., DE, DNW or DSW), switch to MCD; if otherwise
it has a neighbor to the east (i.e., NE or SE), switch to MCE. Halt once only a single
column remains.
MCD (move column down): The goal of this phase is to move the column’s northernmost
remaining tile to the first (from N to S) empty node DE of the column, or, if no such
node exists, S of the column. Switch back to FC once either all tiles have been moved
DE, or the column was merged with another to the south.
MCE (move column east): Same as MCD, but move tiles SE instead of DE.

We next describe the technically more challenging phases MCD and MCE in more detail.
Our algorithm requires the robot to basically always carry a tile with it, therefore moving a
tile t to some node u is actually performed by first placing the carried tile at u and picking
up t afterwards (where the movement from u to t is the only time the robot does not carry
a tile). In the following, let C denote the set of nodes occupied by the column the robot
r currently operates on. CN and CS denote the column’s northernmost and southernmost
nodes, respectively. For any node u, denote by, e.g., u + NW the node NW of u.

MCD: At the beginning of each iteration of this phase the robot’s position is p = CN +NE
(see Fig. 6a). Recall that before moving the tile t′ at CN, r first has to place its carried tile t

at the first empty node DE of C, and then picks up t′. To do so, it follows the path depicted
in Fig. 6a until it finds an empty node, and places t. Afterwards, r moves back to CN and
picks up t′ (see Fig. 6b–6c). r then distinguishes the following cases:

If t was placed at v = CS + S, and there was a tile at v + S (see Fig. 6h), r moves to an
adjacent tile and switches to FC (see Fig. 6i). In this case, r has essentially merged C

with the column to its south.
Else, if r’s position is p = CN = CS , which is the case if p + S /∈ T , then r has picked up
the column’s last tile. The robot then moves to an adjacent tile and switches to FC .
Otherwise, r moves SE and begins the next iteration of phase MCD (see Fig. 6c).

K. Hinnenthal, D. Rudolph and C. Scheideler 50:7

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6 Example of the phase MCD. In (a), (d), and (g), r follows the black path until it reaches
the first empty node (marked with a dashed outline). The dashed line indicates how the path would
proceed if r had not already found an empty node. The carried tile is shown smaller.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7 Maintaining connectivity during phase MCD using the carried tile.

Fig. 7 illustrates how r makes use of the initially carried tile to maintain connectivity
when moving tiles DE (see steps 7e–7g). Note that a new iteration of the phase starts at 7f,
where r being at CN + NE is essential for the configuration’s connectivity.

MCE: The behavior of r in this phase only differs from MCD in the path r follows to
find the first empty node SE of C (see Fig. 8a). The depicted example shows the case where
r moves all tiles SE without merging C with another column to the south (as in Fig. 6).

Using the observation displayed in Fig. 7, it is straightforward to show the next lemma.

I Lemma 3.1. The robot does not disconnect the configuration.

It remains to be proven that r does indeed build a line in O(n2 · h) rounds.

I Lemma 3.2. The robot spends at most O(n2) rounds in the phases MCE and MCD.

Proof sketch. The robot r only moves tiles in the directions S, SE, and DE (assuming the
previously discussed interpretation of moving tiles). One can show that if r moves tiles by
a total distance of k in phase MCE or MCD, it spends O(k) rounds in that phase. It can
further be shown that the distance between each tile’s initial and final positions is bounded
by O(n). Hence, tiles are moved a total distance of O(n2). J

I Lemma 3.3. The robot spends at most O(n2 · h) rounds in phase FC.

Proof sketch. r traverses each column at most once during FC , since it only exits columns
by moving west or up. Hence, it exits FC after O(n) rounds. MCE always merges C with
another column (either S or SE of C), thereby reducing the total number of columns. MCD

EuroCG’20

50:8 Shape Formation in Three Dimensions

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 8 Example of the phase MCE .

merges C with another column to its S, or it moves at least one tile down. The former case
occurs at most O(n) times since there are at most O(n) columns. The latter occurs at most
O(n · h) times, since r only moves a tile down if its column already has a neighbor below.
Hence, r enters phases MCE and MCD (and thus also FC) at most O(n · h) times. J

Since r only halts once it has built a line, we conclude the following theorem.

I Theorem 3.4. The robot builds a line in O(n2 · h) rounds.

Acknowledgments. The authors would like to thank Irina Kostitsyna for many helpful
discussions from which this work originated.

References
1 Hossein Ahmadzadeh, Ellips Masehian, and Masoud Asadpour. Modular Robotic Systems:

Characteristics and Applications. Journal of Intelligent and Robotic Systems: Theory and
Applications, 81(3-4):317–357, 2016.

2 Faisal A. Aldaye, Alison L. Palmer, and Hanadi F. Sleiman. Assembling materials with
dna as the guide. Science, 321(5897):1795–1799, 2008.

3 Rida A. Bazzi and Joseph L. Briones. Stationary and Deterministic Leader Election in
Self-organizing Particle Systems. In International Symposium on Stabilizing, Safety, and
Security of Distributed Systems, pages 22–37, 2019.

4 Gregory S. Chirikjian. Kinematics of a metamorphic robotic system. In Proceedings of
the 1994 IEEE International Conference on Robotics and Automation (ICRA), volume 1,
pages 449–455, 1994.

5 Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W.
Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal coating
for programmable matter. Natural Computing, 17:81–96, 2018.

K. Hinnenthal, D. Rudolph and C. Scheideler 50:9

6 Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Schei-
deler, and Andréa W. Richa. Convex Hull Formation for Programmable Matter. In Proc.
of the 21st International Conference on Distributed Computing and Networking (ICDCN)
(to appear), 2020.

7 Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Com-
puting by programmable particles. In Distributed Computing by Mobile Entities: Current
Research in Moving and Computing, pages 615–681. 2019.

8 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa,
and Christian Scheideler. Leader Election and Shape Formation with Self-organizing Pro-
grammable Matter, pages 117–132. 2015.

9 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, and
Christian Scheideler. Shape recognition by a finite automaton robot. In 43rd International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 52:1–52:15,
2018.

10 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Chris-
tian Scheideler, and Thim Strothmann. Forming tile shapes with simple robots. Natural
Computing, 2019.

11 Benjamin Jenett and Daniel Cellucci. A mobile robot for locomotion through a 3d periodic
lattice environment. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 5474–5479, 2017.

12 Matthew R. Jones, Robert J. Macfarlane, Byeongdu Lee, Jian Zhang, Kaylie L. Young,
Andrew J. Senesi, and Chad A. Mirkin. DNA-nanoparticle superlattices formed from
anisotropic building blocks. Nature Materials, 9(11):913–917, 2010.

13 Ara N. Knaian, Kenneth C. Cheung, Maxim B. Lobovsky, Asa J. Oines, Peter Schmidt-
Neilsen, and Neil A. Gershenfeld. The Milli-Motein: A self-folding chain of programmable
matter with a one centimeter module pitch. In IEEE International Conference on Intelligent
Robots and Systems, pages 1447–1453, 2012.

14 Esben Hallundbæk Østergaard, Kristian Kassow, Richard Beck, and Henrik Hautop Lund.
Design of the atron lattice-based self-reconfigurable robot. Autonomous Robots, 21(2):165–
183, 2006.

15 Tommaso Toffoli and Norman Margolus. Programmable matter: Concepts and realization.
Physica D: Nonlinear Phenomena, 47(1):263–272, 1991.

16 Jennifer E. Walter, Elizabeth M. Tsai, and Nancy M. Amato. Algorithms for fast concur-
rent reconfiguration of hexagonal metamorphic robots. IEEE Transactions on Robotics,
21(4):621–631, 2005.

17 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS
’13, pages 353–354, 2013.

EuroCG’20

Smallest Universal Covers for Families of Triangles
Ji-won Park∗1 and Otfried Cheong2

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
ji-won.park@inria.fr

2 School of Computing, KAIST, Daejeon, Korea
otfried@kaist.airpost.net

Abstract
A universal cover for a family T of triangles is a convex shape that contains a congruent copy of
each triangle T ∈ T . We conjecture that for any family T of triangles (of bounded area) there is
a triangle that forms a universal cover for T of smallest possible area. We prove this conjecture
for all families of two triangles, and for the family of triangles that fit in the unit circle.

1 Introduction

A universal cover for a given family T of objects is a convex set Z that contains a congruent
copy of every element T ∈ T . A smallest universal cover is a universal cover of the smallest
area (there can be multiple smallest universal covers).

Perhaps the oldest question on universal covers was asked by Lebesgue in 1914: what is
the smallest area of a convex set Z that can be used to cover a congruent copy of any set of
diameter one in the plane? Lebesgue’s problem was first studied by Pál [8], who found that
the area of a smallest universal cover is at least 0.8257 and at most 0.8454. Both bounds
were improved by several authors, the current best upper bound is around 0.844 [3], the best
lower bound is around 0.832 [5], so the problem is still open.

Moser asked for the smallest universal cover for the family of curves of length one. The
problem is interesting both for open and closed curves, and both versions are still open. The
survey by Wetzel [9] and the book by Brass et al. [4] list these and other results related to
universal covers.

Among the few problems on universal covers that are solved are questions where T is
a family of triangles. It is known that the smallest universal cover for the family of all
triangles of perimeter one, as well as for the family of all triangles of diameter one, is itself a
triangle [6, 7]. For the family of all triangles of diameter one, the smallest universal cover
similar to a prescribed triangle is also known [10].

We conjecture that this is not a coincidence, and that there is always a triangle that
forms a smallest universal cover. More formally, we define a family T of triangles to be
bounded if there is a constant D such that no element of T has diameter larger than D, and
state the following conjecture:

I Conjecture 1. For any bounded family T of triangles there is a triangle Z that is a smallest
universal cover for T .

If true, this would mirror the situation for translation covers of line segments: the smallest
convex translation cover for any family of line segments can be chosen to be a triangle [2].

∗ This research was partially supported by MSIT/NRF (No. 2019R1A2C3002833)

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

51:2 Smallest Universal Covers for Families of Triangles

Our results. Our first result (Theorem 4) describes the triangle T ∗ that is the unique
smallest universal cover for the family T◦ of all triangles that fit into the unit circle. This
complements the previous results by Kovalev [7] and Füredi and Wetzel [6], as the radius of
the circumcircle is, next to diameter and perimeter, a natural “size” for triangles.

It turns out that T ∗ can be defined by two specific triangles in T◦. In other words, T ∗ is
already the smallest universal cover for a two-element subfamily of T◦. One can notice from
the constructions in [6, 7] that the same is true for the family of all triangles of diameter
one, and for the family of all triangles of perimeter one. We show that Conjecture 1 holds
for any family of triangles with this property, by proving that the smallest universal cover
for a family of any two triangles can be chosen to be a triangle (Theorem 7).

Hence, if, for an arbitrary triangle family, a smallest universal cover can be determined by
a subfamily consisting of two triangles, then Conjecture 1 is implied by Theorem 7. However,
we show that not all families of triangles have this property. We give an example of a
family T3 of three triangles such that each proper subfamily has a universal cover smaller
than a smallest universal cover of T3 (Theorem 8).

2 Preliminaries

We will say that a convex shape X fits into a convex shape Y if there is a shape X ′ ⊆ Y

congruent to X (that is, X ′ is the image of X under translation, rotation, and reflection).
We say that X maximally fits into Y if X fits into Y , but there is no shape X ′ that is similar
to X and larger than X and fits into Y . The following lemma has been well known; see, for
instance, Agarwal et al. [1] for a proof.

I Lemma 2. If a triangle X maximally fits into a convex polygon Y , then there are at least
four incidences between vertices of X and edges of Y .

Since the triangle X has only three vertices, one of them must be involved in two
incidences, that is, it must coincide with a vertex of Y . Of particular interest to us is the
special case where Y is a triangle as well. In this case the lemma implies that a vertex of X
coincides with a vertex of Y and that an edge of X lies on an edge of Y . There are three
cases, depicted in Figure 1. An immediate consequence is the following:

X X

YY Y

X

Figure 1 The three cases where X maximally fits into Y .

I Corollary 3. If a triangle X fits into a triangle Y , then we can place X in Y such that an
edge of X lies on an edge of Y .

We will let |PQ| denote the length of the segment PQ, while |X| denotes the area of a
convex shape X; we also use |ABC| to denote the area of the triangle 4ABC and similarly
for convex polygons with more than three corners.

J.-w. Park and O. Cheong 51:3

3 Triangles contained in the unit circle

Let T0 = 4ABC be the equilateral triangle of side length
√

3. This is the largest equilateral
triangle that fits into the unit circle. Then, for 60◦ 6 θ < 90◦, we let T1(θ) = 4DEF be the
isosceles triangle whose circumradius is one and whose base angles are θ. We place T1(θ)
such that its long edge DE is aligned with the edge AB of T0 and its corner F lies on the
edge AC; see Figure 2. We define T2(θ) as 4ADC.

θ

θ60◦

T0

T1(θ)

T2(θ)
T0

T1(θ)

T2(θ)

A B

C

DE

F

Figure 2 Construction of T2(θ) = 4ADC, for two different values of the angle θ.

We now define T ∗ = T2(80◦). Our first main result will be the following:

I Theorem 4. The triangle T ∗ is the unique smallest universal cover for the family of all
triangles that fit in the unit-radius circle.

One may wonder what makes 80◦ special. The reason is that it is for θ = 80◦ that T1(θ)
maximally fits into T2(θ) in two distinct ways. To see this, consider the height HD in T ∗,
and reflect both A and F about the line HD, obtaining points C̃ and G: Calculation shows
that ∠FDC ≈ 27.52◦ > 20◦, resulting in Figure 3. Since ∠AC̃D = ∠CAD = 60◦, we obtain
an equilateral triangle 4ADC̃. We also have |DG| = |DF | and ∠GDH = ∠FDH = 10◦,
so 4FDG is congruent to 4EDF = T1(80◦).

BA E

F

D

H

G

C

C̃

Figure 3 T ∗ = 4ADC.

For proving the optimality of T ∗, the following lemma is useful, which is an adaptation
of a result by Füredi and Wetzel [6, Theorem 5].

EuroCG’20

51:4 Smallest Universal Covers for Families of Triangles

QP

R

Q′

R′

P ′ U

VW

K

X

hu

hvhw

Figure 4 Proof of Lemma 5.

I Lemma 5. Let T be a family of triangles, and let Z be a universal cover for T . Let S ∈ T ,
and let S′ be the smallest universal cover for T that is similar to S. If

|S′|
|S| =

(|Z|
|S|

)2
,

then Z is a smallest universal cover for T .
Proof. Let 4PQR = S, and let X be a universal cover for T . We can assume S ⊆ X.
We draw tangents to X that are parallel to the edges of S, obtaining a triangle 4P ′Q′R′
that encloses X and that is similar to S; see Figure 4. By the assumption, this implies
that |P ′Q′R′| > |S′|, and therefore

|P ′Q′|
|PQ| >

|Z|
|S| .

Let U , V , and W be points of X on the three edges of 4P ′Q′R′, let K be any point
inside S, and let hu, hv, and hw be the distances from K to the lines P ′Q′, Q′R′, and R′P ′,
respectively. We then have

|X| > |PUQV RW | = 1
2

(
|PQ|hu + |QR|hv + |RP |hw

)

= |PQ|
|P ′Q′| ·

1
2

(
|P ′Q′|hu + |Q′R′|hv + |R′P ′|hw

)

= |PQ|
|P ′Q′| |P

′Q′R′| = |PQ|
|P ′Q′|

(|P ′Q′|
|PQ|

)2
|PQR|

= |P
′Q′|
|PQ| |S| >

|Z|
|S| |S| = |Z|. J

The following is a special case of Lemma 5.

I Corollary 6. Let S and T be two triangles where T does not fit into S, and let Z be a
universal cover for {S, T}. Let S′ be the smallest triangle similar to S such that T fits in S′.
If

|S′|
|S| =

(|Z|
|S|

)2
,

J.-w. Park and O. Cheong 51:5

then Z is a smallest universal cover for the family {S, T}.
Now we are ready to sketch the proof of Theorem 4. It is not too hard to show that T ∗ is

indeed a universal cover for triangles in the unit circle. We then notice that the triangle ADC̃
is the smallest equilateral triangle into which T1(80◦) fits. Thus, for optimality, we can
apply Corollary 6 with S = T0 = 4ABC, T = T1(80◦) = 4DEF , and Z = T ∗ = 4ADC
(recall Figure 3). In fact, there are many smallest universal covers (of the same area)
for the family {T0, T1(80◦)}. However, we can show that any smallest universal cover that
accommodates T1(θ) for every θ should coincide with T ∗; the proof is omitted. The uniqueness
then follows immediately.

4 Two triangles

In the following theorem, we describe how to find a triangle that is a smallest universal cover
for a given family of two triangles.

I Theorem 7. Let S and T be triangles. Then there is a triangle Z that is a smallest
universal cover for the family {S, T}.
Proof. If S fits in T or if T fits in S, the statement is true, so we assume that this is not the
case. Let S′ be the smallest triangle similar to S such that T fits in S′. This implies that T
maximally fits into S′, so by Lemma 2 there are three cases. We denote S by 4ABC, S′
by 4A′B′C ′, and T by 4PQR.
Case 1. P and Q lie on the edge A′B′, and R = C ′; see Figure 5. We first observe

C ′ = R

A′ B′A P Q B

C

Figure 5 Proof of Theorem 7 - Case 1.

that |AB| > |PQ|: otherwise, we can place the segment AB inside the segment PQ, which
causes C to fall inside T , and S to fit into T , a contradiction. We can therefore place AB
inside A′B′ so that it covers PQ and C lies inside T . Then the triangle Z = 4ABR is a
universal cover for S and T . Then

|Z|
|S| = |ABR||ABC| = |A

′C ′|
|AC| and |S′|

|S| =
(|A′C ′|
|AC|

)2
,

so by Corollary 6 Z is a smallest universal cover for {S, T}.
Case 2. PQ coincides with A′B′; see Figure 6. Let hR be the height of R in T , let hC be
the height of C in S. We have hC > hR, since otherwise S fits into T by a placement in
which C = R and AB is parallel to PQ. We can therefore place S = 4ABC such that
A and B are on the segment A′B′ and C is on the segment RC ′. Then Z = 4PQC is a
smallest universal cover for {S, T} by Corollary 6 since

|Z|
|S| = |PQC||ABC| = |PQ||AB| = |A

′B′|
|AB| and |S′|

|S| =
(|A′B′|
|AB|

)2
.

EuroCG’20

51:6 Smallest Universal Covers for Families of Triangles

C ′

P = A′ Q = B′

R

C

BA

Figure 6 Proof of Theorem 7 - Case 2.

Case 3. P coincides with A′, Q lies on the edge A′B′, and R lies on the edge B′C ′. Let
again hR be the height of R in T , let hC be the height of C in S.

If hC > hR, then we can place S = 4ABC such that B = B′, A lies on A′B′, and C lies
on the segment RC ′; see Figure 7. Then Z = 4PBC is a smallest universal cover for {S, T}

C ′

A′ = P B′ = BA Q

C
R

Figure 7 Proof of Theorem 7 - Case 3 when hC > hR.

by Corollary 6 since

|Z|
|S| = |PBC||ABC| = |PB||AB| = |A

′B′|
|AB| and |S′|

|S| =
(|A′B′|
|AB|

)2
.

It remains to consider the case where hC < hR. Then we place S = 4ABC such that C
is on the edge PR while A and B are on A′B′; see Figure 8. We let Z = 4PBR. We

C ′

A′ = P B′A Q

C

B

R

Figure 8 Proof of Theorem 7 - Case 3 when hC < hR.

observe that |CBR| = |CBB′|, since the two triangles have the same base and the same
height, as B′C ′ is parallel to BC. Therefore

|Z|
|S| = |PBR||ABC| = |PB

′C|
|ABC| = |PB

′|
|AB| = |A

′B′|
|AB| .

J.-w. Park and O. Cheong 51:7

On the other hand,
|S′|
|S| =

(|A′B′|
|AB|

)2
,

so Corollary 6 again implies that Z is a smallest universal cover for {S, T}. J

5 Two triangles are not enough

I Theorem 8. There exists a three-element family T3 = {4ABC,4DEF,4GHI} whose
smallest universal cover is larger than a smallest universal cover for any two of the triangles.

Proof. (Sketch) We start by constructing three triangles as follows:
4ABC is an equilateral triangle of side length 2 and thus of height

√
3;

4DEF is an isosceles triangle where |DF | = |EF |, |DE| = 6, and the height of F
is
√

3/(1 + ε);
4GHI is an isosceles triangle with |GI| = |HI|, the height of G and H is ε, and the
projection KI of HI on GI has length 6− ε.
By applying Theorem 7, we can conclude that, for each proper subfamily of T3, a smallest

universal cover is of area at most 3
√

3. Now we assume for a contradiction that a universal
cover for T3 of area 3

√
3 exists, and proceed as in the proof of Lemma 5. J

A B

C

D E

F

G

H

I

Figure 9 A family of three triangles whose every proper subfamily has a smaller universal cover.

We conjecture that if we arrange the three triangles as in Figure 9 (so that H lies on CD
and F lies on CI), then 4CDI is the unique smallest universal cover for T3.

Acknowledgments

This work was initiated during the 18th Korean Workshop on Computational Geometry in
Otaru. The authors would like to thank the other participants for suggesting the problem
and the interesting discussions during the workshop.

References
1 Pankaj K. Agarwal, Nina Amenta, and Micha Sharir. Largest placement of one convex

polygon inside another. Discrete & Computational Geometry, 19:95–104, 1998. doi:10.
1007/PL00009337.

2 Hee-Kap Ahn, Sang Won Bae, Otfried Cheong, Joachim Gudmundsson, Takeshi Tokuyama,
and Antoine Vigneron. A generalization of the convex Kakeya problem. Algorithmica,
70:152–170, 2014.

EuroCG’20

51:8 Smallest Universal Covers for Families of Triangles

3 John C. Baez, Karine Bagdasaryan, and Philip Gibbs. The Lebesgue universal cover-
ing problem. Journal of Computational Geometry, 6:288–299, 2015. doi:10.20382/jocg.
v6i1a12.

4 Peter Brass, William Moser, and János Pach. Research Problems in Discrete Geometry.
Springer-Verlag, 2005.

5 Peter Brass and Mehrbod Sharifi. A lower bound for Lebesgue’s universal cover problem.
International Journal of Computational Geometry & Applications, 15:537–544, 2005. doi:
10.1142/S0218195905001828.

6 Zoltan Füredi and John E. Wetzel. The smallest convex cover for triangles of perimeter
two. Geometriae Dedicata, 81:285–293, 2000. doi:10.1023/A:1005298816467.

7 Mikhail D. Kovalev. A minimal convex covering for triangles (in Russian). Ukrain. Geom.
Sb., 26:63–68, 1983.

8 Julius Pál. Über ein elementares Variationsproblem. Math.-fys. Medd., Danske Vid. Selsk.,
3, 1920.

9 John E. Wetzel. Fits and covers. Mathematics Magazine, 76:349–363, 2003.
10 Liping Yuan and Ren Ding. The smallest triangular cover for triangles of diameter

one. Journal of Applied Mathematics and Computing, 17:39–48, 2005. doi:10.1007/
BF02936039.

Between Two Shapes, Using the Hausdorff
Distance∗

Marc van Kreveld1, Tillman Miltzow1, Tim Ophelders2, Willem
Sonke3, and Jordi Vermeulen1

1 Dep. of Information and Computing Sciences, Utrecht University
{m.j.vankreveld|t.miltzow|j.l.vermeulen}@uu.nl

2 Dep. of Computational Mathematics, Science and Engineering, Michigan State
University
ophelder@egr.msu.edu

3 Dep. of Mathematics and Computer Science, TU Eindhoven
w.m.sonke@tue.nl

Abstract
Given two shapes A and B in the plane with Hausdorff distance 1, is there a shape S with
Hausdorff distance 1/2 to and from A and B? The answer is always yes, and depending on
convexity of A and/or B, S may be convex, connected, or disconnected. We show a generalization
of this result and a few others about Hausdorff distances, middle shapes, and related properties.
We also show that the implied morph has a bounded rate of change.

1 Introduction

The Hausdorff distance is a widely used distance metric with many applications. For two
sets A and B in R2, we define the directed Hausdorff distance as

d ~H(A,B) = sup
a∈A

inf
b∈B

d(a, b),

where d denotes the Euclidean distance. The undirected Hausdorff distance is defined as

dH(A,B) = max(d ~H(A,B), d ~H(B,A)).

If A and B are closed sets then dH(A,B) = r is equivalent to saying that A ⊆ B ⊕Dr and
B ⊆ A⊕Dr, where ⊕ denotes the Minkowski sum, and Dr is a disk of radius r centered at
the origin. Recall that the Minkowski sum of sets A and B is the set {a+ b | a ∈ A, b ∈ B}.
As we will use this alternative definition throughout the paper, we will only consider closed
sets.

Algorithms to compute the Hausdorff distance are available for many types of input sets,
such as points, line segments, polylines, polygons and simplices in k-dimensional Euclidean
space [1, 2, 4]. However, the question whether a polynomial time algorithm exists to compute
the Hausdorff distance between general semialgebraic sets remains open [5].

In this paper, we consider the problem of finding a third set that lies “between” the
two input sets, in a Hausdorff sense. We define a class of sets that smoothly interpolate
between the two input sets, giving a morph between them. Unlike many existing morphing
algorithms [3, 6], our approach does not require any correspondence between features of the

∗ Research on the topic of this paper was initiated at the 4th Workshop on Applied Geometric Algorithms
(AGA 2018) in Langbroek, The Netherlands, supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 639.023.208. The second author is supported by the NWO Veni
grant EAGER. The first and fifth authors are supported by the NWO TOP grant no. 612.001.651

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

52:2 Between Two Shapes, Using the Hausdorff Distance

A B A B A B

Figure 1 Three possible Hausdorff middles of A and B: two points, a line segment, and S1/2.

input to be calculated. However, our approach is unusual in the sense that the intermediate
shapes when morphing between e.g. two polygons are not polygons themselves.

Our main contribution is to pioneer the notion of Hausdorff middle and the interpola-
tion between two shapes. We address and solve elementary combinatorial, topological, and
algorithmic questions.

2 The Hausdorff middle

Consider two closed compact sets A and B in R2; we are interested in computing a Hausdorff
middle: a set C that minimizes the maximum of the undirected Hausdorff distances to A
and B. That is,

C = argmin
C′

max(dH(A,C ′), dH(B,C ′)).

Note that there may be many such sets that minimize the Hausdorff distance; see Figure 1
for a few examples. It might seem intuitive to restrict C to be the minimal set that achieves
this distance, but this is ill-defined: the minimal set is not necessarily unique, and the
common intersection of all minimal sets is not a solution itself (see Figure 2). However, the
maximal set is well-defined and unique. Let dH(A,B) = 1. Then

S = (A⊕D1/2) ∩ (B ⊕D1/2)

is the maximal set satisfying the constraints. We want to show that dH(A,S) and dH(B,S)
are at most 1/2. In fact, we can prove something more general where we define maximal
sets that may be at other places between A and B, not only halfway.

I Lemma 1. Let A and B be two closed sets in the plane with dH(A,B) = 1, and let
Sα = (A⊕Dα) ∩ (B ⊕D1−α) for α ∈ [0, 1]. Then dH(A,Sα) = α and dH(B,Sα) = 1− α.

Proof. We first show that dH(A,Sα) ≤ α by showing that d ~H(A,Sα) ≤ α and d ~H(Sα, A) ≤
α; the case for dH(B,Sα) ≤ 1−α is analogous and therefore omitted. Then we show equality.

Consider any point a ∈ A; by definition, there is a point b ∈ B with d(a, b) ≤ 1. Now
consider a point s ∈ seg(a, b) with d(a, s) ≤ α and d(b, s) ≤ 1 − α; clearly this point must

B

A

1/4

Figure 2 Two different minimal sets achieving minimal Hausdorff distance to A and B.

M. van Kreveld, T. Miltzov, T. Ophelders, W. Sonke, and J. Vermeulen 52:3

S1/2A B2

Figure 3 Sets A and B for which S1/2 is disconnected. The shaded areas around A and B

represent A⊕D1/2 and B ⊕D1/2, respectively.

be in Sα, as it is contained in both A⊕Dα and B ⊕D1−α, and it has d(a, s) ≤ α. As this
works for every a ∈ A, it holds that d ~H(A,Sα) ≤ α. The fact that d ~H(Sα, A) ≤ α follows
straightforwardly from Sα being a subset of A⊕Dα. Thus, dH(A,Sα) ≤ α.

To show equality, assume that the Hausdorff distance is realized by a point â ∈ A with
closest point b̂ ∈ B, at distance 1. Consider the point ŝ ∈ seg(â, b̂) with d(â, ŝ) = α and
d(b̂, ŝ) = 1 − α. As observed, ŝ ∈ Sα. Since ŝ is the closest point of Sα to â, and b̂ is the
closest point of B to ŝ, equality follows. J

I Lemma 2. Sα is the maximal set that satisfies dH(A,Sα) = α and dH(B,Sα) = 1− α.

Proof. Consider any set T for which we have d ~H(T,A) ≤ α and d ~H(T,B) ≤ 1−α. As A⊕Dα

contains all points with distance at most α to A, we have that T ⊆ A ⊕Dα; similarly, we
have that T ⊆ B ⊕D1−α. By the definition of Sα, this implies that T ⊆ Sα. As this holds
for any T , we conclude that Sα is maximal. J

2.1 Properties of Sα
In this section, we study the convexity and connectedness of Sα. Recall that a set A ⊆ R2 is
convex if for any two points a, b ∈ A, the segment āb between them is completely contained
in A. Also, recall that a set A ⊆ R2 is connected if for any two points a, b ∈ A, there exists
a path from a to b completely contained in A.
1. if A and B are convex, Sα is convex;
2. if A is convex and B is connected, Sα is connected;
3. if A and B are connected, but neither A nor B is convex, Sα may be disconnected.

Property 1 is straightforward: the Minkowski sum of A and B with a disk is convex, and
the intersection of convex objects is itself also convex. The example in Figure 3 demonstrates
Property 3. We show Property 2 next.

We say a set A ⊂ R2 is connected if for any two points a, b ∈ A, there exists a continuous
curve c : [0, 1] → A such that c(0) = a and c(1) = b. This type of connectedness is
known as path-connectedness. Note that the empty set is trivially connected. The following
observation is straightforward:

I Observation 3. Let A and B be two connected sets in the plane. If A∩B is not connected,
A ∪B contains a hole.

EuroCG’20

52:4 Between Two Shapes, Using the Hausdorff Distance

1/6

A

B

b′

b

π

s

s′

ρ(b)

ρ(b′)

ρ3/4(b)

ρ3/4(b
′)

Figure 4 Example of the construction from Lemma 4 showing that Sα is connected if A is convex
(sketched here for α = 3/4). The shaded areas around A and B represent A⊕D3/4 and B ⊕D1/4,
respectively, so that the doubly-shaded area is S3/4.

The next lemma establishes property 2:

I Lemma 4. Let A and B be two connected polygons with Hausdorff distance 1, and A

convex. Then Sα = (A⊕Dα) ∩ (B ⊕D1−α) is connected.

Proof. The argument is as follows (see Figure 4 for a sketch):
Because A is convex, there is a continuous map ρ : B → A that maps each point of B to
a closest point (within distance 1) in A.
For b ∈ B, let ρα(b) = b+ α(ρ(b)− b). We have ρα : B → Sα which is also continuous.
Now take any two points s and s′ in Sα; respectively, they have points b and b′ ∈ B

within distance 1− α.
The segments between s and ρα(b) and between s′ and ρα(b′) lie completely in Sα.
Take a path π from b to b′ inside B. The image of π under ρα connects ρα(b) to ρα(b′)
within Sα, so s and s′ are connected inside Sα. J

We note that Sα may contain holes. Furthermore, Sα is not shape invariant when B is
translated with respect to A. For example, let A be the union of the left and bottom sides
of a unit square and let B1 and B2 be the left and right sides of that same unit square.
Then (A⊕D1/2)∩ (B1⊕D1/2) is not a translate of (A⊕D1/2)∩ (B2⊕D1/2). See Figure 5.

2.2 Complexity of Sα
In this section, we describe the complexity of Sα in terms of the number of vertices, line
segments, and circular arcs on its boundary, for several types of polygonal input sets. Recall
that ∂A denotes the boundary of set A.

I Lemma 5. Let A be a convex polygon and B a simple polygon with n, respectively m
vertices. Then Sα consists of Θ(n+m) vertices, line segments and circular arcs in the worst
case.

Proof. There is a trivial worst-case lower bound of Ω(n + m) by taking α = 0 or α = 1.
Note that if the boundaries of A⊕ = A⊕Dα and B⊕ = B⊕D1−α would consist of only line
segments, the upper bound is easy to show: A⊕ is convex, and its boundary can therefore
intersect each segment of ∂B⊕ at most twice, making ∂Sα consist of (parts of) segments

M. van Kreveld, T. Miltzov, T. Ophelders, W. Sonke, and J. Vermeulen 52:5

A

1

B2 S1/2

A B1 S1/2

Figure 5 Although B2 is a translate of B1, the middle set between A1 and B2 is not a translate
of the middle set between A1 and B1.

from ∂A⊕ and ∂B⊕ and at most O(m) intersection points. The problem is that ∂A⊕ and
∂B⊕ also contain circular arcs, in which case an arc of ∂B⊕ may intersect ∂A⊕ many times.

To show an upper bound of O(n + m), we distinguish two cases. In the first case, we
assume α ≥ 1−α. Note that in this case, the circular arcs that are part of the boundary of
A⊕ = A⊕Dα have a radius larger or equal to those of B⊕ = B⊕D1−α. In this case, we do
in fact have that any line segment or circular arc b of ∂B⊕ can intersect ∂A⊕ at most twice:
for any circular arc of ∂A⊕, the entire disk that it bounds must be contained in A⊕. This
means that b either intersects the same feature of ∂A⊕ twice, or it intersects two different
features once.

For the second case, we assume α < 1 − α. Again, take an arbitrary arc b of ∂B⊕ that
intersects some arc a of ∂A⊕. We distinguish two cases: the center point of the disk whose
boundary contains a is inside B⊕, or it is outside. If it is outside, b can only intersect ∂A⊕ in
two points. If it is inside, ∂A⊕ may intersect b many times. We charge these intersections to
the arcs of ∂A⊕. We argue that each arc a of ∂A⊕ is charged at most four times: Consider
any α-disk Dα and any (1−α)-disk D1−α containing the center of Dα, the latter will cover
at least 1/3 of the perimeter of the former. Hence, the boundary of the union of any number
of such (1− α)-disks intersects Dα at most four times. The circular arcs of ∂A⊕ cannot be
charged more often because they are less than a full circle. J

I Lemma 6. Let A and B be two simply connected polygons of n and m vertices, respectively.
Then Sα consists of Θ(nm) vertices, line segments and circular arcs in the worst case.

Proof. We can show a worst-case lower bound of Ω(nm) by taking A and B to be two
“combs” placed at right angles to each other; see Figure 3. In this example, for α = 1/2, Sα
consists of Ω(nm) distinct components. The upper bound follows directly from the fact that
A⊕ = A⊕Dα and B⊕ = B ⊕D1−α have complexities O(n) and O(m), respectively. J

2.3 Sα as a morph
By increasing α from 0 to 1, Sα morphs from A = S0 into B = S1. The following lemma
shows that this morph has a bounded rate of change.

I Lemma 7. Let Sα and Sβ be two intermediate shapes of A and B with α ≤ β. Then
dH(Sα, Sβ) = β − α.
Proof. We have dH(Sα, Sβ) ≥ β − α because by the triangle inequality, dH(A,B) = 1 ≤
dH(A,Sα) + dH(Sα, Sβ) + dH(Sβ , B) ≤ α+ dH(Sα, Sβ) + 1− β.

EuroCG’20

52:6 Between Two Shapes, Using the Hausdorff Distance

1

A

B

S1/2

Figure 6 S1/2 for the red and blue polygons is shown in green. Any connected Hausdorff middle
must cross vertical middle line or stay on one side of it. In both cases, a Hausdorff distance doubles.

It remains to show that dH(Sα, Sβ) ≤ β − α. We show that Sβ ⊆ Sα ⊕Dβ−α; the other
case is analogous. Let p be some point in Sβ . Then, by definition of Sβ , there exist some
points a ∈ A and b ∈ B such that d(a, p) ≤ β and d(b, p) ≤ 1−β. Let p̄ be the point obtained
by moving p in the direction of a by β − α. By the triangle inequality, we then have that
d(a, p̄) ≤ β− (β−α) = α and d(b, p̄) ≤ (1− β) + (β−α) = 1−α. This implies that p̄ ∈ Sα.
As p was an arbitrary point in Sβ , and d(p, p̄) ≤ β − α, we have that Sβ ⊆ Sα ⊕Dβ−α. So
dH(Sα, Sβ) ≤ β − α. J

The lemma implies that, even though the number of connected components of Sα can
change when α changes, new components arise by splitting and never ‘out of nothing’, and
the number of components can only decrease through merging and not by disappearance.

2.4 The cost of connectedness
For some applications, it might be necessary to insist that Sα is always connected. However,
in the worst case, the cost of connecting all components of Sα can be that its Hausdorff
distance to A and B becomes 1. See Figure 6 for an example where this is the case.

3 Conclusion

Besides the maximal middle set, there are other options for a Hausdorff middle. For example,
we can choose Sα clipped to the convex hull of A∪B, which is also a valid Hausdorff middle.
In Figure 6, the green shape would be reduced to the part inside the square, which may be
more natural. This Hausdorff middle can also be used in a morph.

A natural question is whether these results extend to more than two input shapes. The
problem would then be to compute some shape S that minimizes the maximum pairwise
Hausdorff distance to any of the input shapes, assuming that the pairwaise Hausdorff dis-
tance is at most 1. It turns out that in some cases, the minimum Hausdorff distance that

Figure 7 Assuming the pairwise Hausdorff distance is 1, any shape will have Hausdorff distance
at least 1 to or from at least one of the three inputs.

M. van Kreveld, T. Miltzov, T. Ophelders, W. Sonke, and J. Vermeulen 52:7

can be achieved is 1, even when the input sets are connected; see Figure 7 for an example.
When the input shapes are all convex, the worst example we have found so far is three sets
of a single point each, forming an equilateral triangle. In this case, the best middle set is the
centroid of the triangle, which has Hausdorff distance 1/

√
3 to each input set. We conjecture

that this is the highest possible optimal value for convex input sets.

References
1 H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal shapes. Annals

of Mathematics and Artificial Intelligence, 13(3):251–265, Sep 1995.
2 H. Alt, P. Braß, M. Godau, C. Knauer, and C. Wenk. Computing the Hausdorff distance

of geometric patterns and shapes. In Discrete and Computational Geometry, pages 65–76.
Springer, 2003.

3 H. Alt and L.J. Guibas. Discrete geometric shapes: Matching, interpolation, and approxi-
mation. In Handbook of Computational Geometry, pages 121–153. Elsevier, 2000.

4 M. J. Atallah. A linear time algorithm for the hausdorff distance between convex polygons.
Information Processing Letters, 17(4):207 – 209, 1983.

5 M. G. Dobbins, L. Kleist, T. Miltzow, and P. Rzążewski. ∀∃R-completeness and area-
universality. In International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 164–175. Springer, 2018.

6 C. Gotsman and V. Surazhsky. Guaranteed intersection-free polygon morphing. Computers
& Graphics, 25(1):67–75, 2001. Shape Blending.

EuroCG’20

Representing Graphs
by Polygons with Side Contacts in 3D∗

Elena Arseneva1, Linda Kleist2, Boris Klemz3, Maarten Löffler4,
André Schulz5, Birgit Vogtenhuber6, and Alexander Wolff7

1 Saint Petersburg State University, Russia
e.arseneva@spbu.ru

2 Technische Universität Braunschweig, Germany
kleist@ibr.cs.tu-bs.de

3 Freie Universität Berlin, Germany
klemz@inf.fu-berlin.de

4 Utrecht University, the Netherlands
m.loffler@uu.nl

5 FernUniversität in Hagen, Germany
andre.schulz@fernuni-hagen.de

6 Technische Universität Graz, Austria
bvogt@ist.tugraz.at

7 Universität Würzburg, Germany
orcid.org/0000-0001-5872-718X

Abstract
A graph has a side-contact representation with polygons if its vertices can be represented by
interior-disjoint polygons such that two polygons share a common side if and only if the cor-
responding vertices are adjacent. In this work we study representations in 3D. We show that
every graph has a side-contact representation with polygons in 3D, while this is not the case
if we additionally require that the polygons are convex: we show that every supergraph of K5
and every nonplanar 3-tree does not admit a representation with convex polygons. On the other
hand, K4,4 admits such a representation, and so does every graph obtained from a complete
graph by subdividing each edge once. Finally, we construct an unbounded family of graphs with
average vertex degree 12− o(1) that admit side-contact representations with convex polygons in
3D. Hence, such graphs can be considerably denser than planar graphs.

1 Introduction

A graph has a contact representation if its vertices can be represented by interior-disjoint
geometric objects1 such that two objects touch exactly if the corresponding vertices are
adjacent. In concrete settings, one usually restricts the set of geometric objects (disks, lines,
polygons, . . .), the type of contact, and the embedding space. Numerous results about which
graphs admit a contact representation of some type are known. Giving a comprehensive
overview is out of scope for this extended abstract. We therefore mention only few results.
By the Andreev–Koebe–Thurston circle packing theorem [3, 20] every planar graph has a
contact representation by touching disks in 2D. Contact representations of graphs in 2D
have since been considered for quite a variety of shapes, including triangles [4, 8, 13, 14, 19],

∗ E.A. was partially supported by RFBR, project 20-01-00488; B.V. was partially supported by the
Austrian Science Fund within the collaborative DACH project Arrangements and Drawings as FWF
project I 3340-N35; A.W. acknowledges support by DFG project WO758/9-1.

1 If the considered objects are not fully-dimensional in the considered space then interior-disjoint is meant
with respect to the relative interior of the objects.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

53:2 Representing Graphs by Polygons with Side Contacts in 3D

axis-aligned rectangles [1, 5, 11], curves [15], or line segments [7, 6, 16] in 2D and balls [17],
tetrahedra [2] or cubes [12, 18] in 3D. Evans et al. [10] showed that every graph has a
contact representation in 3D in which each vertex is represented by a convex polygon and
two polygons touch in a corner if and only if the corresponding two vertices are adjacent.

In this work we study contact representations with polygons in 3D where a contact
between two polygons is realized by sharing a proper side that is not part of any other
polygon of the representation. (To avoid confusion with the corresponding graph elements,
we consistently refer to polygon vertices as corners and to polygon edges as sides.) The
special case where we require that the polygons are convex is of particular interest. Note
that we do not require that the polyhedral complex induced by the contact representation
is a closed surface. In particular, not every polygon side has to be in contact with another
polygon. By Steinitz’s theorem [21], every 3-connected planar graph can be realized as a
convex polyhedron, whose dual is also a planar graph. Thus all planar graphs have such a
representation with convex polygons.

Results. We show that for the case of nonconvex polygons, every graph has a side-contact
representation in 3D. For convex polygons, the situation is more intricate. We show that
certain graphs do not have such a representation, in particular all nonplanar 3-trees and all
supergraphs of K5. On the other hand, many nonplanar graphs (for example, K4,4) have
such a representation. In particular, graphs that admit side-contact representations with
convex polygons in 3D can be considerably denser than planar graphs. Due to lack of space,
several proofs are only sketched or completely deferred to the full version of this work.

2 Representations with General Polygons

First we show that every graph can be represented by nonconvex polygons; see Figure 1.

Figure 1 A realization of K5 by nonconvex polygons with side contacts in 3D.

I Proposition 2.1. Every graph can be realized by polygons with side contacts in 3D.

Proof. To represent a graph G with n vertices, we start with n interior-disjoint rectangles
such that there is a line segment s that acts as a common side of all these rectangles. We
then cut away parts of each rectangle thereby turning it into a comb-shaped polygon as
illustrated in Figure 1. This step ensures that for each pair (P, P ′) of polygons, there is a
subsegment s′ of s such that s′ is a side of both P and P ′ that is disjoint from the remaining
polygons. The result is a representation of Kn. To obtain a realization of G, it remains to
remove side contacts that correspond to unwanted adjacencies, which is easy. J

If we additionally insist that each polygon shares all of its sides with other polygons,
the polygons describe a closed volume. In this model, K7 can be realized as the Szilassi

E. Arseneva, L. Kleist, B. Klemz, M. Löffler, A. Schulz, B. Vogtenhuber, and A. Wolff 53:3

polyhedron; see Figure 2. The tetrahedron and the Szilassi polyhedron are the only two
known polyhedra in which each face shares a side with each other face [22]. Which other
graphs can be represented in this way remains an open problem.

Figure 2 The Szilassi polyhedron realizes K7 by nonconvex polygons with side contacts in 3D [22].

3 Representations with Convex Polygons

We now consider the setting where each vertex of the given graph is represented by a convex
polygon in 3D and two vertices of the given graph are adjacent if and only if their polygons
intersect in a common side. (In most previous work, it was only required that the side of
one polygon is contained in the side of the adjacent polygon. For example, Duncan et al. [9]
showed that in this model every planar graph can be realized by hexagons in the plane and
that hexagons are sometimes necessary.) Note that it is allowed to have sides that do not
touch other polygons. Further, non-adjacent polygons may intersect at most in a common
corner. We start with some simple observations.

I Proposition 3.1. Every planar graph can be realized by convex polygons with side contacts
in 2D.

Proof. Let G be a planar (embedded) graph with at least three vertices (for at most two
vertices the statement is trivially true). Add to G a new vertex r and connect it to all
vertices of some face. Let G′ be a triangulation of the resulting graph. Then the dual G?

of G′ is a cubic 3-connected planar graph. Using Tutte’s barycentric method, draw G? into
a regular polygon with degG′(r) corners such that the face dual to r becomes the outer face.
Note that the interior faces in this drawing are convex polygons. Hence the drawing is a
side-contact representation of G′ − r. To convert it to a representation of G, we may need to
remove some side contacts, which can be easily achieved. J

Note that Proposition 3.1 also follows directly from the Andreev–Koebe–Thurston circle
packing theorem. So for planar graphs, corner and side contacts behave similarly. For
nonplanar graphs (for which we need the third dimension), the situation is different. Here,
side contacts are more restrictive. We introduce the following notation. In a 3D representation
of a graph G by polygons, we denote by Pv the polygon that represents vertex v of G.

I Lemma 3.2. Let G be a graph. Consider a 3D side-contact representation of G with
convex polygons. If G contains a triangle uvw, polygons Pv and Pw lie in the same halfspace
with respect to the supporting plane of Pu.

Proof. Due to their convexity, Pv and Pw must lie in the same halfspace with respect to the
plane that supports Pu, otherwise Pv and Pw cannot share a side. In this case, the edge vw

of G would not be represented; a contradiction. J

EuroCG’20

53:4 Representing Graphs by Polygons with Side Contacts in 3D

(a) The arrangement of the polygons P1, . . . , Pn.

Ps Pt

es et

z

Q

(b) Quadrilateral Q spanned by es and et.

Figure 3 Illustration for the proof of Proposition 3.4.

I Proposition 3.3. For n ≥ 5, Kn is not realizable by convex polygons with side contacts
in 3D.

Proof. Assume that Kn admits a 3D side-contact representation. Since every three vertices
in Kn are pairwise connected, by Lemma 3.2, for every polygon of the representation, its
supporting plane has the remaining polyhedral complex on one side. In other words, the
complex we obtain is a subcomplex of a convex polyhedron. Consequently, the dual graph
has to be planar, which rules out Kn for n ≥ 5. J

I Proposition 3.4. Let K ′n be the subdivision of the complete graph Kn in which every edge
is subdivided with one vertex. For every n, K ′n has a side-contact representation with convex
polygons in 3D.

Proof sketch. For n ≤ 4 the statement is true by Proposition 3.1. We sketch the construction
of a representation for n ≥ 5; see Figure 3. Let P be a convex polygon with k = 2

(
n
2
)
corners,

called v1, v2, . . . , vk, such that v1vk is a long side and the remaining corners form a flat
convex chain connecting v1 and vk. We represent each high-degree vertex of K ′n by a copy of
P . We arrange those copies in pairwise different vertical planes containing the z-axis such
that all copies of v1vk are arranged vertically at the same height and at the same distance
from the z-axis; and such that the convex chain of each copy of P faces the z-axis but does
not intersect it. Consider two different copies Ps and Pt of P in this arrangement. They
contain copies es and et of the same side e of P . It can be shown that es and et are coplanar.
Moreover, they form a convex quadrilateral Q that does not intersect the arrangement except
in es and et. We arbitrarily assign each side v2i−1v2i, 1 ≤ i ≤ k/2 =

(
n
2
)
, to some edge st of

Kn and use the quadrilateral Q spanned by es and et to represent the subdivision vertex of st

in K ′n. As any two such quadrilaterals are vertically separated and hence disjoint, those
(

n
2
)

quadrilaterals together with the n copies of P constitute a valid representation of K ′n. J

I Proposition 3.5. K4,4 is realizable by convex polygons with side contacts in 3D.

Proof sketch. We sketch how to obtain a realization. Start with a box in 3D and intersect it
with two rectangular slabs as indicated in Figure 4 on the left. We can now draw polygons on
the faces of this complex such that each of the four vertical faces contains a polygon that has
a side contact with a polygon on each of the four horizontal or slanted faces. The polygons

E. Arseneva, L. Kleist, B. Klemz, M. Löffler, A. Schulz, B. Vogtenhuber, and A. Wolff 53:5

on the slanted faces lie in the interior of the box and intersect each other. To remove this
intersection, we pull out one corner of the original box; see Figure 4. J

Figure 4 A realization of K4,4 by convex polygons with side contacts in 3D.

In contrast to Proposition 3.5, we believe that the analogous statement does not hold for
all bipartite graphs, i.e., we conjecture the following.

I Conjecture 3.6. There exist values n and m such that the complete bipartite graph Km,n

is not realizable by convex polygons with side contacts in 3D.

By Proposition 3.1, all planar 3-trees can be realized by convex polygons with side
contacts (even in 2D). On the other hand, we can show that no nonplanar 3-tree has a
realization in 3D. To this end, we prove the following two propositions, the first of which
easily follows from the definition of 3-trees.

I Lemma 3.7. A 3-tree is nonplanar if and only if it contains the graph depicted in Figure 5a
as a subgraph.

I Lemma 3.8. The 3-tree depicted in Figure 5a cannot be realized by convex polygons with
side contacts in 3D.

I Theorem 3.9. A 3-tree admits a side-contact representation with convex polygons in 3D
if and only if it is planar.

It is an intriguing question how dense graphs that admit a side-contact representation
with convex polygons in 3D can be. In contrast to the results for corner contacts [10]
and nonconvex polygons (Proposition 2.1) in 3D, we could not find a construction with a
superlinear number of edges. The following construction yields the densest graphs we know.

(a) A 3-tree that is not re-
alizable by convex poly-
gons with side contacts
in 3D. The gray vertices
form a 3-cycle.

s3

p3p2

s2

p1

s1

(b) Schematic drawing of a potential realization. Net of the three
gray polygons and traces of the planes that contain the red and
green polygons, which must touch each of the gray polygons. The
line of intersection between two of the gray polygons is drawn
twice (dashed).

Figure 5 Illustrations for the proof of Lemma 3.8.

EuroCG’20

53:6 Representing Graphs by Polygons with Side Contacts in 3D

I Theorem 3.10. There is an unbounded family of graphs with average vertex degree 12−o(1)
that admit side-contact representations with convex polygons in 3D.

Proof sketch. We first construct a contact representation of m = d√ne regular octagons
arranged as in a truncated square tiling; see Figure 6(a). Since the underlying geometric
graph of the tiling is a Delaunay tessellation, we can lift the points to the paraboloid such
that each octagon is lifted to coplanar points. We call the corresponding (scaled and rotated)
polyhedral complex Γ; see Figure 6(b). Next we place b√nc copies of Γ in a cyclic fashion as

(a) The plane octagon structure. (b) The complex Γ.

Figure 6 Proof of Theorem 3.10: construction of the complex Γ.

(a) The placement of the copies of Γ. (b) One vertical polygon.

Figure 7 Proof of Theorem 3.10: placement of the copies of Γ and vertical polygons.

shown in Figure 7(a) and we add vertical polygons in to generate a contact with the Θ(
√

m)
vertical sides of the octagons; see Figure 7(b). Finally, we introduce horizontal polygons in
the “inner space” of our construction such that each of these polygons touches a specific side
in each copy of Γ, as illustrated in Figure 8(a). A slight perturbation fixes the following two
issues: First, many of the horizontal polygons lie on the same plane and intersect each other.
Second, many sides of vertical polygons run along the faces of Γ. To fix these problems we
modify the initial grid slightly; see Figure 8(b). J

4 Conclusion and Open Problems

Applying Turán’s theorem [23] to Proposition 3.3 yields that the maximum number ecp(n) of
edges in an n-vertex graph that admits a side-contact representation with convex polygons is
at most 3

8 n2. Theorem 3.10 gives a lower bound of 6n− o(n) for ecp(n). We tend to believe

E. Arseneva, L. Kleist, B. Klemz, M. Löffler, A. Schulz, B. Vogtenhuber, and A. Wolff 53:7

(a) The location of a horizontal polygon
as seen in a cross section.

(b) The modifications for Γ to separate
nondisjoint faces.

Figure 8 Proof of Theorem 3.10: horizontal polygons and final modifications.

that the latter is closer to the truth than the former and conclude with the following open
problem.

I Question 4.1. What is the maximum number ecp(n) of edges that an n-vertex graph
admitting a side-contact representation with convex polygons can have?

Acknowledgements. This work has been initiated at the Dagstuhl Seminar 19352 “Com-
putation in Low-Dimensional Geometry and Topology”. We thank all the participants for
the great atmosphere and fruitful discussions. Arnaud de Mesmay raised the question about
side contacts. We also thank the anonymous referees for helpful comments, especially with
respect to Theorem 3.9.

References
1 Md. Jawaherul Alam, Therese C. Biedl, Stefan Felsner, Andreas Gerasch, Michael Kauf-

mann, and Stephen G. Kobourov. Linear-time algorithms for hole-free rectilinear pro-
portional contact graph representations. Algorithmica, 67(1):3–22, 2013. doi:10.1007/
s00453-013-9764-5.

2 Md. Jawaherul Alam, Muriel Dulieu, Justin Iwerks, and Joseph O’Rourke. Tetrahedron
contact graphs. In Fall Workshop Comput. Geom., 2013.

3 E. M. Andreev. Convex polyhedra in Lobačevskĭı spaces. Mat. Sb. (N.S.), 81 (123)(3):445–
478, 1970. doi:10.1070/SM1970v010n03ABEH001677.

4 Melanie Badent, Carla Binucci, Emilio Di Giacomo, Walter Didimo, Stefan Felsner,
Francesco Giordano, Jan Kratochvíl, Pietro Palladino, Maurizio Patrignani, and Francesco
Trotta. Homothetic triangle contact representations of planar graphs. In Prosenjit Bose,
editor, Proc. Canadian Conf. Comput. Geom. (CCCG’07), pages 233–236, 2007. URL:
http://cccg.ca/proceedings/2007/09b4.pdf.

5 Adam L. Buchsbaum, Emden R. Gansner, Cecilia M. Procopiuc, and Suresh Venkatasub-
ramanian. Rectangular layouts and contact graphs. ACM Trans. Algorithms, 4(1), 2008.
doi:10.1145/1328911.1328919.

6 Hubert de Fraysseix and Patrice Ossona de Mendez. Representations by contact
and intersection of segments. Algorithmica, 47(4):453–463, 2007. doi:10.1007/
s00453-006-0157-x.

7 Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. Representation of planar
graphs by segments. Intuitive Geometry, 63:109–117, 1991. URL: https://infoscience.
epfl.ch/record/129343/files/segments.pdf.

EuroCG’20

53:8 Representing Graphs by Polygons with Side Contacts in 3D

8 Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On triangle
contact graphs. Combinatorics, Probability and Computing, 3:233–246, 1994. doi:10.
1017/S0963548300001139.

9 Christian A. Duncan, Emden R. Gansner, Y. F. Hu, Michael Kaufmann, and Stephen G.
Kobourov. Optimal polygonal representation of planar graphs. Algorithmica, 63(3):672–691,
2012. doi:10.1007/s00453-011-9525-2.

10 William Evans, Paweł Rzążewski, Noushin Saeedi, Chan-Su Shin, and Alexander Wolff.
Representing graphs and hypergraphs by touching polygons in 3D. In Daniel Archambault
and Csaba Tóth, editors, Proc. Graph Drawing & Network Vis. (GD’19), volume 11904
of LNCS, pages 18–32. Springer, 2019. URL: http://arxiv.org/abs/1908.08273, doi:
10.1007/978-3-030-35802-0_2.

11 Stefan Felsner. Rectangle and square representations of planar graphs. In János Pach,
editor, Thirty Essays on Geometric Graph Theory, pages 213–248. Springer, 2013. doi:
10.1007/978-1-4614-0110-0_12.

12 Stefan Felsner and Mathew C. Francis. Contact representations of planar graphs with cubes.
In Ferran Hurtado and Marc J. van Kreveld, editors, Proc. 27th Ann. Symp. Comput. Geom.
(SoCG’11), pages 315–320. ACM, 2011. doi:10.1145/1998196.1998250.

13 Emden R. Gansner, Yifan Hu, and Stephen G. Kobourov. On touching triangle graphs. In
Ulrik Brandes and Sabine Cornelsen, editors, Proc. Graph Drawing (GD’10), volume 6502
of LNCS, pages 250–261. Springer, 2010. doi:10.1007/978-3-642-18469-7.

14 Daniel Gonçalves, Benjamin Lévêque, and Alexandre Pinlou. Triangle contact repre-
sentations and duality. Discrete Comput. Geom., 48(1):239–254, 2012. doi:10.1007/
s00454-012-9400-1.

15 Petr Hliněný. Classes and recognition of curve contact graphs. J. Combin. Theory Ser. B,
74(1):87–103, 1998. doi:10.1006/jctb.1998.1846.

16 Petr Hliněný. Contact graphs of line segments are NP-complete. Discrete Math., 235(1):95–
106, 2001. doi:10.1016/S0012-365X(00)00263-6.

17 Petr Hliněný and Jan Kratochvíl. Representing graphs by disks and balls (a survey of
recognition-complexity results). Discrete Math., 229(1–3):101–124, 2001. doi:10.1016/
S0012-365X(00)00204-1.

18 Linda Kleist and Benjamin Rahman. Unit contact representations of grid subgraphs with
regular polytopes in 2D and 3D. In Christian Duncan and Antonios Symvonis, editors,
Proc. Graph Drawing (GD’14), volume 8871 of LNCS, pages 137–148. Springer, 2014. doi:
10.1007/978-3-662-45803-7_12.

19 Stephen G. Kobourov, Debajyoti Mondal, and Rahnuma Islam Nishat. Touching triangle
representations for 3-connected planar graphs. In Walter Didimo and Maurizio Patrignani,
editors, Proc. Graph Drawing (GD’12), volume 7704 of LNCS, pages 199–210. Springer,
2013. doi:10.1007/978-3-642-36763-2_18.

20 Paul Koebe. Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen
der Sächsischen Akad. der Wissen. zu Leipzig. Math.-Phys. Klasse, 88:141–164, 1936.

21 Ernst Steinitz. Polyeder und Raumeinteilungen. In Encyclopädie der mathematischen
Wissenschaften, volume 3-1-2 (Geometrie), chapter 12, pages 1–139. B. G. Teubner, Leipzig,
1922. URL: https://gdz.sub.uni-goettingen.de/id/PPN360609767?tify={"pages":
[839],"view":"toc"}.

22 Szilassi polyhedron. Wikipedia entry. Accessed 2019-10-08. URL: https://en.wikipedia.
org/wiki/Szilassi_polyhedron.

23 Paul Turán. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok, 48:436–452,
1941.

Headerless Routing in Unit Disk Graphs∗

Wolfgang Mulzer1 and Max Willert1

1 Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
{mulzer,willert}@inf.fu-berlin.de

Abstract
Let V ⊂ R2 be a set of n sites in the plane. The unit disk graph DG(V) of V is the graph with
vertex set V in which two sites v and w are adjacent if and only if their Euclidean distance is at
most 1.

We develop a compact routing scheme R for DG(V). The routing scheme R preprocesses
DG(V) by assigning a label `(v) to every site v in V . After that, for any two sites s and t, the
scheme R must be able to route a packet from s to t as follows: given the label of a current
vertex r (initially, r = s) and the label of the target vertex t, the scheme determines a neighbor
r′ of r. Then, the packet is forwarded to r′, and the process continues until the packet reaches
its desired target t. The resulting path between the source s and the target t is called the routing
path of s and t. The stretch of the routing scheme is the maximum ratio of the total Euclidean
length of the routing path and of the shortest path in DG(V), between any two sites s, t ∈ V .

We show that for any given ε > 0, we can construct a routing scheme for DG(V) with
diameter D achieving stretch 1 + ε and label size O(logD log3 n/ log logn) (the constant in the
O-Notation depends on ε). In the past, several routing schemes for unit disk graphs have been
proposed. Our scheme is the first one to achieve poly-logarithmic label size and arbitrarily small
stretch without storing any additional information in the packet.

1 Introduction

The routing problem is a well-known problem in distributed graph algorithms [10, 13]. We
are given a graph G and want to preprocces it by assigning labels to each node of G such
that the following task can be solved: a data packet is located at a source node and has to
be routed to a target node. A routing scheme should have several properties. First, routing
must be local: a node can only use the label of the target node as well as its own local
information to compute a neighbor to which the packet is sent next. Second, the routing
should be efficient: the ratio of the routed path and the shortest path — the stretch factor
— should be close to 1. Finally, the routing scheme should be compact: the size of the labels
(in bits) must be small.

Many routing schemes use additional headers. The header contains mutable information
and is stored in the data packet. Thus, the header moves with the data packet through the
graph. The usage of an additional header makes it possible to implement recursive routing
strategies or to remember information from past positions of the packet.

A trivial solution to solve the routing problem is to store the complete shortest path tree
in every label. Then it is easy to route the data packets along a shortest path. However,
such a routing scheme is not compact. Moreover, Peleg and Upfal [13] proved that in general
graphs, any routing scheme that achieves a constant stretch factor must store a polynomial
number of bits for each node.

Nevertheless, there is a rich collection of routing schemes for general graphs [1, 2, 5, 7, 8,
14, 15]. For example, the scheme by Roditty and Tov [15] uses labels of size mnO(1/

√
logn)

∗ Partially supported by ERC STG 757609.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

54:2 Headerless Routing in Unit Disk Graphs

Figure 1 The disks in the unit disk graph have diameter 1 and there is an edge between two
midpoints if and only if their corresponding disks intersect.

and routes a packet from s to t on a path of length O
(
k∆ +m1/k), where ∆ is the shortest

path distance between s and t, k > 2 is any fixed integer, n is the number of nodes, and m
is the number of edges. Their routing scheme needs headers of poly-logarithmic size. There
are routing schemes for special graph classes that achieve better bounds on the label size
and stretch factor [3, 9, 16–18].

Our graph class of interest comes from the study of mobile and wireless networks. These
networks are usually modeled as unit disk graphs [6] with diameter D. There are already
several routing schemes for unit disk graphs [11,20]. We present the first headerless routing
scheme with label size O(ε−4 logD log3 n/ log logn) that achieves stretch 1 + ε.

2 Preliminaries

Let G = (V,E) be a simple, undirected, and connected graph with n vertices. In our model
the graph G is embedded in the Euclidean plane and an edge uv is weighted according to the
Euclidean distance |uv| of its endpoints, for all , uv ∈ V . We write d(u, v) for the (weighted)
shortest path distance between the vertices u, v ∈ V . Moreover, every vertex v has a unique
identifier vid ∈ {0, . . . , n − 1}. In a unit disk graph DG(V) of V , there is an edge between
two nodes u, v ∈ V if and only if |uv| ≤ 1, see Figure 1. We use D to denote the diameter
maxu,v∈V d(u, v) of DG(V). We assume that DG(V) is connected. Hence, D ≤ n− 1.

Routing Schemes. Let G = (V,E) be a graph. A routing scheme R for G consists of a
labeling function `(v) ∈ {0, 1}+. It serves as the address of the node v in G and might
contain some more information about the topology of G. Furthermore, R has a routing
function σ : `(V)× `(V)→ V . The routing function σ describes the behavior of the routing
scheme, as follows: assume a data packet is located at a vertex s ∈ V and must be routed to
a destination t ∈ V . Then, σ(`(s), `(t)) has to compute a vertex to which the data packet is
forwarded. Now, let v0 = s and vi+1 = σ(`(vi), `(t)), for i ≥ 0. The sequence (vi)i∈N is called
routing sequence. The routing scheme R is correct, if and only if for all distinct s, t ∈ V ,
there is a number m ∈ N such that vj = t, for all j ≥ m, and vj 6= t, for all j = 0, . . . ,m−1.
If R is correct for G, then δ(s, t) =

∑m
i=1 |vi−1vi| is called the routing length between s and

t (in G). The stretch of the routing scheme is the largest ratio δ(s, t)/d(s, t) over all distinct
vertices s, t ∈ V . The goal is to achieve a routing scheme that minimizes the stretch factor
as well as the number of bits stored in the labels.

W. Mulzer and M. Willert 54:3

3 Building Blocks

The Distance Oracle of Chan and Skrepetos. Our routing scheme is based on the recent
approximate distance oracle for unit disk graphs by Chan and Skrepetos [4]: we are given an
n-vertex unit disk graph with diameter D and a parameter ε ≥ D−1. Chan and Skrepetos
show how to compute an efficient data structure that can answer approximate distance
queries in DG(V): given two vertices s, t ∈ V , compute a number θ ∈ R with d(s, t) ≤ θ ≤
d(s, t) +O(εD). The main tool for this data structure is a decomposition tree T for DG(V)
with the following properties.

Every node µ of T is assigned two sets port(µ) and V (µ) such that port(µ) ⊆ V (µ) ⊆ V .
The subgraph of DG(V) induced by V (µ) is connected and the vertices in port(µ) are
called portals.
If µ is the root, then V (µ) = V . If µ is a leaf, then V (µ) = port(µ).
If µ is an inner node with k children σ1, . . . , σk, the sets port(µ), V (σ1), . . . , V (σk) are
pairwise disjoint, and we have V (σi) ⊆ V (µ), for 1 ≤ i ≤ k.
The height of T is in O(logn), and for every node µ of T , we have | port(µ)| ∈ O(1/ε).

To state the final (and most important) property of T , we need some additional notation.
The properties of T so far imply that the portal sets of two different nodes in T are disjoint.
For every portal p, we let µ(p) be the unique node in T with p ∈ port(µ(p)). Moreover, let
µ be a node of T and s, t ∈ V (µ). We denote by dµ(s, t) the shortest path distance between
s and t in the subgraph of DG(V) induced by V (µ). Now, the decomposition tree of Chan
and Skrepetos has the property that for every pair of vertices s, t ∈ V , if we set

θ(s, t) = min
p portal

s,t∈V (µ(p))

dµ(p)(s, p) + dµ(p)(p, t)

then
θ(s, t) ≤ d(s, t) +O(εD). (1)

Simple Routing Schemes. Moreover, we need the following known routing schemes. The
first routing scheme is due to Fraigniaud and Gavoille [9] as well as Thorup and Zwick [18].
The second routing scheme is based on an idea described by Kaplan et al. [11]. For the
proof, we refer to [12].

I Lemma 1. Let T be an n-vertex tree with arbitrary edge weights. There is a routing
scheme for T with label size O(log2 n/ log logn) and stretch 1.

I Lemma 2. Let DG(V) be an n-vertex unit disk graph with diameter D and 0 < ε ≤ D−1.
There is a routing scheme for DG(V) with label size O

(
ε−4 logn

)
and stretch 1 +O(ε).

4 A Routing Scheme with Additive Stretch

In this section we present a routing scheme that is efficient for DG(V) if the diameter D is
large. Let ε > D−1 and c = n · (εD)−1. We define xc = bx · cc, for each x ∈ R+

0 . Let T be
the decomposition tree of DG(V), as explained in Section 3.

The idea of the routing scheme is as follows: We use T to compute a set of shortest path
trees whose union covers DG(V) such that every vertex is contained in at most O(ε−1 logn)
trees. In each step of the routing process, we use the source and target labels to select a
good shortest path tree and route in this tree.

EuroCG’20

54:4 Headerless Routing in Unit Disk Graphs

V (µ(p))

Tp(s)

V (µ(p))

p p

s s

t

t

Tp(s)

V (µ(p))

p

s t

Tp(s)

Figure 2 Left: If t is in Tp(s), i.e., θ(s, t; p) = dµ(p)(t, p) − dµ(p)(p, s), we route away from p.
Middle and Right: If t is not in Tp(s), i.e., θ(s, t; p) = dµ(p)(t, p) + dµ(p)(p, s), we route towards p.
The right picture suggests to define θ(s, t; p) as dµ(p)(s, p) − dµ(p)(t, p). This does not influence the
guarantees of our routing scheme but would lead to more cases.

The Labels. Let v ∈ V , and let p be a portal with v ∈ V (µ(p)). We compute the shortest
path tree Tp for p in V (µ(p)) and enumerate its vertices in postorder. The postorder number
of v in Tp is denoted by rp(v). Next, the subtree of Tp rooted at v is called Tp(v) and we
use lp(v) to denote the smallest postorder number in Tp(v). Thus, a vertex w ∈ V (µ(p))
is in the subtree Tp(v) if and only if rp(w) ∈ [lp(v), rp(v)]. Finally, we apply the tree
routing from Lemma 1 to Tp and denote by `p(v) the corresponding label of v. We store
(pid, dµ(p)(v, p)c, lp(v), rp(v), `p(v)) in `(v), for every portal p. The rounding of the distances
is necessary since we are not allowed to store real values. For the proof of the next lemma
see [12].

I Lemma 3. For every vertex v ∈ V , we have | `(v)| ∈ O
(

log3 n

ε log logn

)
.

The Routing Function. We are given the labels `(s) and `(t) for the current vertex s

and the target vertex t. First, we identify all portals p with s, t ∈ V (µ(p)). We can
do this by identifying all vertices p such that the entry (pid, dµ(p)(s, p)c, lp(s), rp(s), `p(s))
is in `(s) and the entry (pid, dµ(p)(t, p)c, lp(t), rp(t), `p(t)) is in `(t). Next, let θ(s, t; p) =
dµ(p)(t, p)+dµ(p)(p, s), if t is not in the subtree Tp(s), and θ(s, t; p) = dµ(p)(t, p)−dµ(p)(p, s),
otherwise; see Figure 2 for an illustration of the two cases. Let popt be the portal that
minimizes θ(s, t; p) among all portals p. Then, it is easy to see, that θ(s, t; popt) ≤ θ(s, t).
Hence, θ(s, t; popt) is a good approximation for the distance between s and t and we would
like to route in Tpopt . However, the routing function cannot compute the optimal portal
popt, since we do not have direct access to the exact distances. Instead, we use the rounded
distances to compute a near-optimal portal. We define θc(s, t; p) = dµ(p)(t, p)c+dµ(p)(p, s)c,
if t is not in the subtree Tp(s), and θc(s, t; p) = dµ(p)(t, p)c − dµ(p)(p, s)c, otherwise. Let p∗
be the portal that lexicographically minimizes (θc(s, t; p), pid), among all portals p. We call
p∗ the s-t-portal and set θc(s, t) = θc(s, t; p∗). Observe that the s-t-portal can be computed
by using only the labels of s and t. The routing function now uses the labels `p∗(s) and
`p∗(t) to compute the next vertex in Tp∗ and forwards the data packet to this vertex.

Analysis. The following lemma shows that we make progress after each step.

I Lemma 4. Let s be the current vertex, t the target vertex, and suppose that the routing
scheme sends the packet from s to v. Moreover, let p be the s-t-portal and q be the v-t-portal.
We have

W. Mulzer and M. Willert 54:5

1. θc(s, t) ≥ θc(v, t) + |sv|c,
2. if θc(s, t) = θc(v, t) then pid ≥ qid, and
3. if θc(s, t) = θc(v, t) and pid = qid then v is on a shortest path from s to t in Tq.

The intuition is as follows. First of all, the rounded approximate distance to the target
will never increase (1st statement). If this values does not change, then the next tree in
which we route can not have a larger index (2nd statement). If this index does not change,
then we decrease the hop distance to our target (3rd statement). Hence, we made progress.
The first statement of Lemma 4 can now be used to obtain the stretch factor and therefore
the main theorem. The proof uses Inequality 1 and can be found in [12].

I Theorem 5. Let DG(V) be an n-vertex unit disk graph with diameter D and ε > D−1.
There is a routing scheme for DG(V) with label size O

(
ε−1 log3 n/ log logn

)
and additive

stretch O(εD).

Theorem 5 and Lemma 2 can now be used as building blocks to get a routing scheme with
stretch factor 1 + ε. To achieve this we use a well-known technique that groups the vertices
of DG(V) using a hierarchy of sparse covers with exponentially increasing diameter [4]. In
the end, each node is contained in at most O(logD) different groups. Each group gives a
connected subgraph of DG(V) on which we apply one of the two routing schemes, depending
on whether ε ≥ D−1 or not. It is then easy to route in these subgraphs. For the details and
the analysis we refer to [12]. Nevertheless, we claim the following.

I Theorem 6. Let DG(V) be an n-vertex unit disk graph with diameter D and ε > 0. There
is a routing scheme for DG(V) with label size O

(
ε−4 logD log3 n/ log logn

)
and stretch 1+ε.

5 Conclusion

We presented an efficient, compact, and headerless routing scheme for unit disk graphs. It
achieves near-optimal stretch 1 + ε and uses O(logD log3 n/ log logn) bits in the label.

It would be interesting to see if this result can be extended to disk graphs in general. If
the radii of the disks are unbounded, the decomposition of Chan and Skrepetos cannot be
applied immediately. However, the case of bounded radii is still interesting, and even there,
it is not clear how the method by Chan and Skrepetos generalizes.

Finally, let us compare our routing scheme to the known schemes. The model of the
routing scheme of Kaplan et al. [11] is very close to ours. They claim that the neighborhood
can be checked locally without wasting storage. We also use this assumption in the details
of Lemma 2. The scheme was generalized to non-unit disk graphs with constant bounded
radii [19]. Nevertheless, in unit disk graphs, we achieve the same stretch factor and still have
additional information of poly-logarithmic size. The main advantage of our routing scheme
is that we do not use any additional headers. Therefore, whenever a data packet arrives at
a node, it is not necessary to know what happened before or where the packet came from.
In the routing scheme of Kaplan et al., a data packet visits a node more than once.

The routing scheme of Yan et al. [20] uses headers as well, but they are only computed in
the first step and do not change again. The idea of their routing scheme is similar to ours: the
graph is covered by O(logn) different trees. When the routing starts, the labels of the source
and the target are used to determine the identity of a tree and an O(logn)-bit label of the
target within this tree. Finally, they completely forget the original labels and route within
this tree until they reach t. Their stretch is bounded by a constant. Our routing scheme
can also be turned into this model, but we have O(logD logn) different trees that cover the

EuroCG’20

54:6 Headerless Routing in Unit Disk Graphs

unit disk graph and the label of a vertex in one of the trees has size O(log2 n/ log logn).
Nevertheless, we achieve the near optimal stretch 1 + ε. A more thorough analysis of their
and our model will lead to a more complicated comparison. This does not fit here, so we
refer the reader to have a look into [12].

References
1 Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes

with affine stretch. In Proc. 25th Int. Symp. Dist. Comp. (DISC), pages 404–415, 2011.
2 Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved routing

strategies with succinct tables. J. Algorithms, 11(3):307–341, 1990.
3 Bahareh Banyassady, Man-Kwun Chiu, Matias Korman, Wolfgang Mulzer, André van

Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein, Birgit Vogtenhuber, and Max
Willert. Routing in polygonal domains. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 92. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

4 Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance
oracles in weighted unit-disk graphs. J. of Computational Geometry, 10(2):3–20, 2019.
doi:10.20382/jocg.v10i2a2.

5 Shiri Chechik. Compact routing schemes with improved stretch. In Proc. ACM Symp.
Princ. Dist. Comp. (PODC), pages 33–41, 2013.

6 Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs. Discrete
mathematics, 86(1-3):165–177, 1990.

7 Lenore J Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170–183,
2001.

8 Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low stretch
factor. J. Algorithms, 46(2):97–114, 2003.

9 Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Proc. 28th Internat. Colloq.
Automata Lang. Program. (ICALP), pages 757–772, 2001.

10 Silvia Giordano and Ivan Stojmenovic. Position based routing algorithms for ad hoc net-
works: A taxonomy. In Ad hoc wireless networking, pages 103–136. Springer-Verlag, 2004.

11 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing in unit disk
graphs. Algorithmica, 80(3):830–848, 2018.

12 Wolfgang Mulzer and Max Willert. Routing in unit disk graphs without dynamic headers,
2020. arXiv:2002.10841.

13 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J.
ACM, 36(3):510–530, 1989.

14 Liam Roditty and Roei Tov. New routing techniques and their applications. In Proc. ACM
Symp. Princ. Dist. Comp. (PODC), pages 23–32, 2015.

15 Liam Roditty and Roei Tov. Close to linear space routing schemes. Distributed Computing,
29(1):65–74, 2016.

16 Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks. The Com-
puter Journal, 28(1):5–8, 1985.

17 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM, 51(6):993–1024, 2004.

18 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. 13th ACM Symp. Par.
Algo. Arch. (SPAA), pages 1–10, 2001.

19 Max Willert. Routing schemes for disk graphs and polygons. Master’s thesis, Freie Uni-
versität Berlin, 2016.

20 Chenyu Yan, Yang Xiang, and Feodor F Dragan. Compact and low delay routing labeling
scheme for unit disk graphs. Comput. Geom. Theory Appl., 45(7):305–325, 2012.

A (1 + ε)-approximation for the minimum
enclosing ball problem in Rd ∗

Sang-Sub Kim and Barbara Schwarzwald

Institute of Computer Science, University Bonn
schwarzwald@uni-bonn.de

Abstract
Given a set of points P in Rd for an arbitrary d, the 1-center problem or minimum enclos-
ing ball problem (MEB) asks to find a ball B∗ of minimum radius r∗ which covers all of P .
Kumar et. al. [5] and Bǎdoiu and Clarkson [1] simultaneously developed core-set based (1 + ε)-
approximation algorithms. While Kumar et al. achieve a slightly better theoretical runtime of
O(nd/ε + 1/ε4.5 log 1/ε), Bǎdoiu and Clarkson have a stricter bound of d2/εe on the size of their
core-set, which strongly affects run-time constants.

We give a gradient-descent based algorithm running in time O(nd/ε) based on a geometric ob-
servation that was used first for a 2-center streaming algorithm by Kim and Ahn [4]. Our approach
can be extended to the k-center problem to obtain a (1 + ε)-approximation in time O(nd k 2k/ε).

1 Introduction

Given a set of points P ⊂ Rd, the minimum enclosing ball problem (MEB), also known as the
1-center problem, asks to find a ball B∗ of minimum radius r∗ containing all of P and is an
important subproblem in clustering. While it can be solved in worst-case linear time for fixed
d [6], the dependence on d is exponential and hence not practical for high dimensional real-
world applications. However, Bǎdoiu et al. [3] presented a (1 + ε)-approximation algorithm
for arbitrary d running in time O(nd/ε2 + 1/ε10 log 1/ε) using core-sets of size at most 1/ε2

independent of d. An ε-core-set is a subset S ⊂ P , such that a ball of radius (1 + ε)r∗ around
the center of a minimum enclosing ball of S covers P . Their algorithm can be extended to
approximate the k-center problem, but the running time is then exponential in k and the
size of the core-set; so having a tight bound on the size of the core-set is paramount. In fact,
no polynomial time approximation scheme for the k-center problem in high dimensions can
exist if P 6= NP, see [7].

Kumar et al. [5] improved these results to finding ε-core-sets of size O(1/ε) in time
O(nd/ε2 + 1/ε4.5 log 1/ε). Indepedently Bǎdoiu and Clarkson [1] achieved an algorithm with a
similar running time of O(nd/ε + 1/ε5) while having a stricter bound of d2/εe on the size of
their core-set, which significantly affects run-time especially when extending to the k-center
problem. Bǎdoiu and Clarkson [1] also gave a simple gradient-descent algorithm obtaining
a (1 + ε)-approximation in time O(nd/ε2) and later showed that a tight bound of d1/εe on
the size of ε-core-sets exists, see [2]. The gradient-descent algorithm has the advantage
of not computing minimum enclosing balls for several subsets of P of size O(1/ε) which
improves the constants involved in the calculation of each step and simplifies implementation.
Bǎdoiu and Clarkson [2] also performed runtime experiments on both the gradient-descent
and the different core-set-based algorithms which results showed that the gradient-descent
algorithm is competitive in reality, as it converges significantly faster than its theoretical
bound suggests.

∗ This work has been supported by DFG grant Kl 655/19 as part of a DACH project.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

55:2 A (1 + ε)-approximation for MEB in Rd

We combine the analysis of these core-set-based algorithms with the ideas of the gradient-
descent algorithm and extend structural observations made by Kim and Ahn [4] for the
Euclidean 2-center problem in a streaming model to obtain a new efficient gradient-descent
algorithm that converges to a (1 + ε)-approximation in time O(nd/ε). It can be applied to
the k-center problem in a similar fashion as the core-set based algorithms. Hence, it gives an
alternative (1 + ε)-approximation in time O(nd k 2k/ε) for that problem without the use of
core-sets and, possibly, a faster algorithm on real-world data.

2 An Algorithm for the Euclidean 1-center problem

In this section we present an algorithm for the Euclidean 1-center problem for high dimensions
and show the following theorem:

I Theorem 2.1. Given a set P ∈ Rd, one can compute a (1+ε)-approximation of the
minimum enclosing ball in time O(nd/ε) with the gradient-descent-algorithm GradientMEB.

Let P ⊂ Rd for any d ≥ 2 be a set of n points. Let B(c, r) denote a ball of radius r
centered at c and let r(B) and c(B), denote the radius and center of a ball B, respectively.
We denote by pq the straight line segment between two points p and q and by |pq| the length
of pq. Finally, we denote the boundary of a closed set A by ∂A.

Let B∗ = B(c∗, r∗) be the optimal solution of the 1-center problem for a set P . The
core idea of the algorithm is a follows. We will start with an arbitrary point p1 from P as a
starting center m1. For any center mi constructed, the radius ri necessary to cover all of
P with a ball B(mi, ri) is defined by the farthest point in P from mi. Therefore, in every
subsequent step we pick that farthest point as pi+1 and construct a new center mi+1 on the
line segment between pi+1 and mi to reduce ri. We will use a central structural property
proven in Lemma 2.2 to show how to construct mi = m(pi+1,mi) in such a way that we can
give a bound on its distance |mic

∗| to the optimal center c∗ decreasing with every step i.
The exact definition of m(pi+1,mi) will hence be given after that Lemma.

Algorithm 1 GradientMEB
Input: Set of points P ⊂ Rd.
Output: A center c such that B(c, (1 + ε)r∗) covers P
p1 ← arbitrary point from P

m1 ← p1
bestRadius ←∞
for i = 1 to b2/εc do

pi+1 ← farthest point from mi in P
if |mipi+1| < bestRadius then

bestCenter ← mi−1
bestRadius ← |mi−1pi|

mi+1 ← m(pi+1,mi)
return bestCenter

We will start with the proof of the central structural property and the construction of
m(pi+1,mi) and then show that after at most k = b2/εc such steps, |mkc

∗| < εr∗ and hence
B(mk, (1 + ε)r∗) covers all of P .

Both together will proof the correctness of GradientMEB. As the algorithm runs for
b2/εc rounds, finding pi each round takes O(nd) and the computation of mi takes O(d), this
will also proof Theorem 2.1.

S. Kim and B. Schwarzwald 55:3

I Lemma 2.2. Given two d-dimensional balls B and B′ with radii r and r′ around the same
center point c with r > r′ with d ≥ 2. Let p ∈ ∂B and p′ ∈ ∂B′ with |pp′| = l ≥ r. Let B′′ be
the d-dimensional ball centered around c that is tangential to pp′. We denote that tangential
point with m and the distances |p′m| with l1 and |pm| with l2, so l = l1 + l2. Consider any
line segment p1p2 with |p1p2| > l, p1 ∈ B′ and p2 ∈ B. Then any point m∗ on p1p2 with
|p1m

∗| ≥ l1 and |p2m
∗| ≥ l2 lies inside B′′.

Proof. For d = 2 we first show that |p1p2| intersects B′′ at all. It is clear that we can rotate
and reflex pp′ without changing B′′ as long as its length l stays the same. Hence we can
assume without loss of generality, that p′, c and p1 are collinear with p1 ∈ cp′. Then p2 must
lie in B \B(p′, l) which means p1p2 intersects B′′ as illustrated in Figure 1.

c

B′

B

p′

p

m

B′′

p1

p2

B(p′, l)

l2

l1
m∗

Figure 1 Construction of m and B′′. p1p2 must intersect B′′ if |p1p2| ≥ l = |pp′|.

Now consider a point m∗ on p1p2 with |p1m
∗| ≥ l1 and |p2m

∗| ≥ l2. Assume m∗ is not
contained in B′′. Then either p1m

∗ ∩B′′ = ∅ and p2m
∗ ∩B′′ 6= ∅ or the other way around

as p1p2 intersects B′′ somewhere.
Let’s first assume, p1m

∗ ∩ B′′ = ∅ and p2m
∗ ∩ B′′ 6= ∅. In this case p1 ∈ B′ \ B′′. Let

pt be a point on the boundary of B′′ such that p1pt is tangential to B′′ and m∗ lies within
the triangle p1ptc. Clearly |p1pt| > |p1m

∗|. But by construction of B′′, |p′m| ≥ |p1pt|, which
contradicts |p′m| = l1 ≤ |p1m

∗|. This is illustrated in Figure 2 (assuming without loss of
generality that p′ is collinear with p1p2, as this does not not affect the construction of B′′).

c

B′′

p1

m∗

p2B′

p′

m

pt

l1

Figure 2 Assume p1m∗ ∩B′′ = ∅. |p1m∗| < |p1pt| ≤ |p′m|. This contradicts |p1m∗| ≥ l1 = |p′m|.

The other case can be shown equivalently by switching p1 and p2 and replacing p′ and
B′ and l1 with p and B and l2, respectively.

For d > 2 we can show the lemma by choosing the 2-dimensional plane passing through c
and the line segment p1p2 and then follow the same arguments as for d = 2. J

EuroCG’20

55:4 A (1 + ε)-approximation for MEB in Rd

Note, that the point m′ on p1p2 with |m′p1|
|p2p1| = l1

l = |mp′|
|pp′| fulfils |m′p1| ≥ l1 and

|m′p2| ≥ l2. The following corollary follows from that observation, Lemma 2.2 and the
Pythagorean theorem and defines a way to calculate that point without actually knowing r∗.

I Corollary 2.3. Let B and B′ be two balls in Rd with c(B) = c(B′) and radii r(B) = r∗

and r(B′) = r′ = δr∗ for some 0 < δ ≤ 1. Then the line segment pp′ between any two points
p ∈ ∂B and p′ ∈ ∂B′ with distance |pp′| = l = (1 + ε)r∗ is tangential to B′′ = B(c, rm) with

rm ≤ r∗
√

1−
(

1 + (1 + ε)2 − δ2

2(1 + ε)

)2
(1)

at a point m∗ with l1 := |m∗p′|.
Let p1 ∈ B′ and p2 ∈ B with |p1p2| ≥ l = (1 + ε)r∗.
Then

m(p1, p2) := p1 + (p2 − p1) l1
l

= p2 + (p1 − p2)δ
2 + (1 + ε)2 − 1

2(1 + ε)2 (2)

lies in the ball B(c, rm) and can be calculated independent of r∗, only knowing p1, p2, δ and
ε.

One can extend this definition to a sequence m1,m2, . . . ,mk based on a sequence of
points p1, . . . , pk with pi ∈ P with |pjmj−1| ≥ (1 + ε)r∗ for all i ≥ j > 1.

Let

δi :=

1, if i = 1.√
1−

(1+(1+ε)2−δ2
i−1

2(1+ε)

)2
, otherwise.

(3)

and

mi :=
{
p1, if i = 1.
m(pi,mi−1) = mi−1 + (pi −mi−1) δ

2
i−1+(1+ε)2−1

2(1+ε)2 , otherwise.
(4)

As all points in P lie in the ball B(c∗, r∗), it follows by induction from Corollary 2.3 that
mi lies in the ball B(c∗, δir∗).

GradientMEB starts with an arbitrary point p1 from P as mi and always uses the
farthest point from mi−1 in P as pi. That way, at each round we either have |mipi+1| >
(1 + ε)r∗ or mi is already a (1 + ε)-approximation. As we do not know, which of both holds
at any round, we just return the best mi out of all rounds.

It remains to prove, that any sequence of points with |pjmj−1| ≥ (1+ε)r∗ for all i ≥ j > 1
contains at most k ≤ b2/εc points before mi ∈ B(c∗, εr∗).

If at step i, |mi−1pi| = (1 + ε)r∗, pi ∈ ∂B∗ and mi−1 ∈ ∂B(c∗, δi−1r
∗), then mi ∈

∂B(c∗, δir∗) by Lemma 2.2. In that case, mi ∈ B(c∗, εr∗) if and only if δi < ε. As this is
the worst-case, we can assume we were given our sequence of points pi ∈ P by an adversary,
always fulfilling |mi−1pi| = (1 + ε)r∗ and pi ∈ ∂B∗, which gives mi−1 ∈ ∂B(c∗, δi−1) by
induction.

We use a similar proof as [1] for their core-set based algorithm. For this we consider the
line segments ai = mi−1mi with |ai| = αi(1 + ε)r∗ and bi = mipi with |bi| = βi(1 + ε)r∗ that
together form mi−1pi as illustrated in Figure 3.

As mi converges towards c∗ with increasing i, βi increases and αi decreases. However,
βi can be at most 1/(1+ε) by construction as bi forms a right-angled triangle with c∗pi as
the hypotenuse, so βi(1 + ε)r∗ = |bi| < |c∗pi| = r∗. We will now show a lower bound on βi
and prove that it exceeds 1/(1+ε) for i ≥ 2/ε− 1. In that case, there does not exist a point
pi with |mi−1pi| = (1 + ε)r∗ and pi ∈ ∂B∗ that our adversary could have given us. This

S. Kim and B. Schwarzwald 55:5

c∗

B∗

mi−1

pi

r∗

δi−1r
∗

δir
∗

mi

|ai| = αi(1 + ε)r∗

|bi| = βi(1 + ε)r∗

Figure 3 Construction of mi based on mi−1 and pi.

can only happen if the intersection of ∂B∗ and ∂B(mi−1, (1 + ε)r∗) is empty, and therefore,
∂B(mi−1, (1 + ε)r∗) covers B∗.

I Lemma 2.4. βi ≥ 1/(1+ε) for i ≥ 2/ε− 1 > b2/εc.
Proof. By our definition and our worst-case assumption

|bi| = (1 + ε)r∗ − |ai| ⇒ βi = 1− αi. (5)
In addition, by the construction of mi as illustrated in Figure 3 and the Pythagorean

theorem, it holds

β2
i (1 + ε)2 = 12 − δ2

i

= 1− (δ2
i−1 − α2

i (1 + ε)2)
= 1− ((1− β2

i−1(1 + ε)2)− α2
i (1 + ε)2)

⇒ β2
i = α2

i + β2
i−1. (6)

Combining these two equations we get

1− αi =
√
β2
i−1 + α2

i

1− 2αi + α2
i = β2

i−1 + α2
i

⇒ αi =
1− β2

i−1
2 . (7)

Applying Equation 5 again we obtain the recurrence

βi =
1 + β2

i−1
2 . (8)

If we substitute γi = 1
1−βi

⇔ βi = γi−1
γi

in Equation 8, we get

γi = γi−1
1− 1/(2γi−1)

= γi−1(1 + 1
2γi−1

+ 1
4γ2
i−1

+ · · ·) ≥ γi−1 + 1
2 . (9)

As we have β1 = 1/2 and hence γ1 = 2, we know γi ≥ (3+i)/2 and hence βi ≥ 1− 2
3+i . To

obtain βi ≥ 1/(1+ε) it suffices to have i ≥ 2/ε− 1. J

This also concludes the proof of Theorem 2.1.

EuroCG’20

55:6 A (1 + ε)-approximation for MEB in Rd

2.1 Extension to the 2-center problem
We employ a strategy quite similar to the approach in [1]. We aim to construct two series of
centers m1,j and m2,k based on two series of points from the two optimal balls B∗1 and B∗2 .

We start with an arbitrary point p1 and set m1,1 = p1 as we can assume p1 ∈ B∗1 without
loss of generality. In every further step, we pick a point pi farthest from the two current
centers m1,j and m2,k. As long as we have no center for B∗2 , we pick the point furthest
from m1,j . We then employ a guessing oracle that tells us whether pi belongs to B∗1 or
B∗2 . Depending on its answer, we add the point to the sequence for the respective ball then
calculate a new center m1,j+1 or m2,k+1 as in our 1-center algorithm.

After at most 2b2/εc picks, we obtain a (1 + ε)-approximation. As we do not have a
guessing oracle, we just exhaust all possible guesses and return the best solution encountered,
which results in a running time of O(nd 21/ε).

2.2 Extension to the k-center problem for k > 2
The k-center algorithm is a straight-forwarded extension of the 2-center algorithm. As we
need to guess at most kb2/εc points to obtain (1 + ε)-approximation and have to exhaust k
possibilities each, our algorithm runs in time O(nd k 2k/ε).

3 Conclusion

We provided a new efficient gradient-descent (1 + ε) approximation algorithm for MEB in
arbitrary dimensions running in time O(nd/ε), which is strictly better than previous core-set
based approaches with running times O(nd/ε + 1/ε4.5 log 1/ε) as long as nd ∈ o(1/ε3.5 log 1/ε).
Like the core-set based algorithms it can be extended to the k-center problem with a
running time of O(nd k 2k/ε), which makes the gradient-descent based algorithm theoretically
equivalent to the core-set based approached with possibly better run-time constants by
combining similar analysis with new geometric observations.

References
1 Mihai Bădoiu and Kenneth L. Clarkson. Smaller core-sets for balls. In Proceedings of

the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, page
801–802, USA, 2003. Society for Industrial and Applied Mathematics. doi:10.5555/
644108.644240.

2 Mihai Bădoiu and Kenneth L. Clarkson. Optimal core-sets for balls. Computational Ge-
ometry, 40(1):14 – 22, 2008. doi:10.1016/j.comgeo.2007.04.002.

3 Mihai Bădoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets.
In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’02, page 250–257, New York, NY, USA, 2002. Association for Computing Machinery.
doi:10.1145/509907.509947.

4 Sang-Sub Kim and Hee-Kap Ahn. An improved data stream algorithm for cluster-
ing. In Alberto Pardo and Alfredo Viola, editors, LATIN 2014: Theoretical Informat-
ics, pages 273–284, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-54423-1_24.

5 Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirim. Approximate minimum
enclosing balls in high dimensions using core-sets. J. Exp. Algorithmics, 8:1.1–es, December
2004. doi:10.1145/996546.996548.

S. Kim and B. Schwarzwald 55:7

6 Nimrod. Megiddo. "linear-time algorithms for linear programming in r3 and related prob-
lems". SIAM Journal on Computing, 12(4):759–776, 1983. doi:10.1137/0212052.

7 Nimrod Megiddo. On the complexity of some geometric problems in unbounded dimension.
Journal of Symbolic Computation, 10(3):327 – 334, 1990. doi:10.1016/S0747-7171(08)
80067-3.

EuroCG’20

Disjoint tree-compatible plane perfect matchings∗

Oswin Aichholzer1, Julia Obmann1, Pavel Paták2, Daniel Perz1,
and Josef Tkadlec2

1 Graz University of Technology, Graz, Austria
oaich@ist.tugraz.at, julia.obmann@student.tugraz.at, daperz@ist.tugraz.at

2 IST Austria, Klosterneuburg, Austria
patak@kam.mff.cuni.cz, josef.tkadlec@ist.ac.at

Abstract
Two plane drawings of geometric graphs on the same set of points are called disjoint compatible if
their union is plane and they do not have an edge in common. For a given set S of 2n points two
plane drawings of perfect matchings M1 and M2 (which do not need to be disjoint nor compatible)
are disjoint tree-compatible if there exists a plane drawing of a spanning tree T on S which is
disjoint compatible to both M1 and M2.

We show that the graph of all disjoint tree-compatible perfect geometric matchings on 2n

points in convex position is connected if and only if 2n ≥ 10. Moreover, in that case the diameter
of this graph is either 4 or 5, independent of n.

1 Introduction

Two plane drawings of geometric graphs on the same set S of points are called compatible if
their union is plane. The drawings are disjoint compatible if they are compatible and do not
have an edge in common. For a fixed class G, e.g. matchings, trees, etc., of plane geometric
graphs on S the (disjoint) compatibility graph of S has the elements of G as the set of vertices
and an edge between two elements of G if the two graphs are (disjoint) compatible. For
example, it is well known that the (not necessarily disjoint) compatibility graph of plane
perfect matchings is connected [4, 5]. Moreover, in [2] it is shown that there always exists a
sequence of at most O(log n) compatible (but not necessarily disjoint) matchings between
any two plane perfect matchings of a set of 2n points in general position, that is, the graph
of perfect matchings is connected with diameter O(log n). On the other hand, Razen [8]
provides an example of a point set where this diameter is Ω(log n/ log log n).

Disjoint compatible (perfect) matchings have been investigated in [2] for sets of 2n points
in general position. The authors show that for odd n there exist isolated matchings and
pose the following conjecture: For every perfect matching with an even number of edges
there exists a disjoint compatible perfect matching. This conjecture was answered in the
positive by Ishaque et al. [7] and it was mentioned that for even n it remains an open problem

∗ Research on this work was initiated at the 6th Austrian-Japanese-Mexican-Spanish Workshop on
Discrete Geometry and continued during the 16th European Geometric Graph-Week, both held near
Strobl, Austria. We are grateful to the participants for the inspiring atmosphere. We especially thank
Alexander Pilz for bringing this class of problems to our attention and Birgit Vogtenhuber for inspiring
discussions. D.P. is partially supported by the FWF grant I 3340-N35 (Collaborative DACH project
Arrangements and Drawings). The research stay of P.P. at IST Austria is funded by the project
CZ.02.2.69/0.0/0.0/17_050/0008466 Improvement of internationalization in the field of research and
development at Charles University, through the support of quality projects MSCA-IF.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

56:2 Disjoint tree-compatible plane perfect matchings

whether the disjoint compatibility graph is always connected. In [1] it is shown that for sets
of 2n ≥ 6 points in convex position this disjoint compatibility graph is (always) disconnected.

Both concepts, compatibility and disjointness, are also used in combination with different
geometric graphs. For example, in [5] it is shown that the flip-graph of all triangulations that
admit a (compatible) perfect matching, is connected. It has also been shown that for every
graph with an outerplanar embedding there exists a compatible plane perfect matching [3].
Considering plane trees and simple polygons, the same work provides bounds on the minimum
number of edges a compatible plane perfect matching must have in common with the given
graph. See also the survey [6] on the related concept of compatible graph augmentation.

In a similar spirit we can define a bipartite disjoint compatible graph, where the two
sides of the bipartition represent two different graph classes. For example, let one side be all
plane perfect matchings of S, |S| = 2n, while the other side consists of all plane spanning
trees of S. Edges represent the pairs of matchings and trees whose union results in a plane,
edge-disjoint drawing. Considering connectivity of this bipartite graph there trivially exist
isolated vertices on the tree side - consider a spanning star, which can not have any disjoint
compatible matching. Thus, the question remains whether there exists a bipartite connected
subgraph which contains all vertices representing plane perfect matchings.

This point of view leads us to a new notion of adjacency for matchings. For a given set S

of 2n points two plane drawings of perfect matchings M1 and M2 (which do not need to
be disjoint nor compatible) are disjoint tree-compatible if there exists a plane drawing of a
spanning tree T on S which is disjoint compatible to both, M1 and M2. The idea is that in
the disjoint tree-compatible graph G2n we have an edge between M1 and M2 as they are only
two steps apart if we consider a disjoint and compatible transformation via T . Rephrasing
the above question we ask whether G2n is connected? Recall that the disjoint compatible
graph for matchings alone is not connected (see [1, 2]) and that without disjointness the
result of [5] already implies that the tree-compatible graph of matchings is connected.

In this paper we show that the disjoint tree-compatible graph of perfect geometric
matchings on 2n points in convex position is connected if and only if 2n ≥ 10. Moreover, in
that case the diameter of this graph is either 4 or 5, independent of n.

Figure 1 The disjoint tree-compatible graph G8. Each vertex represents a plane matching on a
convex point set of eight points. Two matchings are connected by an edge if they are tree-compatible
(the trees are drawn in red).

O. Aichholzer, J. Obmann, P. Paták, D. Perz and J. Tkadlec 56:3

1.1 Basic Definitions
Throughout this paper the point set S consists of 2n points in convex position. For simplicity
we use the terms matching and tree for plane perfect matchings and plane spanning trees.

I Definition 1.1. Edges spanned by two neighbouring points on the boundary of the convex
hull of S are called perimeter edges; all other edges spanned by S are called diagonals.

I Definition 1.2. A perimeter matching is a matching containing no diagonal. We label
the sides of the convex hull of S alternately ’odd’ and ’even’. Then the perimeter matching
consisting of only odd perimeter edges is called odd perimeter matching, the one consisting
of only even perimeter edges is called even perimeter matching.

2 Upper bound

We show that any matching on 2n ≥ 10 points in convex position has small distance to
one of the two perimeter matchings which are themselves close to each other in the disjoint
tree-compatible graph G2n. When done carefully, this gives an upper bound of 5 on the
diameter of G2n.

First we introduce key notions of a semicycle, a cycle of edges and a rotation (see Figure 2).

I Definition 2.1. Let M be a matching on S. A set X of k ≥ 2 matching edges is called a
k-semicycle if the interior of the convex hull of X does not intersect any edges of M . Given a
k-semicycle X, the perimeter of its convex hull (including the non-matching edges) is called
its k-cycle and denoted by X̄. A k-cycle X̄ is called an inside k-cycle (or just an inside cycle)
if X̄ contains at least two diagonals, otherwise it is called a k-ear (or just an ear). Finally,
given a semicycle X, we can obtain a matching M ′ = rot(X̄) by rotating the cycle X̄, that
is, by omitting from M edges in X and including edges in X̄ \X.

X1

X2

M M ′ = rot(X̄1)

Figure 2 A matching M with convex hulls of two of its 3-semicycles X1, X2 shaded. The cycle
X̄1 corresponding to X1 is an inside cycle, since the boundary of the grey region contains at least two
(in fact three) diagonals. The cycle X̄2 is an ear. Rotating X̄1, we obtain a matching M ′ = rot(X̄1).

With this notation in place we show that any number of inside cycles can be simultaneously
rotated in one step and that sufficiently long ears can be rotated in at most 3 steps.

I Lemma 2.2. Let M , M ′ be two matchings whose symmetric difference is a union of
disjoint inside cycles. Then M and M ′ are tree-compatible to each other.

Proof idea. The idea is that the union of M and M ′ can be extended to a triangulation
such that every inside cycle has at most two vertices of S which are neighbored in this
triangulation to only two other points of the inside cycle. We argue that the added edges
form a connected graph spanning all the nodes of S. Removing edges one by one we create a
spanning tree edge-disjoint to both matchings (see Figure 3). See full version for a full proof.

EuroCG’20

56:4 Disjoint tree-compatible plane perfect matchings

u

v

Figure 3 The union of two matchings differing at a single inside cycle (shaded) is extended to a
suitable triangulation using yellow edges such that the yellow edges contain a spanning tree (red).

I Lemma 2.3. Let M , M ′ be two matchings whose symmetric difference is a k-ear with
k ≥ 6. Then M and M ′ have distance at most 3 (in G2n).

Proof idea. The idea is to do three rotations as in Figure 4. See full version for a full proof.

.

Figure 4 A 6-ear can be rotated in 3 steps (in each step we rotate the grey inside cycle).

I Theorem 2.4. For 2n ≥ 10, the graph G2n is connected and diam(G2n) ≤ 5.

×2

×10

×10

×10

×5

×5

r4

r3

r
0 , r

4

r
0
,r

±
2
,r

±
4

r 0
, r±2

, r±4

r0

r
0 , r

5

r
−3 , r

2

r 0
, r 5

r
0
, r

5

r5

Figure 5 All 42 nodes of G10, the letter r stands for a possible rotation by 2π/10. Going against
the arrows rotates in opposite direction.

Proof idea. When 2n = 10, the claim can be checked in Figure 5. When 2n ≥ 12, the idea is to
show that all matchings can be quickly transformed either to the odd perimeter matching O

or to the even perimeter matching E (or to both – by Lemma 2.3 we have dist(O, E) ≤ 3). In
particular, for a fixed matching M we denote by dmin(M) (resp. dmax(M)) the distance from
M to the closer (resp. further) perimeter matching. Then we prove that the non-perimeter
matchings can be split into three classes S1, S2, S3 with the following properties:

O. Aichholzer, J. Obmann, P. Paták, D. Perz and J. Tkadlec 56:5

1. ∀M ∈ S1 we have dmin(M) ≤ 1 (and hence dmax(M) ≤ 1 + 3 = 4);
2. ∀M ∈ S2 we have dmin(M) ≤ 2 and dmax(M) ≤ 3;
3. ∀M ∈ S3 we have dmax(M) ≤ 3 and ∀M, M ′ ∈ S3 we have dist(M, M ′) ≤ 4.

1 13

2 3

3
2

S1

S2

S2

S1

O E

3

4

S3

Figure 6 A partitioning of the non-perimeter matchings into sets S1, S2, S3.

This guarantees that diam(G2n) ≤ 5. See full version for a full proof.

3 Lower bound

In this chapter we prove the following theorem by constructing two matchings with distance
at least 4.

I Theorem 3.1. The diameter of the disjoint tree-compatible graph G2n for 2n ≥ 10 can be
lower bounded by 4.

In the same way as we defined inside cycles and ears for cycles, we now introduce notions
of inside semicycles and semiears for semicycles.

I Definition 3.2. Let M be a matching on S. A k-semicycle X is called an inside k-semicycle
(or just an inside semicycle) if X̄ contains at least two diagonals, otherwise it is called a
k-semiear (or just a semiear).

I Definition 3.3. Let M and M ′ be two matchings in S. A boundary area with k points is
an area within the convex hull of S restricted by edges in M and M ′ such that the matching
edges intersect at least once and the points on the boundary of the area are adjacent on the
boundary of the convex hull of S; see Figure 7.

Figure 7 Boundary areas with five points (left) and four points (middle). The drawing on the
right does not show a boundary area; not all points are neighbouring on the convex hull of S.

I Definition 3.4. A matching M on a set of 4k points is called a 2-semiear matching if it
consists of exactly k 2-semiears and an inside k-semicycle. A matching M on a set of 4k + 2
points is called a near-2-semiear matching if it consists of exactly k 2-semiears and an inside
(k + 1)-semicycle.

EuroCG’20

56:6 Disjoint tree-compatible plane perfect matchings

Figure 8 Left: A 2-semiear matching. Right: A near-2-semiear matching.

I Remark. Analogous to perimeter matchings we can distinguish between odd and even
2-semiear matchings, according to the values taken by the respective perimeter edges.

I Lemma 3.5. Let M , M ′ be two matchings whose symmetric difference is an ear or a
boundary area with at least three points. Then M and M ′ are not tree-compatible to each
other.

Proof idea. The idea is to apply a counting argument, a detailed proof is in the full version.

I Lemma 3.6. Let M be a matching tree-compatible to an even 2-semiear-matching. Then
M contains no odd perimeter edge.

Proof idea. Adding an odd perimeter edge always yields either an ear or a boundary area
with at least three points (cf. Figure 9), a detailed proof is in the full version.

e e

e e e e

o oo

Figure 9 An (even) 2-semiear matching (in blue) and a (red) matching with at least one odd
perimeter edge; the matchings create an ear (left) or a boundary area with three points (right).

I Lemma 3.7. Let M be a matching tree-compatible to a near-2-semiear-matching M ′

consisting of k even and one odd perimeter edge. Then M contains at most one odd perimeter
edge (the one in M ′).

The proof works analogously to the proof of Lemma 3.6.

I Lemma 3.8. Let M and M ′ be two tree-compatible matchings. Then M and M ′ have at
least two perimeter edges in common.

(b) (c) (d) (e)(a)

Figure 10 All possible cases for a semiear of size k ≥ 3 in a matching M (depicted in red) and a
second matching M ′ (depicted in blue) which does not use any of the perimeter edges in M .

Proof idea. We focus on proving that M and M ′ have one perimeter edge in common. Since
we only use local arguments we can extend these to show that M and M ′ have at least two
perimeter edges in common.

O. Aichholzer, J. Obmann, P. Paták, D. Perz and J. Tkadlec 56:7

If M contains an ear of size at least three, then one of the perimeter edges of this ear is
also in M ′. Otherwise the union of the two matchings would give something like in Figure 10
which forbids a disjoint spanning tree.

(b) (c)(a)

Figure 11 All possible cases for a 2-ear in a matching M (depicted in red) and a second matching
M ′ (depicted in blue) which does not use the perimeter edges in M

So we can assume that M only has 2-semiears. If M ′ contains the perimeter edge of a
2-semiear of M , then we are done. So assume this is not the case. If we have a union of
M and M ′, which looks locally like Figure 11(a) or Figure 11(b), then M and M ′ are not
disjoint tree-compatible. So the only possibility that M and M ′ are disjoint tree-compatible
and do not share a perimeter edge of a 2-semiear is depicted in Figure 11(c). Out of the
2-semiears of M we choose the one with no further semiear of M on one side of a diagonal
d in M ′. This is possible since the number of semiears is finite and the diagonals in M ′

cannot intersect each other, therefore there is an ordering of the 2-semiears in M . Since d is
a diagonal, there exists a semiear E′ on this side of the drawing in M ′. Every edge of M on
this side of d is a perimeter edge or intersects d, since there does not exist an semiear to
this side of d in M . If E′ is a 2-semiear and one diagonal in M intersects d, we get another
blocking structure. This means that the perimeter edge of E′ is also in M .

I Corollary 3.9. Let S be of size 2n ≥ 10. For even n, the distance between an even
2-semiear matching and an odd 2-semiear matching is at least 4.
For odd n, let M be a near-2-semiear matching with a single odd perimeter edge and M ′ be
a near-2-semiear matching with a single even perimeter edge such that those two edges are
incident in S. Then the distance between M and M ′ is at least 4.

Proof idea. We obtain the statement by applying Lemma 3.6 (for n even) or 3.7 (for n odd),
respectively, and Lemma 3.8, cf. Figure 12. A detailed proof is in the full version.

o1 e1

L. 3.5 L. 3.5 L. 3.6 L. 3.6

L. 3.7 L. 3.7L. 3.7 L. 3.7

Figure 12 Illustrations, that the distance between two special 2-semiear matchings (left) and
between two special near-2-semiear matchings (right) is at least 4. Even perimeter edges are drawn
in red, odd ones are drawn in blue. The numbers next to the edges indicate which Lemma is applied.

EuroCG’20

56:8 Disjoint tree-compatible plane perfect matchings

4 Conclusion

We have shown that the diameter of the disjoint tree-compatible graph G2n of disjoint
tree-compatible matchings for points in convex position is 4 or 5 when 2n ≥ 10. Due to
further computations, we conjecture that the diameter for all 2n ≥ 18 is 4. Further we
obtained some results for the clique number of G2n. Still, the question whether G2n is
connected for general point sets is open.

References
1 Oswin Aichholzer, Andrei Asinowski, and Tillmann Miltzow. Disjoint compatibility graph

of non-crossing matchings of points in convex position. The Electronic Journal of Com-
binatorics, 22:1–65, 2015. URL: http://www.combinatorics.org/ojs/index.php/eljc/
article/view/v22i1p65.

2 Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo García, Clemens Huemer,
Ferran Hurtado, Mikio Kano, Alberto Márquez, David Rappaport, Shakhar Smorodinsky,
Diane L Souvaine, Jorge Urrutia, and David Wood. Compatible Geometric Matchings.
Computational Geometry: Theory and Applications, 42(6-7):617–626, 2009.

3 Oswin Aichholzer, Alfredo García, Ferran Hurtado, and Javier Tejel. Compatible matchings
in geometric graphs. In Proc. XIV Encuentros de Geometría Computacional, pages 145–148,
Alcalá, Spain, 2011.

4 Carmen Hernando, Ferran Hurtado, and Marc Noy. Graphs of non-crossing perfect match-
ings. Graphs and Combinatorics, 18(3):517–532, 2002.

5 Michael E Houle, Ferran Hurtado, Marc Noy, and Eduardo Rivera-Campo. Graphs of
triangulations and perfect matchings. Graphs and Combinatorics, 21(3):325–331, 2005.

6 Ferran Hurtado and Csaba D Tóth. Plane geometric graph augmentation: a generic per-
spective. In Thirty Essays on Geometric Graph Theory, pages 327–354. Springer, 2013.

7 Mashhood Ishaque, Diane L Souvaine, and Csaba D Tóth. Disjoint compatible geometric
matchings. Discrete & Computational Geometry, 49(1):89–131, 2013.

8 Andreas Razen. A lower bound for the transformation of compatible perfect matchings.
Proceedings of EuroCG, pages 115–118, 2008.

Minimum Convex Partition of Degenerate Point
Sets is NP-Hard∗

Nicolas Grelier1

1 Department of Computer Science, ETH Zürich
nicolas.grelier@inf.ethz.ch

Abstract
Given a point set P and a natural integer k, are k closed convex polygons sufficient to partition
the convex hull of P such that each polygon does not contain a point in P? What if the vertices
of these polygons are constrained to be points of P? By allowing degenerate point sets, where
three points may be on a line, we show that the first decision problem is NP-hard and the second
NP-complete.

1 Introduction

The CG Challenge 2020 organised by Demaine, Fekete, Keldenich, Krupke and Mitchell [2],
is about finding good solutions to the problem of Minimum Convex Partition (MCP). We
give a definition equivalent to theirs, which fits better for the purpose of this paper.

I Definition 1 (Minimum Convex Partition problem). Given a set P of points in the plane and
a natural number k, is it possible to find at most k closed convex polygons whose vertices
are points of P , with the following properties:

The union of the polygons is the convex hull of P ,
The interiors of the polygons are pairwise disjoint,
No polygon contains a point of P in its interior.

The organisers of the CG Challenge 2020 mention that the complexity of this problem
is unknown. Some partial results are known, under the additional assumption that no three
points are on a line. For some more constrained point sets, Fevens, Meijer and Rappaport
gave a polynomial time algorithm [3]. Keeping only the assumption that no three points
are collinear, Knauer and Spillner have shown a 30

11 -approximation algorithm [6]. They also
ask for the complexity of the Minimum Convex Partition problem. On a related note, Sakai
and Urrutia have shown that for every set of n points, there exists a convex partition with
at most 4

3n − 2 polygons [8]. Although they do not mention it, it is straightforward to
combine their result with the method of Knauer and Spillner to obtain a 8

3 -approximation
algorithm. Concerning lower bounds, García-Lopez and Nicolás have given a construction
for point sets for which any convex partition has at least 35

32n− 3
2 polygons [4]. An integer

linear programming formulation of the problem, along with experimental results, has been
recently introduced by Barboza, Souza and Rezende [1].

All those results, concerning algorithms and bounds, are shown for point sets in general
position. However this is not assumed in the CG Challenge 2020. In this paper, we show
that Minimum Convex Partition of degenerate point sets is NP-complete by a reduction
from a modified version of planar 3-SAT. The complexity of the problem for point sets in
general position is still open.

∗ Research supported by the Swiss National Science Foundation within the collaborative DACH project
Arrangements and Drawings as SNSF Project 200021E-171681.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

57:2 Minimum Convex Partition of Point Sets is NP-Hard

We also show the NP-hardness of a similar problem, which we call Minimum Convex
Tiling problem (MCT). The problem is exactly as in Definition 1, but the constraint about
the vertices of the polygons is removed (i.e. they need not be points of P). This can make
a difference as shown in Figure 1. Equivalently, the MCT problem corresponds to the MCP
problem when Steiner points are allowed. A Steiner point is a point that does not belong to
the point set given as input, and which can be used as a vertex of some polygons. Our proofs
are very similar for the two problems. Due to lack of space, some parts of the NP-hardness
proof of MCT, and how to adapt it for MCP, are postponed in the Appendix.

•

•

•

•

•

•

•

•

•

•

Figure 1 A minimum partition with three convex polygons, and a tiling with two.

Our proof builds upon gadgets introduced by Lingas [7]. He used them to prove NP-
hardness of two decision problems: Minimum Rectangular Partition for rectangles with point
holes and Minimum Convex Partition for polygons with polygon holes. In the second prob-
lem, Steiner points are allowed. However, as noted by Keil [5], one can easily adapt Lingas’
proof not to use Steiner points. That is what we do in a second part to prove NP-hardness
of the MCP problem. The two proofs of Lingas are similar, and consist in a reduction from
the following variation of planar 3-SAT. The instances are a CNF formula F with set of
variables X and set of clauses C, and a planar bipartite graph G = (X ∪ C,E), such that
there is an edge between a variable x ∈ X and a clause c ∈ C if and only if x or x̄ is a
literal of c. Moreover, each clause contains either two literals or three, and if it contains
three the clause must contain at least one positive and one negative literal. Lingas refers
to this decision problem as the Modified Planar 3-SAT (MPLSAT). Lingas states that this
problem is NP-complete, and we provide a proof of it in the Appendix. The main result of
this paper is as follows:

I Theorem 2. MPLSAT can be reduced in polynomial time to MCP, and to MCT.

As it is easy to see that MCP is in NP, Theorem 2 implies that MCP is NP-complete.
The question whether MCT is in NP is still open.

2 Construction of the point set

We do the reduction by constructing a point set in three steps. First we construct a non-
simple polygon, in a very similar way as in Lingas’ proof, with some more constraints.
Secondly, we add some line segments to build a grid around the polygon, and finally we
discretise all line segments into sets of evenly spaced collinear points. The idea of the first
part is to mimic Lingas’ proof. The second part makes the correctness proof easier, and the
last part transforms the construction into our setting. The aim of the grid is to force the
sets in a minimum convex tiling to be rectangular.

We use the gadgets introduced by Lingas, namely cranked wires and junctions [7]. A wire
is shown in Figure 2. It consists of a loop delimited by two polygons, one inside the other.

N. Grelier 57:3

In Lingas’ construction, the two polygons are simple, and a wire is therefore a polygon with
one hole. Moreover in his proof the dimensions of the cranks do not matter. In our case,
the polygon inside is not simple, and each line segment has unit length. Each wire is bent
several times with an angle of 90◦, as shown in Figure 2, in order to close the loop.

Figure 2 A cranked wire, edges are in black and its interior is in grey. The wire follows the
whole red loop, but for sake of simplicity, only a section of the wire at a bend is drawn.

The wires are used to encode the values of the variables, with one wire for each variable.
We are interested in two possible tilings of a wire, called vertical and horizontal, which are
shown in Figure 3.

As in Lingas’ proof, we interpret the vertical tiling as setting the variable to true, and
the horizontal as false. Lingas proved the following:

I Lemma 3 (Lingas [7]). A minimum tiling with convex sets of a wire uses either vertical
or horizontal rectangles but not both. Any other tiling requires at least one more convex set.

The second tool is called a junction, and it serves to model a clause. Figure 4 depicts a
junction corresponding to a clause of three literals. A junction has three arms, represented
as dashed black line segments. A junction for a clause of two literals is obtained by blocking
one of the arms of the junction. The blue line segments have length 1 + ε, for a fixed ε

arbitrarily small. Therefore, the red line segments are not aligned with the long black line
segment to the left of the junction. A junction can be in four different orientations, which

EuroCG’20

57:4 Minimum Convex Partition of Point Sets is NP-Hard

Figure 3 A section of a wire and its optimal tilings: vertical (left) and horizontal (right).

can be obtained successively by making rotations of 90◦. Let us consider the orientation
of the junction in Figure 4. One wire is connected from above, one from below, and one
from the left. A wire can only be connected to a junction at one of its bends (see Figure 2).
We then remove the line segment corresponding to the arm of the junction, as illustrated in
Figure 4.

If the tiling of the wire connected from above is vertical, then one of the rectangles can
be prolonged into the junction. The same holds for the wire connected from below. On
the contrary, a rectangle can be prolonged from the wire connected from the left only if
the tiling is horizontal. If a rectangle can be prolonged, we say that the wire sends true,
otherwise it sends false. If a clause contains two positive literals x, y and one negative z̄, the
corresponding junction is as in Figure 4, or the 180◦ rotation of it. The wire corresponding
to z is connected from the left or right, and the wires corresponding to x and y are connected
from above and below, or vice versa. Therefore, the wire corresponding to x (respectively
y) sends true if and only if x (respectively y) is set to true. On the contrary, the wire
corresponding to z sends true if and only if z is set to false. If the clause has two negative
literals, then the junction is horizontal, and the junction behaves likewise.

Lingas proved that when minimising the number of convex polygons in a tiling, for each
junction at least one adjacent wire sends true. Before stating Lingas’ lemma exactly, we
need to explain the first step of the construction of the point set.

2.1 Construction of the polygon with holes

Let us consider one instance (F,G) of MPLSAT. Lingas states that the planarity of G implies
that the junctions and the wires can be embedded as explained above, and so that they do
not overlap [7]. Thus we obtain a polygon with holes, that we denote by Π. He adds without
proof that the dimensions of Π are polynomially related to |V |, where V denotes the vertex
set of G. We show in the appendix how to embed the polygon with holes into a grid Λ, such
that each edge consists of line segments of Λ. Moreover Λ is of size Θ(|V |2). We can now
state Lingas’ lemma:

I Lemma 4 (Lingas [7]). In a minimum tiling with convex sets of Π, a junction contains
wholly at least three convex sets. The junction contains wholly exactly three if and only if
at least one of the wires connected to the junction sends true.

N. Grelier 57:5

Figure 4 A junction for the MCT problem.

EuroCG’20

57:6 Minimum Convex Partition of Point Sets is NP-Hard

2.2 Discretisation of the line segments

To construct the point set, we first construct a collection of line segments. We then discretise
this collection by replacing each line segment by a set of collinear points.

Let us consider our polygon with holes Π that lies in the grid Λ. The grid consists of
points with integer coordinates, and line segments between points that are at distance 1. We
consider the collection of line segments consisting of Π union each line segment of Λ whose
interior is not contained in the interior of Π. Notice that therefore we have line segments
outside Π, but also inside its holes. Moreover, the collection of line segments that we obtain,
denoted by Φ, is a subgraph of the grid graph Λ.

Now we define K as twice the number of unit squares in Λ plus 1. Finally, we replace
each line segment in Φ by K points evenly spaced. We denote this point set by P .

3 Proof of correctness

We have constructed P in order to have the following property:

I Lemma 5. In a minimum convex tiling Σ of P , for each convex set S ∈ Σ, the interior
of S does not intersect Φ.

Let K ′ denote the number of unit squares in Φ, plus the minimum number of rectangles
in a partition of the wires, plus three times the number of clauses. Using Lemmas 3 and 4
shown by Lingas coupled with Lemma 5, we immediately obtain the following theorem:

I Theorem 6. The formula F is satisfiable if and only if there exists a convex tiling of P
with K ′ polygons.

Since P and K ′ can be computed in polynomial time, Theorem 6 implies Theorem 2 for
the MCT problem. Due to lack of space, we postpone most of the proof of Lemma 5 to the
Appendix. Nonetheless, we state and prove here the lemma giving the key idea of the proof.
We use a packing argument, and claim that in a convex tiling Σ of P , if a convex set S ∈ Σ
has large area, then most of its area is contained in a unique cell of Φ. In the Appendix
we show that in a minimum convex tiling, all convex sets have large area, and that each of
them fills the cell that contains it. For a set S, let A(S) be the area of S.

I Lemma 7. Let L and L′ be two squares in Λ, and S be a convex polygon whose interior
does not contain any point in P . If A(S ∩ L) > 1/K, and the boundary of S crosses a line
segment of Φ between L and L′, then A(S ∩ L′) ≤ 1/K.

Proof. The proof is illustrated in Figure 5. By assumption, S goes between two points p
and q at distance 1/K. Let us consider the two line segments s and s′ of the boundary
of S that intersect the line ` spawned by p and q. Assume for contradiction that the lines
spawned by s and s′ do not intersect, or intersect on the side of ` where L lies. This implies
that S ∩ L is contained in a parallelogram that has area 1/K, as illustrated in Figure 6.
Indeed such a parallelogram has base 1/K and height 1, therefore A(S ∩ L) ≤ 1/K. This
shows that the lines spawned by s and s′ intersect on the side of ` where L′ lies. Using the
same arguments as above, this implies A(S ∩ L′) ≤ 1/K. J

N. Grelier 57:7

•

•

•

•

•

•

•

• • • • • • • • •

L

S

s

s′

p

q

Figure 5 If A(S ∩ L) > 1/K, the two lines spawned by s and s′ intersect on the left side.

•

•p

q

L

Figure 6 The area of the parallelograms is 1/K.

4 Open problems

It is still open whether MCT is in NP. It may be that the coordinates of a vertex of a polygon
require exponentially many bits to be written. We also do not know the complexity of MCP
and MCT when it is assumed that no three points are collinear. A key property used for
our proof can be summarised as follow: When a rectangle with large area is delimited by
a lot of points, it is optimal to take this rectangle in the convex tiling or partition. But
this cannot be achieved when no three points are on a line, as illustrated in Figure 7. In
any convex partition the red edges are forced. Even in a convex tiling, one can observe
that they are needed for the tiling to be minimum. This implies that three convex sets are
necessary. But adding the convex set consisting of the points in convex position would add
one non-necessary convex set. Adding more points to delimit the convex set cannot change
the fact that taking this convex set in the tiling would not be optimal. The construction
can easily be adapted for the MCP problem. Therefore it is not clear how one could force
some convex sets to be in the partition or tiling.

EuroCG’20

57:8 Minimum Convex Partition of Point Sets is NP-Hard

•
•

•

•
•

•

•

•

•
•

•

Figure 7 An optimal tiling splits the area delimited by points in convex position.

References
1 Allan S. Barboza, Cid C. de Souza, and Pedro J. de Rezende. Minimum convex partition

of point sets. In International Conference on Algorithms and Complexity, pages 25–37.
Springer, 2019. doi:/10.1007/978-3-030-17402-6_3.

2 Erik Demaine, Sándor Fekete, Phillip Keldenich, Dominik Krupke, and Joseph
S. B. Mitchell. CG:SHOP 2020. https://cgshop.ibr.cs.tu-bs.de/competition/
cg-shop-2020. Accessed: 12/02/2020.

3 Thomas Fevens, Henk Meijer, and David Rappaport. Minimum convex partition of a
constrained point set. Discrete Applied Mathematics, 109(1-2):95–107, 2001. doi:10.
1016/S0166-218X(00)00237-7.

4 Jesús García-López and Carlos M Nicolás. Planar point sets with large minimum con-
vex decompositions. Graphs and Combinatorics, 29(5):1347–1353, 2013. doi:10.1007/
s00373-012-1181-z.

5 J Mark Keil. Decomposing a polygon into simpler components. SIAM Journal on Com-
puting, 14(4):799–817, 1985. doi:10.1137/0214056.

6 Christian Knauer and Andreas Spillner. Approximation algorithms for the minimum con-
vex partition problem. In Scandinavian Workshop on Algorithm Theory, pages 232–241.
Springer, 2006. doi:10.1007/11785293_23.

7 Andrzej Lingas. The power of non-rectilinear holes. In International Colloquium on
Automata, Languages, and Programming, pages 369–383. Springer, 1982. doi:10.1007/
BFb0012784.

8 Toshinori Sakai and Jorge Urrutia. Convex decompositions of point sets in the plane. arXiv
preprint arXiv:1909.06105, 2019.

Computing the Fréchet distance of trees and
graphs of bounded treewidth∗

Maike Buchin1, Amer Krivošija2, and Alexander Neuhaus3

1 Ruhr-Universität Bochum, Germany
maike.buchin@rub.de

2 TU Dortmund, Germany
amer.krivosija@tu-dortmund.de

3 TU Dortmund, Germany
alexander2.neuhaus@tu-dortmund.de

Abstract
We give algorithms to compute the Fréchet distance of embedded trees and graphs with bounded
treewidth. Our algorithms run in O(n2) time for trees with fixed root and of bounded degree,
and O(n2√n logn) time for trees of arbitrary degree. For graphs of bounded treewidth we show
one can compute the Fréchet distance in FPT time.

1 Introduction

The Fréchet distance, a distance measure for curves introduced by Fréchet in [8], is a popular
measure for comparing polygonal curves. It is defined via homeomorphisms between the
parameter spaces of the curves. Intuitively imagine a man walking his dog. The Fréchet
distance between the paths of man and dog is the shortest length of a leash connecting them.

The Fréchet distance is well studied. Alt and Godau [4] gave a polynomial time algorithm
to compute the Fréchet distance between two curves, sparking research in many applications,
such as character recognition [12] and navigation on road maps [13]. One can also define the
Fréchet distance between other objects like surfaces [3] or polygons [5]. Here we study the
Fréchet distance of straight-line embedded graphs, i.e., every vertex of the graph is assigned
to a point in the metric space and every edge between two vertices is a straight line segment
between the respective points. First we observe that two graphs are homeomorphic in the
topological sense, if they are isomorphic and do not contain degree 2 vertices [5]. That is, a
graph homeomorphism induces a graph isomorphism on graphs without degree 2 vertices,
and vice versa. Hence we assume that the graphs do not contain degree 2 vertices and define
the Fréchet distance between embedded graphs G1 = (V1, E1) and G2 = (V1, E1) as:

δF (G1, G2) = min
π : G1 7→G2

max
v∈V1

‖v − π(v)‖

where π : G1 → G2 is an isomorphism and ‖v − π(v)‖ is the distance between the points
corresponding to v and π(v). If the graphs do have degree 2 vertices we need to contract
every path consisting of degree 2 vertices (except the endpoints) as follows. We view these
paths as embedded curves and exchange them with marked edges between their endpoints.
We still have to take these curves into account when computing the Fréchet distance of the
original graphs. To do so we use the embedded curves of marked edges when computing the
Fréchet distance of the graphs.

∗ This work is based on the BSc thesis and student research project by the third author A. Neuhaus. A.
Krivošija was supported by the German Science Foundation (DFG) Collaborative Research Center SFB
876 "Providing Information by Resource-Constrained Analysis", project A2. A more detailed version of
this work is available at https://arxiv.org/abs/2001.10502.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

58:2 Computing the Fréchet distance of trees and graphs

Related work: To the best of our knowledge, the Fréchet distance of graphs (in this
setting) has only been considered by Buchin et al. [5]. They studied the hardness of the
Fréchet distance between surfaces and also discuss the Fréchet distance of graphs. In
particular, they sketch how to decide in time O(n2 logn) whether there is an isomorphism
between two embedded trees respecting a given distance δ. An isomorphism respects δ if the
distance between every vertex and its image is at most δ. This decider can then be used by
a binary search over all possible distances to compute the Fréchet distance. We expand upon
this idea and show that one can compute the Fréchet distance between two trees even faster
when computing the Fréchet distance between every subtree in a bottom up fashion.

As one can compute the Fréchet distance between two trees it seems natural to look at
tree-like graphs. We say a graph is tree-like if it has bounded treewidth, see Section 3. The
definition of the Fréchet distance given above requires the graphs to be isomorphic. Only
recently Lokshtanov et al. [11] gave a canonization algorithm showing that graph isomorphism
for graphs of bounded treewidth can be decided in fixed-parameter tractable-time. Their
algorithm however only decides whether two graphs are isomorphic but does not provide any
isomorphism as a witness. Grohe et al. [9] gave an algorithm computing all isomorphisms
between two input graphs. We alter this algorithm to compute the Fréchet distance of two
embedded graphs with bounded treewidth.

Results: In Section 2 we give an algorithm computing the Fréchet distance between
two embedded trees. We show that this can be done in O(n2√d log d) time, where n is the
maximum number of vertices and d is the maximum degree of the trees. In Section 3 we
show how one can compute the Fréchet distance of two graphs with n vertices and treewidth
at most k in 2O(k logc k)nO(1) · logn time.

2 Algorithm for trees

Computing the Fréchet distance of two graphs requires the graphs to be isomorphic. It is
well known that the isomorphism problem for two trees can be solved in polynomial time [1].
If not stated otherwise the trees have a designated root. If they do not, we use the fact that
a tree isomorphism needs to match the centers of the trees.

As stated above we require homeomorphisms between the graphs to compute their Fréchet
distance. Hence we contract all paths of degree 2 vertices of the two input trees as follows.
We start by finding all paths of maximum length containing only degree 2 vertices in each
graph with a DFS. For each path found, we connect the endpoints with an edge and store
the whole path for the distance calculation as an embedded curve. The last step is to delete
all degree 2 vertices and their adjacent edges. For a graph G = (V,E) this can be done in
time O(|V |+ |E|) as we basically perform a DFS. Next we show that we can compute all
Fréchet distances between edges in time O(n2 logn).

I Lemma 2.1. Let G = (V,E) and G′ = (V ′, E′) be two trees with |V | = |V ′| = n. One can
contract all paths of degree 2 vertices and store the Fréchet distances between each pair of
edges of the contracted graphs in an array of size O(n2). This procedure takes O(n2 logn)
time, or O(n2) time if at least one graph has only paths of degree 2 vertices of constant
length.

Proof. Given two trees G = (V,E) and G′ = (V ′, E′) with |V | = |V ′| = n. Notice that the
paths of degree 2 vertices are pairwise disjoint, except possibly for their endpoints. Thus
these paths define a partition of V and V ′ respectively. Also we can bound the number of
such paths in each graph by n

2 . Let `1, . . . , `n
2
and `′

1, . . . , `
′
n
2
be the lengths of such paths

Buchin, Krivošija and Neuhaus 58:3

within G and G′ respectively. If there are less than n
2 paths the corresponding lengths are 0.

It holds that
∑n/2
i=1 `i ≤ n and

∑n/2
i=1 `

′
i ≤ n.

We compute the distance between each pair of edges in the contracted graphs. The easy
case is when both edges are non-contracted and we can compute the distance in O(1) time.
If one edge is contracted and the other is not (or is contracted but has constant length), this
takes time linear in the length of the contracted edge, which sums up to

∑n/2
i=1(c · `′

i) ≤ cn
for a single edge, and hence quadratic time overall.

To compute the Fréchet distances between each pair of contracted edges (of non-constant
length), i.e. paths of degree 2 vertices, in G and G′ we use the algorithm of Alt and Godau
[4] to compute the Fréchet distance of two paths in time T (`i, `′

j) = O(`i`′
j log(`i`′

j)). Hence
in total we need time

∑n/2
i=1
∑n/2
j=1 T (`i, `′

j) ≤ cn2 logn. Note that this computation time is
only necessary if both graphs have long degree 2 paths.

We store the distances in an array of size O(|E| · |E′|) = O(n2) J

The further steps are executed on the contracted graphs.
We give a brief overview of the algorithm, based on the ideas in [5]. The algorithm

computes the Fréchet distance in a bottom up way, comparing two nodes of same height in
every step. Let T and T ′ be the two input trees and t ∈ T, t′ ∈ T ′ two vertices of the same
height and equal degree. Let t1, . . . , ti and t′1, . . . , t′i be the children of t and t′. Assume we
already have computed the Fréchet distance between the subtrees rooted at the children.
To compute the Fréchet distance between the trees rooted at t and t′ we follow the ideas
in [5] using ε-matchings. To find those matchings we create a new bipartite graph B. For
every subtree of t and t′ there is a vertex in B. We combine every vertex corresponding to a
subtree of t with every vertex corresponding to a subtree of t′ with a weighted edge. The
weight of the edge is the Fréchet distance between the subtrees, if there are unmarked edges
between the roots of the subtrees and their parents. If at least one of the edges is marked we
assign the maximum of the Fréchet distance between the edges and the Fréchet distance of
the trees. If the subtrees are not isomorphic we assign ∞ as the edge weight. Note if one of
the edges was marked we use the corresponding path to compute the distance.

Now we find a bottleneck matching for this graph, which equals the ε-matching used in [5].
A bottleneck matching is a perfect matching such that the maximum weight of its edges is
minimal for all perfect matchings possible. The Fréchet distance of the trees rooted at t and
t′ is either the maximum weight of the found bottleneck matching or the distance of t and
t′. We store the correct value in a two-dimensional array. If we could not find a bottleneck
matching the trees are not isomorphic and thus have no Fréchet distance. In this case we
store ∞. If the subtrees are empty we store 0.

The algorithm iterates over both trees doing the above computation for each pair of nodes
of same height. Afterwards the algorithm returns the value stored for the roots of the trees.

Figure 1 illustrates the computation of a bottleneck matching. Given the two trees in (a)
as input. Consider the computation of the Fréchet distance of the trees rooted at u and u′.
The graph B is shown in (b) and the distances are given in the table in (c). In (d) we see
the computed bottleneck matching with maximum Fréchet distance of 1.

It remains to compute such a bottleneck matching. To do this store all edge weights
in a sorted array and search for the smallest edge weight for which we can find a perfect
matching. The matching corresponding to this weight is the desired bottleneck matching.

The running time of this algorithm is as follows. We use the algorithm of Alt et al.
[2] to compute the perfect matchings. This means we can bound the running time of one
bottleneck matching computation by O

(
d2√d log d

)
time, with d being the degree of the

EuroCG’20

58:4 Computing the Fréchet distance of trees and graphs

r′

u′

w′v′x′

r

u

vwx

(a)

x′ v′ w′

x w v

(b)

v w x

v′ 1 2 2
w′ 2 1 2
x′ 2 2 1

(c)

x′ v′ w′

x w v

(d)

Figure 1 Two trees (a), the bipartite graph B (b), the weights (c) and bottleneck matching (d)

trees. A careful analysis of the number of bottleneck computations yields that the algorithm
has running time O

(
n2√d log d

)
. Thus we get the following result:

I Theorem 2.2. The Fréchet distance of two embedded trees can be computed in time
O
(
n2√n logn

)
. If the trees have bounded degree the computation only takes O(n2) time.

Note that if we need more than constant time to compute the distance between two
points the running time of this algorithm increases. Next we generalize this result to graphs
that are not trees but are tree-like in their structure.

3 Algorithm for graphs with bounded treewidth

Here we consider a larger class of graphs. It is known that many hard problems for graphs
can be solved easily on trees, such as 3-coloring problem and finding a vertex cover. Both
these problems can be solved in linear time on a tree. One can ask if these problems are
easy for tree-like graphs. A measurement for such a likeliness is the treewidth. To define the
treewidth we first introduce tree decompositions. Intuitively a tree decomposition of a graph
G represents the vertices and edges of G as subgraphs inside a tree. Formally:

I Definition 3.1. Let G = (V,E) be a graph. Let T be a tree and β a function mapping all
t ∈ T , the nodes, to subsets of V . We call (β, T) a tree decomposition of G if:
1. for each vertex v ∈ V it holds that all subsets β(t) ∈ T , called bags, containing v induce

a nonempty connected subtree of T , and
2. for each edge (u, v) ∈ E there is one t ∈ T , such that the bag β(t) contains u and v.

The width of such a tree decomposition is the size of its largest bag −1. The treewidth
of G is the minimal width among all its tree decompositions.

Tree decompositions play an important role in the context of parameterized algorithms.
An algorithm is parameterized, if its running time does not only depend on the input size n

Buchin, Krivošija and Neuhaus 58:5

but also on a parameter k. A problem is fixed parameter tractable, if there is a algorithm
with running time f(k) ·poly(n) for it. Many graph problems have algorithms with treewidth
as parameter, see [6, 7]. Typically these algorithms use dynamic programming over a tree
decomposition of the graph. Our algorithm is based on the algorithm of Grohe et al. [9]. We
extended their algorithm such that we can compute all isomorphisms between two embedded
graphs that respect a distance limit. Using this algorithm we conduct a binary search on
every possible distance between nodes of G1 and G2. The Fréchet distance of the two graphs
is the smallest distance found that is respected by an isomorphism.

We describe our algorithm. Let G1 = (V1, E1), G2 = (V2, E2) be two embedded graphs
and δ a distance limit. We start by preprocessing the graphs the same way as in the case of
trees, see Section 2. Next we compute an initial tree decomposition using the techniques of
Leimer [10]. The resulting decomposition is known to be isomorphism invariant. We carefully
refine these tree decompositions in a bottom up way using the techniques of [9]. In every step
we maintain the invariant that the tree decompositions are isomorphism invariant, the size of
the resulting bags is not too high, and we get crucial information about the structure of both
graphs. We now use the resulting tree decomposition to compute the isomorphisms respecting
δ in a bottom up way. Suppose we are looking at two nodes t1 ∈ T1 and t2 ∈ T2, and have
already computed all isomorphisms respecting δ between the subtrees of t1 and t2 rooted
at their respective children. To compute the isomorphisms between the graphs induced by
the trees rooted at t1 and t2 Grohe et al. [9] used an abstraction called coset-hypergraph
isomorphism. An instance of this abstraction consists of the two graphs, the isomorphisms
computed between the subtrees one can extend to isomorphisms between the graphs, and
colorings of the graphs to indicate which node sets can be mapped to each other.

We expand upon this approach by using the colorings to indicate which sets are isomorphic
to each other, and respect a given distance limit. Especially the colorings can indicate if
two edges correspond to curves that can be mapped to each other. Using these colorings we
compute all isomorphisms between the graphs using the algorithm of [9]. The algorithm uses
dynamic programming over the tree decompositions in a bottom up way. In every step it
constructs all isomorphisms between the subgraphs induced by vertices that were already
covered by the tree decompositions. During this the algorithm can find isomorphisms that
do not respect the given distance limit. In this case we simply mark such an isomorphism,
indicating that it does not witness the distance limit. After this computation we simply
check if there is at least one isomorphism that is not marked. In this case we know that the
input graphs are isomorphic under the given distance limit. If the dimension of the space
where the graphs are embedded is constant, the running time of the algorithm by Grohe
et al. [9] does not change. This means one can decide whether two embedded graphs with
treewidth at most k are isomorphic under a given distance limit in time 2O(k logc k)nO(1),
where n is the number of vertices of one graph, and c is a positive constant.

Furthermore we know that the Fréchet distance between the two graphs must be a
distance between two vertices, with one belonging to the first and one to the second graph.
Hence we store all n2 distances in a sorted array and perform a binary search using the above
algorithm to find the smallest distance under which the graphs are isomorphic. This yields:

I Theorem 3.2. The Fréchet distance between two graphs with n nodes and treewidth at
most k can be computed in time 2O(k logc k)nO(1) · logn.

EuroCG’20

58:6 Computing the Fréchet distance of trees and graphs

4 Conclusion

We have shown how to compute the Fréchet distance of two rooted trees and of two graphs
with bounded treewidth. It would be interesting to investigate the case of trees with high
vertex degrees. For those trees the algorithm presented in Section 2 only gives a slight
improvement over the algorithm sketched in [5]. The more general case remains interesting
since a polynomial time algorithm for computing the Fréchet distance of two graphs could
be used to decide whether the graphs are isomorphic. We do not expect a polynomial time
algorithm for general graphs. But perhaps there are other parameters in which the Fréchet
distance of two graphs is fixed parameter tractable and can be computed more efficiently.

References
1 A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer Algorithms. Addison-

Wesley Longman Publishing, Boston, MA, USA, 1st edition, 1974.
2 H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality matching

in a bipartite graph in time O(n1.5
√
m/ logn). Inf. Process. Lett., 37(4):237–240, Feb.

1991.
3 H. Alt and M. Buchin. Can we compute the similarity between surfaces? Discrete &

Computational Geometry, 43(1):78, Mar 2009.
4 H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Int.

J. Comput. Geometry Appl., 5:75–91, 03 1995.
5 K. Buchin, M. Buchin, and A. Schulz. Fréchet distance of surfaces: Some simple hard cases.

In M. de Berg and U. Meyer, editors, Algorithms – ESA 2010, pages 63–74. Springer Berlin
Heidelberg, 2010.

6 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 2012.
7 J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer

Science. An EATCS Series). Springer-Verlag, Berlin, Heidelberg, 2006.
8 M.M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico

di Palermo (1884-1940), 22(1):1–72, Dec 1906.
9 M. Grohe, D. Neuen, P. Schweitzer, and D. Wiebking. An improved isomorphism test for

bounded-tree-width graphs. In I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. San-
nella, editors, 45th International Colloquium on Automata, Languages, and Programming,
ICALP,, pages 67:1–67:14, 2018.

10 H.-G. Leimer. Optimal decomposition by clique separators. Discrete Mathematics,
113(1):99–123, 1993.

11 D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Fixed-parameter tractable
canonization and isomorphism test for graphs of bounded treewidth. SIAM Journal on
Computing, 46(1):161–189, 2017.

12 S. Sen, J. Chakraborty, S. Chatterjee, R. Mitra, R. Sarkar, and K. Roy. Online handwritten
bangla character recognition using Fréchet distance and distance based features. In S. Sun-
daram and G. Harit, editors, Document Analysis and Recognition, pages 65–73, Singapore,
2019. Springer Singapore.

13 K. P. Sharma, R. C. Pooniaa, and S. Sunda. Map matching algorithm: curve simplification
for Fréchet distance computing and precise navigation on road network using RTKLIB.
Cluster Computing, 22(6):13351–13359, Nov 2019.

On the complexity of the middle curve problem∗

Maike Buchin1, Nicole Funk2, and Amer Krivošija3

1 Ruhr-Universität Bochum, Germany
maike.buchin@rub.de

2 Department of Computer Science, TU Dortmund, Germany
nicole.funk@tu-dortmund.de

3 Department of Computer Science, TU Dortmund, Germany
amer.krivosija@tu-dortmund.de

Abstract
For a set of curves, Ahn et al. [1] introduced the notion of a middle curve and gave algorithms
computing these with run time exponential in the number of curves. Here we study the com-
putational complexity of this problem: we show that it is NP-complete and give approximation
algorithms.

1 Introduction

Consider a group of birds migrating together. Several of these birds are GPS-tagged to
analyze their behavior. The resulting data is a set of sequences of their positions. Such a
sequence of data points can be interpreted as a polygonal curve. We want to represent the
movement of the whole group, for instance to compare it to other groups or species. For this,
we use a representative curve. Such a representative curve is also useful in other applications,
such as the analysis of handwritten text or speech recognition.

There have been a few different approaches of defining such a representative curve.
Buchin et al. [4] defined the median level of curves as only using parts input curves, where the
median can change directions where two input curves cross paths. Har-Peled and Raichel [10]
define a mean curve, which can be chosen freely and minimizes the distance to the input
curves. They give an algorithm exponential in the number of curves for computing this.

Another approach is a version of the (k, `)-center problem, which asks for a set of k center
curves of complexity at most ` for which the distance of each input curve to its nearest center
is minimized. In particular, the (1, `)-center problem asks for only one such center curve.
The (k, `)-center problem for curves was first introduced by Driemel et al. [8] and further
analyzed by Buchin et al. [5] and Buchin et al. [6].

However, none of these representative curves use only actual data points of the GPS
tracks. This could lead to the representative curves containing positions that the moving
entities (e.g. birds) could not have visited. As the data points in the input curves are more
reliable Ahn et al. [1] defined the middle curve to only use these points. For a more accurate
representation of the original curves, Ahn et al. [1] define three variants of the middle curve.
We use their definition of a middle curve in this paper.

Related work Ahn et al. [1] presented algorithms for all three variants of the middle curve
problems, whose running time is exponential in the number of input curves. For several

∗ This work is based on the student research project by the second author N. Funk. A. Krivošija was
supported by the German Science Foundation (DFG) Collaborative Research Center SFB 876 "Providing
Information by Resource-Constrained Analysis", project A2. A full version of this work is available at
http://arxiv.org/abs/2001.10298

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

59:2 On the complexity of the middle curve problem

representative curve problems it is known that they are NP-hard, such as (k, `)-center [5, 8],
minimum enclosing ball [5], (k, `)-median [8], 1-median under Fréchet and dynamic time
warping distance [6, 7]. Some problems are NP-hard even to approximate better than a
constant factor, e.g. (k, `)-center problem [5]. Similarly, Buchin et al. [3] showed, that
assuming the Strong Exponential Time Hypothesis (SETH) the Frechet distance of k curves
of complexity n each cannot be computed significantly faster than O(nk) time.

Our results We prove NP-completeness of the Middle Curve problem presented by Ahn
et al. [1]. Next we define a parameterized version of the problem, and present a simple exact
algorithm as well as an (2 + ε)-approximation algorithm for the parameterized problem.

2 Preliminaries

A polygonal curve P is given by a sequence of vertices 〈p1, . . . , pm〉 with pi in Rd, 1 ≤ i ≤ m,
and for 1 ≤ i < m the pair of vertices (pi, pi+1) is connected by the straight line segment
pipi+1. We call the number of vertices m of the curve its complexity. Let the input consist
of n polygonal curves P = {P1, . . . , Pn}, each of complexity m.

Fréchet Distance We define the discrete Fréchet distance of two curves P ′ = 〈p′1, . . . , p′m′〉
and P ′′ = 〈p′′1 , . . . , p′′m′′〉 as follows: we call a traversal T of P ′ and P ′′ a sequence of pairs of
indices (i, j) of vertices (p′i, p′′j) ∈ P ′ × P ′′ such that
i) the traversal T begins with (1, 1) and ends with (m′,m′′), and
ii) the pair (i, j) of T can be followed only by one of (i+ 1, j), (i, j + 1), or (i+ 1, j + 1).
We note that every traversal is monotone. Denote T the set of all traversals T of P ′ and P ′′.
The discrete Fréchet distance between P ′ and P ′′ is defined as:

ddF (P ′, P ′′) = min
T∈T

max
(i,j)∈T

‖pi − qj‖2.

We call the set of pairs of vertices (p′, p′′) ∈ P ′×P ′′ that realize ddF (P ′, P ′′) a matching, and
say that these pairs of vertices are matched. A related similarity measure is the continuous
Fréchet distance dF , we refer to [2] and the full version for details. Both ddF and dF are
metrics.

Middle Curve Given a set of n polygonal curves P, a value δ ≥ 0, and a distance measure
γ for polygonal curves. We use γ = ddF as in [1], for the continuous Fréchet distance dF the
definitions hold verbatim. A middle curve at distance δ to P is a curve M = 〈m1, . . . ,m`〉
with vertices mi ∈

⋃
Pj∈P

⋃
p∈Pj
{p}, 1 ≤ i ≤ `, s.t. max{ddF (M,Pj) : Pj ∈ P} ≤ δ holds.

If the vertices of a middle curve M respect the order given by the curves of P, then we
call M an ordered middle curve. Formally, for all 1 ≤ j ≤ n, if the vertex mi ∈ M is
matched to pk ∈ Pj realizing ddF (M,Pj), then for the vertices mi′ ∈M , i < i′, it holds that
mi′ ∈

(⋃
Px∈P\Pj

⋃
p∈Px
{p}
)
∪ (
⋃{pk′ : pk′ ∈ Pj , k

′ > k}). If the vertices of M are matched
to themselves in their original curves P ∈ P in the matching realizing ddF (M,P) ≤ δ, we
have a restricted middle curve. Note that an ordered middle curve is a middle curve,
and a restricted middle curve is ordered as well.

We define the decision problem corresponding to finding such a curve. Given a set of
polygonal curves P = {P1, . . . , Pn} and a δ ≥ 0 as parameters. Unordered Middle Curve
problem returns true iff there exists a middle curve M at distance δ to P. The Ordered

M. Buchin, N. Funk, A. Krivošija 59:3

Middle Curve and Restricted Middle Curve returns true iff there exists an ordered
and a restricted middle curve respectively at distance δ to P.

Ahn et al. [1] presented dynamic programming algorithms for each variant of the middle
curve problem. The running times of these algorithms for n ≥ 2 curves of complexity at most
m are O(mn logm) for the unordered case, O(m2n) for the ordered case, and O(mn logn m)
for the restricted middle curve case. All three cases have running time exponential in n,
yielding the question if there is a lower bound for these problems. In the following section
we prove that the MIDDLE CURVE problem is NP-complete.

3 NP-completeness

The technique for the proof that all variants of the Middle curve are NP-hard is based on
the proof by Buchin et al. [5] and Buchin, Driemel, and Struijs [6] for the NP-hardness of
the Minimum enclosing ball and 1-median problems for curves under Fréchet distance. Their
proof is a reduction from the Shortest Common Supersequence (SCS), which is known
to be NP-hard [11]. SCS problem gets as input a set S = {s1, . . . , sn} of n sequences over a
binary alphabet Σ = {A,B} and t ∈ N. SCS returns true iff there exists a sequence s∗ of
length at most t, that is a supersequence of all sequences in S.

Our NP-hardness proof differs from the proof of [5, 6] in three aspects. First, the mapping
of the characters of the sequence is extended by additional points. Second, in order to
validate all three variants of our problem, the conditions of the restricted middle curve have
to be fulfilled, i.e. each vertex has to be matched to itself. Third, our representative curve
is limited to the vertices of the input curves. Due to the hierarchy of the middle curve
problems we show the reductions from SCS to the Restricted Middle Curve, and from
Unordered Middle Curve to SCS. We get the following theorem.

I Theorem 3.1. Every variant of MIDDLE CURVE problem for the discrete and the contin-
uous Fréchet distance is NP-hard.

With this we can prove the NP-completeness of the Middle Curve decision problem.
Given a Middle Curve instance (P, δ) with P containing n curves of complexitym, we guess
non-deterministically a middle curve M of complexity `. We can decide whether the Fréchet
distance between M and a curve P ∈ P is at most δ in O(m`) time using the algorithm by
Alt and Godau [2] for the continuous, and by Eiter and Mannila [9] for the discrete Fréchet
distance. We note that the algorithm by Alt and Godau [2] has to be modified a bit, as it
uses a random access machine instead of a Turing machine, as this allows the computation
of square roots in constant time. But comparing the distances is possible by comparing the
squares of the square roots, thus this results in a non-deterministic O(nm`)-time algorithm
for the Middle Curve problem.

In order to decide the Ordered Middle Curve problem, it is necessary to compare
the middle curve to the input curves, which is possible in O(nm) time. For the restricted
Restricted Middle Curve problem the matching corresponding to the Frechet distance
≤ δ has to be known. This matching is a result of the decision algorithm by Alt and Godau
[2]. Given this matching it can be checked in O(m+ `) time if a vertex is matched to itself.
This yields the following theorem.

I Theorem 3.2. Every variant of the MIDDLE CURVE problem for the discrete or continuous
Fréchet distance is NP-complete.

If the SCS problem is parameterized by the number of input sequences n, it is known to
be W[1]-hard [7]. In our reduction from SCS the number of input curves in the constructed

EuroCG’20

59:4 On the complexity of the middle curve problem

Middle Curve instance is n+2. Thus the shown reduction is also a parameterized reduction
from SCS with the parameter n to the Middle Curve problem parameterized by the number
of input curves, yielding the following theorem.

I Theorem 3.3. The Middle Curve problem for the discrete and continuous Fréchet
distance parameterized by the number of input curves n is W[1]-hard.

4 Approximation algorithm

A different way of parameterizing the Middle Curve problem is to use the complexity of
the middle curve. Given a set of polygonal curves P, a δ ≥ 0, and a parameter ` ∈ N. We
define the parameterized middle curve decision problems, that return true iff a middle
curve of complexity ≤ ` with corresponding conditions exists (for each of the three variants).

It is clear that there exists a simple brute force optimization algorithm for the Parame-
terized Middle Curve instance (P, δ, `), that tests all `-tuples of the vertices from the
curves in P in O

(
(mn)`m` logm`

)
. This holds for all three versions of the problem.

We want to give an approximation algorithm for Parameterized Middle Curve
optimization problem for the discrete Frechet distance. For this we use an approximation
of the (k, `)-center optimization problem on curves. The (k, `)-center problem for curves
was introduced by Driemel et al. [8]. Given a set P = {P1, . . . , Pn} of polygonal curves of
complexity at most m, it looks for a set of curves C = {C1, . . . , Ck}, each of complexity at
most `, that minimizes maxP∈P mink

i=1 γ(Ci, P) for a distance measure γ. The unordered
Parameterized Middle Curve optimization problem is a (1, `)-center problem, where
the curve C1 is limited to vertices from the input curves and the distance measure γ is a
variant of the Fréchet distance.

Given a set P of n curves of complexity m in Rd, let C be the (1, `)-center curve
returned by some α-approximation algorithm for the discrete Fréchet distance. Let δ =
maxP∈P ddF (C,P). We construct d-dimensional balls centered at vertices of the curve C
with radius δ. It holds that ddF (C,P) ≤ δ, ∀P ∈ P , thus in each ball centered at the vertices
of C there has to be a vertex of each curve from P. We choose at random one vertex from
each of the ` balls, and connect them with line segments in the order of the vertices along
C. We denote the curve we got with M , and claim that it is a good approximation of an
unordered parameterized middle curve. See Figure 1 for an illustration of the algorithm.

Let C∗ be an optimal (1, `)-center curve (for the discrete Fréchet distance) for the given
input set P . Let δ∗ = maxP∈P ddF (C∗, P). It holds that δ ≤ αδ∗. For each P ∈ P and each
vertex of P , there is a vertex in M , that is at distance at most 2δ (diameter of the ball both
of them lie in). Thus there is a traversal of P and M with pairwise distance of the vertices
at most 2δ, implying ddF (M,P) ≤ 2δ. We have ddF (M,P) ≤ 2δ ≤ 2αδ∗.

Let the optimal parameterized middle curve with complexity ` be M∗. By definition it
holds that δ∗ = maxP∈P ddF (C∗, P) ≤ maxP∈P ddF (M∗, P). Thus

ddF (M,P) ≤ 2αmax
P∈P

ddF (M∗, P) ,

and M is a 2α-approximation to the optimal parameterized middle curve. This implies:

I Lemma 4.1. Given a set of n curves P each with complexity at most m, a δ > 0 and
an α-approximation algorithm for (k, `)-center with running time T , we can compute a
2α-approximation of the Parameterized Middle Curve optimization problem for discrete
Fréchet distance in O(`mn+ T) time.

M. Buchin, N. Funk, A. Krivošija 59:5

2δ

Figure 1 Illustration of the approximation algorithm. The input curves are dashed and in
shades of green, while the (1, `)-center approximation with distance δ is the full purple curve. The
constructed middle curve is the red fat curve.

Plugging the (1 + ε)-approximation algorithm of Buchin et al. [6] for (k, `)-center for
discrete Fréchet distance into Lemma 4.1, we get

I Theorem 4.2. Given a set of n curves P each of complexity at most m, and a δ > 0, we
can compute a (2 + ε)-approximation of the Parameterized Middle Curve optimization
problem for discrete Fréchet distance in O

(
((c`)` + log(`+ n))`mn

)
time, with c = (4

√
d

ε +1)d.

5 Conclusion

We showed that the Middle Curve problem is NP-complete and gave a (2+ε)-approximation
for the Parameterized Middle Curve problem, parameterized in the complexity of the
middle curve. It would be interesting to gain further insight into the complexity of the
parameterized problem. Fixing the parameter in the brute-force algorithm gives an XP-
algorithm, however it remains open whether Parameterized Middle Curve is in FPT.

References
1 H.-K. Ahn, H. Alt, M. Buchin, E. Oh, L. Scharf, and C. Wenk. A middle curve based

on discrete Fréchet distance. In E. Kranakis, G. Navarro, and E. Chávez, editors, LATIN
2016: Theoretical Informatics - 12th Latin American Symposium, pages 14–26, 2016.

2 H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry & Applications, 05:75–91, 1995.

3 K. Buchin, M. Buchin, M. Konzack, W. Mulzer, and A. Schulz. Fine-grained analysis of
problems on curves. In Proceedings of the 32nd European Workshop on Computational
Geometry, 2016.

4 K. Buchin, M. Buchin, M. van Kreveld, M. Löffler, R. I. Silveira, C. Wenk, and L. Wiratma.
Median trajectories. Algorithmica, 66(3):595–614, 2013.

5 K. Buchin, A. Driemel, J. Gudmundsson, M. Horton, I. Kostitsyna, M. Löffler, and M. Stru-
ijs. Approximating (k, `)-center clustering for curves. In T. M. Chan, editor, Proceedings of
the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 2922–2938,
2019.

EuroCG’20

59:6 On the complexity of the middle curve problem

6 K. Buchin, A. Driemel, and M. Struijs. On the hardness of computing an average curve.
CoRR, abs/1902.08053, 2019.

7 L. Bulteau, F. Hüffner, C. Komusiewicz, and R. Niedermeier. Multivariate algorithmics for
NP-hard string problems. Bulletin of the EATCS, 114, 2014.

8 A. Driemel, A. Krivošija, and C. Sohler. Clustering time series under the Fréchet distance.
In R. Krauthgamer, editor, Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 766–785, 2016.

9 T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical Report CD-TR
94/64, Christian Doppler Laboratory, 1994.

10 S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended. ACM Transac-
tions on Algorithms, 10(1):3:1–3:22, 2014.

11 K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest common su-
persequence and longest common subsequence problems. Journal of Computer and System
Sciences, 67(4):757–771, 2003.

t-spanners for Transmission Graphs Using the
Path-Greedy Algorithm
Stav Ashur1 and Paz Carmi1

1 Ben-Gurion University of the Negev

Abstract
Let D = {d1, . . . , dn} be a set of n disks in the plane, and let C = {c1, . . . , cn} be their centers.

The transmission graph G = (C,E) has the centers of D as its vertex set C, and a directed edge
(ci, cj) if and only if cj lies in the disks associated with ci.

A t-spanner G′ for G is a sparse subgraph of G such that for any two vertices p, q connected
by a directed path in G, there is a directed path from p to q in G′ of length at most t times the
length of the path from p to q in G.

In this paper, we consider the problem of computing a t-spanner with a linear number of edges
and bounded in-degree for transmission graphs. We show that the well-known Path-Greedy
algorithm produces such a t-spanner for transmission graphs, thus, providing a much simpler
method than ones that are currently in use.

In addition, we show that the weight of the resulting t-spanner is O(logn ·wt(MST (D))(1 +
Ψ)), where Ψ is the ratio between the largest and smallest disk radii, and wt(MST (D)) is the
weight of the MST built over the centers of the disks. To the best of our knowledge, this is the
first upper bound on the weight of a t-spanner for transmission graphs.

1 Introduction

Given a directed graph G, let δG(p, q) be the shortest directed path from p to q in G, and
let |δG(p, q)| denote its length. A t-spanner for a weighted directed graph G = (V,E,w) is a
sparse subgraph G′ ⊆ G such that every two vertices p, q ∈ V , connected by a directed path
from p to q of weight |δG(p, q)|, are connected in G′ by a directed path of weight at most
t · |δG(p, q)|, i.e. |δG′(p, q)| ≤ t · |δG(p, q)|. Algorithms for the construction of t-spanners for
geometric graphs have been widely studied, and various results exist for different types of
graphs, see [11] for a comprehensive survey.

Transmission graphs

Transmission graphs are a common model for communication networks composed of devices
with different transmission ranges. The set of vertices D = {d1, ..., dn}, where every node is
tuple di = (ci, ri) ∈ R2 × R, represents devices with wireless capabilities that are given as a
pair consisting of their location in R2 (ci) and their transmission range (ri). These disks in
R2 induce an intuitive directed graph by connecting two vertices p = (ci, ri) and q = (cj , rj)
if q lies within the transmission range of p, or formally, ||cj − ci|| ≤ ri. See Figure 1 for an
example.

Peleg and Roditty [13] presented a method to construct a t-spanner for transmission
graphs in metric spaces with constant doubling dimension using O(n

εd log Ψ) edges where
Ψ = radiusmax

radiusmin
is the ratio between the maximum and minimum radii. They later proved [12]

that in this setting, it is not possible to guarantee a spanner whose size is independent of Ψ. In
later papers, Kaplan et al. [9,10] showed a t-spanner for the Euclidean metric setting with O(n)
edges and a lower construction time of

(
O(n(logn+ log Ψ) or n log5 n instead of n logn

)
,

thus reducing the running time and removing the dependence on the ratio Ψ.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

60:2 t-spanners for Transmission Graphs Using the Path-Greedy Algorithm

Figure 1 An example of a transmission graph.

The Path-Greedy Algorithm

The simple well-known greedy algorithm for constructing t-spanner was given by Althöfer
et al. [1]. They proved that the algorithm can be used to achieve a t-spanner for arbi-
trary weighted graphs. For euclidean graphs, they prove that the algorithm guaranties a
linear number of edges and a bounded degree, both depending on t. A weight bound of
O(wt(MST (P))), where P is a set of points in Rd, d ≤ 3 was given by Das et al. [4], and
generalized for any dimension by Das and Narasimhan [5]. In their paper, Althöfer et al.
also mentioned that the algorithm was independently proposed by Bern.

The algorithm itself is very simple, and it is a natural generalization of Kruskal’s algorithm
for finding an MST of a given graph, see Algorithm 1.

Algorithm 1: Path-Greedy
Input: A graph G = (V,E), 1 < t ∈ R+

Result: A t-spanner G′ = (V,E′) for G
E ← Sort all edges of G in non-decreasing order
E′ = ∅
for (u, v) ∈ E (in sorted order) do

if δG′(u, v) > t · δG(u, v) then
Add (u, v) to E′

return G′

Surprisingly, this simple algorithm gives both theoretical and experimental results that are
better than many more complicated state-of-the art algorithms. Farshi and Gudmundsson [6]
experimented with implementations of several well known algorithms and showed that the
Path-Greedy algorithm out-preformed other algorithms even when the theoretical bounds
were similar. As it can be seen from Tables II-V in [6], the Path-Greedy algorithm achieved
significantly better results than other algorithms including θ-Graph, WSPD based spanners,
sink-spanner, by building smaller and lighter spanners with a lower maxumium degree
regardless of the distribution or number of input points.

From a theoretical point of view, Filtser and Solomon [7] have narrowed the gap between
the experimental results showing the superiority of the Path-Greedy algorithm and the known
upper bounds, by showing that the Path-Greedy is nearly optimal in many cases.

Stav Ashur and Paz Carmi 60:3

The simplicity and efficiency of the Path-Greedy algorithm and the naïve implementation
with runtime O(n3 logn) encouraged researchers to find faster algorithms that mimic or
approximate it. An O(n log2 n) time algorithm approxmating Path-Greedy was given by Das
and Narasimhan [5], and was later improved to an O(n logn) time algorithm by Gudmundsson
et al. [8], while Bar-On and Carmi [2] and Bose et al. [3] showed constructions of the Path-
Greedy itself in O(n2 logn).

Contribution

In this paper, and specifically in section 2, we provide a simple alternative to the fairly
involved algorithms that were previously described, by proving in subsection 2.1 that the
Path-Greedy algorithm is also applicable in the case of transmission graphs and provides
a t-spanner with O(n

(t−1)d−1) edges and in-degree O(1
(t−1)d−1) for every real t > 1. We

then prove in subsection 2.2 that the weight of the resulted spanner can be bounded by a
function of the radius-ratio. For simplicity, we conduct our analysis in R2, however, all of the
results extend naturally to Rd for d > 2 with the appropriate bounds of the d-dimensional
Path-Greedy algorithm.

2 Path-Greedy Analysis

2.1 In-Degree Bound
We begin by showing that the in-degree of the vertices in the t-spanner created by the
Path-Greedy algorithm on transmission graphs is bounded by a constant which is a function
of the stretch-factor t, thus essentially proving the bound on the size of the t-spanner. In
order to do so, we prove that if p is the sink of a directed edge e = (q, p), then the angle
between e and every other edge e′ directed towards p is bigger than a constant depending on
t.

I Lemma 1. Let TG = (D,E) be a transmission graph, with D = {d1, ..., dn} where
di = (ci, ri), ci ∈ R2, is the center and ri ∈ R is the radius of the disk, and (di, dj) ∈ E is a
directed edge in the graph if ||ci, cj || ≤ ri. And let G = (D,E′) be the result of using the
Path-Greedy algorithm on the input graph TG with 1 < t ∈ R. Then G is a t-spanner of TG,
and |E′| = O(n

t−1).

Proof. It is rather simple to discern that G is a t-spanner of TG due to the exhaustive
nature of the algorithm, and so we are left with proving the bound on the size of |E′|.

We provide a bound on the in-degree of any vertex in G by showing that any two edges
with a point p as their destination, form an angle bigger than a certain constant depending
on t. The t-spanning property of the resulted graph follows directly from the algorithm.

Let e = (q, p), f = (r, p) be two edges in the set of spanner edges E′, and let θ =]qpr.
We assume w.l.o.g that |qp| ≥ |rp|, and that qp is horizontal (see Figure 2), and also assume
that θ ≤ π

4 since otherwise we are done. Let r′ be the projection of r on qp. Such a projection
is possible and represents all possible cases due to our assumptions.

We now make the following observations:
|r′p| = |rp| · cos θ
|r′r| = |rp| · sin θ
|qr| < |r′r|+ |qr′| (triangle inequality)

EuroCG’20

60:4 t-spanners for Transmission Graphs Using the Path-Greedy Algorithm

θp q

r

r′

Figure 2 W.l.o.g qp is horizontal and at least as long as rp

This gives us:

|qr| < |r′r|+ |qr′| = |r′r|+ (|qp| − |r′p|) = |rp| · sin θ + |qp| − |rp| · cos θ

= |qp| − |rp|(cos θ − sin θ),

which leads directly to:
(

1
cos θ − sin θ

)
|qr|+ |rp| <

(
1

cos θ − sin θ

)
|qp|.

Since we assume θ ≤ π
4 , we get that rq is not the longest edge in ∆qpr, and since we

assume rp ≤ qp we get that qr ≤ qp as well, meaning that r is inside the disk centered at q.
So, if

(
1

cos θ−sin θ

)
≤ t we get that since the algorithm considered both rp and qr before qp,

the edge qp should not have been added to E′ since at that point δG(q, r) ≤ t · |qr|, which
means that δG(q, r) + |rp| ≤ t · |qp|, a contradiction to the choice of qp and rp.

Thus, we get that the in-degree of any vertex d ∈ D is at most 2π
θ . When t is big enough,

it is clear that this degree is bounded by a constant, as the inequality 1
cos θ−sin θ ≤ t is

true for larger values of θ. But, as t → 1, we get that θ → 0, meaning that the in-degree
might be unbounded. We approximate 1

cos θ−sin θ using the Mclaurin series, and get that
1

cos θ−sin θ ≈ 1 + θ +O(θ2). It is now possible to see that as t→ 1 and after ommiting the
negligible O(θ2), we get that θ ≤ t − 1. So the in-degree of any vertex d ∈ D is O(1

t−1),
meaning that it is bounded by a constant depending on t, as reuiered.

J

2.2 Weight Bound
In this section, we show a bound on the weight of t-spanners resulted by the Path-Greedy on
transmission graphs. The bound is a function of the stretch factor t and a parameter called
the radius ratio, which signifies the ratio between the largest and smallest radii amongst the
given disks. More formally: let G = (D,E′) be the t-spanner computed by the Path-Greedy
algorithm for the set D. Let rmax = max{ri}ni=1, rmin = min{ri}ni=1 and Ψ = rmax

rmin
. Ψ is

called the radius-ratio.
We show an upper bound on the total weight of the edges of G. That is, we show that∑
e∈E′ |e| is

O((1 + 1
w

) · logn · wt(MST (D))),

where wt(MST (D)) is the weight of the MST of the disk centers, and w is a constant that
depends on the stretch factor t and the radius ratio.

A set of directed edges E satisfy the w-gap property if for any two directed edges (p, q)
and (r, s) in E, we have that |pr| > min(|pq|, |rs|). I.e., the sources of any two edges are
relatively far apart with respect to the length of the shorter of the two edges. In this section,

Stav Ashur and Paz Carmi 60:5

we slightly change this definition and consider the distances between sinks instead of the
distances between sources. Notice that the two definitions are equivalent by changing the
direction of the edges.

In Lemma 2, we show that any two edges in E that form an angle of size at most θ,
satisfy the w-gap property. That is, if e, f ∈ E are 2 edges contained in the lines le and lf
respectively, and the angle between the two rays emenating from le ∩ lf and that contain e
and f is at most θ, then e and f satisfy the w-gap property, where w is a constant depending
on θ, which in turn depends on t. Except for the additional constraint on w to be also smaller
than 1

Ψ , this lemma is similar to Lemma 15.1.1. in [11]. It is well known (Theorem 6.1.2 [11])
that for a set E of directed edges that satisfies the w-gap property we have that the total
weight of E is less than (1 + 2

w) · log |P | · wt(MST (P)), where P is the set of the end-points
of E.

I Lemma 2. Let G = (D,E′) be the t-spanner computed by the Path-Greedy algorithm
for the set D. Let θ and w be two real numbers such that 0 < θ < π

4 , 0 < w < cos θ−sinθ
2 ,

w < 1
Ψ , and t ≥ 1

cos θ−sinθ−2w . Let (q, p), (s, r) be two distinct directed edges in E, such
that](qp, sr) ≤ θ. Then, (q, p) and (s, r) satisfy the w-gap property.

Proof. Assume w.l.o.g., that the Path-Greedy algorithm considers the edge (s, r) before it
considers the edge (q, p), thus |sr| ≤ |qp|. Assume towards contradiction that |pr| ≤ w|sr|
(see figure 3 for an illustration). By Lemma 6.4.1 from [11] we get:

1. |qs| < |qp|
2. |rp| < |qp|
3. t|qs|+ |sr|+ t|rp| ≤ t|qp|.

By our choice of w, we have w ≤ 1
Ψ = rmin

rmax
, and by our assumption we get,

|pr| ≤ w|sr|, thus |pr| ≤ rmin

rmax
|sr| ≤ rmin. Therefore, we have that p is in the disk

corresponding to r (since |pr| ≤ rmin). Moreover, we have that s is in the disk corresponding
to q, since |qs| < |qp|.

When the Path-Greedy algorithm considered the edge (q, p), the spanner already contained
a t-spanning path from v to z, if z is in the disk corresponding to v and |vz| < |pq|. Therefore,
when the Path-Greedy algorithm considered the edge (q, p) the spanner already contained a
directed path from q to s of length at most t|qs| and the edge (s, r) and a directed path from
r to p of length at most t|rp|. This contradicts the fact that edge (q, p) has been added to
the spanner, since by the lemma we have that t|qs|+ |sr|+ t|rp| ≤ t|qp|. Thus, we conclude
that |pr| > w|sr|. J

α

pq

r

s

q′

Figure 3 An illustration of the settings described in the proof above.

EuroCG’20

60:6 t-spanners for Transmission Graphs Using the Path-Greedy Algorithm

References
1 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993. URL:
https://doi.org/10.1007/BF02189308, doi:10.1007/BF02189308.

2 Gali Bar-On and Paz Carmi. \delta -greedy t-spanner. In Algorithms and Data Struc-
tures - 15th International Symposium, WADS 2017, St. John’s, NL, Canada, July 31
- August 2, 2017, Proceedings, pages 85–96, 2017. URL: https://doi.org/10.1007/
978-3-319-62127-2_8, doi:10.1007/978-3-319-62127-2_8.

3 Prosenjit Bose, Paz Carmi, Mohammad Farshi, Anil Maheshwari, and Michiel H. M.
Smid. Computing the greedy spanner in near-quadratic time. Algorithmica, 58(3):711–
729, 2010. URL: https://doi.org/10.1007/s00453-009-9293-4, doi:10.1007/
s00453-009-9293-4.

4 Gautam Das, Paul J. Heffernan, and Giri Narasimhan. Optimally sparse spanners in
3-dimensional euclidean space. In Proceedings of the Ninth Annual Symposium on Com-
putational GeometrySan Diego, CA, USA, May 19-21, 1993, pages 53–62, 1993. URL:
https://doi.org/10.1145/160985.160998, doi:10.1145/160985.160998.

5 Gautam Das and Giri Narasimhan. A fast algorithm for constructing sparse euclidean
spanners. Int. J. Comput. Geometry Appl., 7(4):297–315, 1997. URL: https://doi.org/
10.1142/S0218195997000193, doi:10.1142/S0218195997000193.

6 Mohammad Farshi and Joachim Gudmundsson. Experimental study of geometric t-
spanners. ACM Journal of Experimental Algorithmics, 14, 2009. URL: https://doi.org/
10.1145/1498698.1564499, doi:10.1145/1498698.1564499.

7 Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In Proceed-
ings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, pages 9–17, 2016. URL: https://doi.org/10.1145/
2933057.2933114, doi:10.1145/2933057.2933114.

8 Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan. Fast greedy al-
gorithms for constructing sparse geometric spanners. SIAM J. Comput., 31(5):1479–
1500, 2002. URL: https://doi.org/10.1137/S0097539700382947, doi:10.1137/
S0097539700382947.

9 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Spanners and reach-
ability oracles for directed transmission graphs. In 31st International Symposium on
Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands,
pages 156–170, 2015. URL: https://doi.org/10.4230/LIPIcs.SOCG.2015.156, doi:
10.4230/LIPIcs.SOCG.2015.156.

10 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Spanners for directed
transmission graphs. SIAM J. Comput., 47(4):1585–1609, 2018. URL: https://doi.org/
10.1137/16M1059692, doi:10.1137/16M1059692.

11 Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks. Cambridge Uni-
versity Press, 2007.

12 David Peleg and Liam Roditty. Relaxed spanners for directed disk graphs. CoRR,
abs/0912.2815, 2009. URL: http://arxiv.org/abs/0912.2815, arXiv:0912.2815.

13 David Peleg and Liam Roditty. Localized spanner construction for ad hoc networks with
variable transmission range. TOSN, 7(3):25:1–25:14, 2010. URL: https://doi.org/10.
1145/1807048.1807054, doi:10.1145/1807048.1807054.

Diverse Voronoi Partitions of 1D Colored Points∗

Marc van Kreveld1, Bettina Speckmann2, and Jérôme Urhausen1

1 Dep. of Information and Computing Sciences, Utrecht University
{m.j.vankreveld|j.e.urhausen}@uu.nl

2 Dep. of Mathematics and Computer Science, TU Eindhoven
b.speckmann@tue.nl

Abstract
We introduce the diverse Voronoi partition problem: for a given set of colored points and a
number k, determine a set of k point sites so that the Voronoi cells of these sites contain as many
colors as possible. We show that the problem is already NP-complete for points colored in four
colors on a line, and give polynomial-time algorithms for a few special cases.

1 Introduction

Inspired by recent research on algorithmic fairness and similar concepts [1, 8], we study a
problem involving diversity and representation. Imagine that a set of objects is represented
by points in a space, and different classes are represented by colors. How can we represent
all of the colored points by a smaller set of points, each of which represents many colors?
We call the representing points sites. To formulate such problems, we need to specify when
a site represents a colored point. The most obvious choice is by distance: a colored point
will always be represented by the nearest site. A site is diverse if it represents many colors,
in particular, the diversity score of a site is the number of colors it represents. There are
different options to combine the diversity scores of sites into a global diversity score. We
choose the sum measure. This leads to the following problem:

Diverse Voronoi Partition (DVP)
Input: Set P containing n points of h different colors and a number k ∈ N.
Question: Determine a point set S = {s1, . . . , sk} that maximizes

∑k
i=1 ci, where, in

the Voronoi Diagram of S, ci is the number of colors present in the cell of si.
For i ∈ {1, . . . , h}, we define Pi ⊆ P as the set of points of color i. One way to view the

goal is to find a set of sites S, which represents each set Pi. The number of colors ci in the
cell of si is called the score of that cell, and

∑
ci is the score of the Voronoi partition. The

sites in Figure 1 for example have a score of 9.
A lot of related research exists in computational geometry. Firstly, various problems on

colored points have been studied, see for example Kaneko and Kano [9]. In some cases the
problems concern partitioning. For example, Dumitrescu and Pach [6] study partitioning
multi-colored point sets into uni-colored subsets by convex cells, Majumder et al. [10] con-
sider the same but partition with lines, and Bespamyatnikh et al. [4] consider partitioning a
red-blue point set into convex cells so that each cell has the same number of red points and
the same number of blue points (extensions were given in [2, 3, 5]).

Secondly, our problem is a type of clustering problem reminiscent of k-means clustering,
where a representation of multiple points by a single point is also used, following a nearest

∗ Research on the topic of this paper was initiated at the 4th Workshop on Applied Geometric Algorithms
(AGA 2018) in Langbroek, The Netherlands, supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 639.023.208. The first and third authors are supported by the
NWO TOP grant no. 612.001.651.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

61:2 Diverse Voronoi Partitions of 1D Colored Points

Figure 1 The sites (the white disks) induce a Voronoi diagram that determines which points a
site represents. The bottom-left cell has a score of 3; the other three cells have a score of 2 each.

neighbor rule. While k-means clustering aims to minimize the sum of squared distances to
the nearest representative, our version has colored points and aims to maximize the number
of colors close to each representative.

Thirdly, our problem bears some resemblance to multi-criteria facility location [7] where
multiple facilities are placed.

We restrict ourselves to points and sites on a line. We prove that even then, and with
only four colors, the problem is NP-hard. In contrast, dropping the condition that the k
cells be Voronoi intervals of points on the real line makes the problem solvable in polynomial
time by dynamic programming, for any number of colors. We consider special cases where
optimally diverse Voronoi partitions can be found in polynomial time. One such case is
where a discrete set of m candidate locations is given on which the k sites of S should lie.
A second case is where we have exactly n/h points per color and we want to know if an
optimal solution with k = n/h sites in S exists of score n; we call this a perfect partition.

2 Preliminaries

In this section we explore the difference between a Voronoi partition and any partition of a
real line into intervals.

Assume a set P of n colored points is given. Assume that we roughly know where the
interval ends should be to maximize the score, when placing k points. These interval ends,
or boundaries, can be specified by intervals themselves, called b-intervals.

s1 s2 s4 s5s3

Figure 2 15 colored points that admit a perfect partition but not a perfect Voronoi partition.

Figure 2 shows a situation with 15 colored points, five in each of three colors. It is easy to
see that a partition exists into five intervals such that the score is 15, the maximum possible.
However, to find a Voronoi partition, we need to place five sites such that the boundaries are
at the desired places, which are the b-intervals. A careful inspection shows that we cannot
place five sites to realize a score of 15. The middle site must be sufficiently far to the left to
ensure that the second boundary is correctly placed, and also sufficiently far to the right to

Marc van Kreveld, Bettina Speckmann, and Jérôme Urhausen 61:3

ensure that the third boundary is correctly placed. We cannot move the sites s1, s2, s4, s5
enough to realize this.

When we need to place sites s1, . . . , sk so that the Voronoi cell boundaries lie exactly in
given b-intervals, we have a set of constraints to satisfy. Let bi be the midpoint of si and
si+1, for 1 ≤ i < k. Then s1 ≤ b1 ≤ s2 ≤ · · · bi−k ≤ sk, and bi = (si + si+1)/2.

To ensure that the Voronoi cell boundaries bi lie inside their respective b-intervals, we
use another 2k − 2 linear inequalities. Altogether, we have set up a system of 5k − 5 linear
inequalities whose solution—if it exists—gives a Voronoi partition.

A specific case where this approach works is the following. Assume we have n points,
equally many in each of the h colors. The problem is to place k = n/h sites to answer the
question whether the total score of n can be realized. We solve this problem as follows. We
first check if a partition exists, which is only the case when the points come in n/h groups
of points with h different colors. It is clear where the boundaries should be, and we can set
up the system of linear inequalities in O(n) time. Then we solve the linear program in time
polynomial in k = n/h. If it is infeasible, there is no Voronoi partition that is perfect.

3 Algorithm for Discrete Site Locations

Here we assume that sites can only be placed at a finite set M of prespecified positions. We
show that with dynamic programming, we can develop a polynomial-time algorithm.

The dynamic program works its way from left to right, using the fact that in a placement
of the first i sites, we use an optimal placement of the first i− 1 sites. However, the Voronoi
boundaries between sites are determined by the last two sites, so our recurrence for an
optimal solution has parameters for the last two sites. Furthermore, since we do not know
the score for the i-th site, since its right boundary has not been fixed, we define maximum
total score for the first i− 1 sites for locations of the (i− 1)-th and i-th sites.

Consider the function f : {2, . . . , k} ×M ×M → N. For i ∈ {2, . . . , k} and u, v ∈ M ,
with u < v, let

f(i, u, v) = max
s1,...,si−2∈M

(
i−1∑

j=1
cj | s1 < · · · < si, si−1 = u, si = v)

be the best possible score of the first i− 1 cells while fixing si−1 = u and si = v.
We further define the function g : (M ∪{−∞})×M × (M ∪{+∞})→ N, where g(a, b, c)

is the number of colors present in the cell corresponding to the site b, where a and c are its
left and right neighboring sites.

For a, b ∈ M , we have f(2, a, b) = g(−∞, a, b). Additionally we have the recursive
definition:

∀i ∈ {3, . . . , k},∀b, c ∈M , with b < c, f(i, b, c) = max
a∈M,a<b

(f(i− 1, a, b) + g(a, b, c)) . (1)

In order to find the best sites overall we determine maxa,b∈M,a<b(f(k, a, b)+g(a, b,+∞)),
which includes the number of colors in the k-th cell in the second term. The dynamic program
uses a table of size O(km2), where m = |M |, and filling an entry requires optimizing over m
choices. Since the function g can be evaluated trivially in O(n) time, we immediately get an
O(km3n) time algorithm. The positions of the sites can then be obtained by backtracking
as usual for dynamic programming algorithms.

We can improve the running time by preprocessing, to be able to evaluate g faster. Note
that there are only O(m3) different values for g, whereas the function is evaluated O(km3)

EuroCG’20

61:4 Diverse Voronoi Partitions of 1D Colored Points

times. We will show how to precompute all values of g, so that a lookup during the main
algorithm evaluates g in only O(1) time:

1. For each p ∈ P , make a sorted list of the leftmost points right of it, one per color.
2. For each b ∈ M , make a sorted list of the boundaries (b + c)/2 with c ∈ M, c > b in

sorted order. This list has at most m− 1 entries (the options for c).
3. For each a, b ∈M, a < b, store the rightmost point p(a, b) ∈ P left of (a+ b)/2.

This information can be computed easily in O(m2+nh) time. Then, for each a, b ∈M , we
access p(a, b) to get access to the sorted list of points with unique colors, stored with p(a, b).
We simultaneously scan the sorted list of colored points and the sorted list of boundaries
(b+ c)/2 to fill in all values g(a, b, ·) in O(m+ h) time.

The running time of the whole algorithm becomes O(km3 +m2h+ nh).

4 Deciding DVP is NP-complete

We prove that the decision version of DVP is NP-complete. The decision version, referred
to as D-DVP, receives an extra parameter z and asks if a diversity score of at least z can be
realized with a Voronoi partition using k points.

We start by proving containment in NP. For a given instance of D-DVP, there are only
exponentially many partitions into subsets, each defined by k − 1 b-intervals, and we can
test them all non-deterministically in polynomial time by linear programming to decide if
they allow Voronoi partitions of k sites (see Section 2).

In order to prove hardness we reduce from Subset Sum.
Subset Sum
Input: A set A = {a1, . . . , ar} of integers and an integer b.
Question: Is there a subset A′ ⊆ A such that

∑
aj∈A′ aj = b?

Before starting with the reduction, we define a few terms. A point p ∈ P is represented
by a site s ∈ S if s is the site closest to p. We say that for each color i ∈ {1, . . . , h}, a point
p ∈ Pi is scored if each other point p′ of the same color that is represented by the same
site is to the right of p. That is, for each site only the leftmost point of each color that it
represents is scored. It follows that finding the optimal S is equal to maximizing the number
of scored points. A point is unscored if it is not scored. Our reduction uses only four colors,
so we will define point sets P1, P2, P3, P4 from an instance of Subset Sum.

Let 0 < δ � 1 be a small real and let 0 < ε � δ be an even smaller real. We can take
δ = 1/n2 and ε = 1/n4. Later we can multiply each coordinate by n4 and thus obtain a set
of integer positions with polynomial size. Let a =

∑r
i=1 ai be the sum of all input values.

We describe P from left to right. First, there is a starting gadget H of six points. Then
we have a gadget Dj for each aj , consisting of eight points (the gadgets can be in any order).
Next, we have a subset sum gadget E of two points to represent b, and finally we have an
ending gadget G of six points. P = H ∪D1 ∪ · · · ∪Dr ∪E ∪G. Figure 3 shows an example
for A = {1, 2}, so P = H ∪D1 ∪D2 ∪ E ∪G.

To start the construction we define a set H of six points in two colors. We set H1 =
{−2δ,−δ, 0} ⊂ P1 and H2 = {−2δ − ε,−δ − ε,−ε} ⊂ P2. The set H thus forms three
groups of two points of different colors. We can only score all points in H with three sites
s−2, s−1, s0 if we have −δ < s0 < 2δ − 2ε. So, in order to score all six points with three
sites, the rightmost of those sites, s0, needs to be close to zero.

Marc van Kreveld, Bettina Speckmann, and Jérôme Urhausen 61:5

δ δ

H

2δ 2δ 2δ 2δ 2δ δδ

GD1 D2 E

2δ 2δ

a1/2

Figure 3 The reduction from Subset Sum to D-DVP illustrated. We have a1 = 1, a2 = 2 and
b = 2. The points of P1, P2, P3, and P4 are blue, green, red, and yellow, respectively. Any two
touching points are considered to be at ε distance. Note that δ is not drawn to scale, for clarity.

For each aj ∈ A we create a set Dj of eight points that will somehow encode whether aj is
chosen in the subset A′ or not. Let Dj = Dj

1∪Dj
2∪Dj

3∪Dj
4, with D

j
i ⊂ Pi (the points in Dj

i

have color i). Let Dj
1 = {(4j−1)a−δ, (4j−1)a+δ}, Dj

2 = {(4j−1)a−δ+ε, (4j−1)a+δ−ε},
Dj

3 = {(4j − 3)a− δ, (4j − 3)a+ δ} and Dj
4 = {(4j − 3)a+ aj/2− δ, (4j − 3)a+ aj/2 + δ}.

The distances between Dj
3 and Dj

4 are roughly aj/2.
We define a set E ⊂ P that encodes that we want the subset sum to be b. We define

E ⊂ P3 with E = {4ra+ (a− b)/2− δ, 4ra+ (a− b)/2 + δ}.
Finally we define a set G of six points to end the construction. It is similar to H. It can

only be scored fully by three sites if the leftmost of the sites is close to (4r + 1)a. We set
G1 = {(4r + 1)a, (4r + 1)a + δ, (4r + 1)a + 2δ} ⊂ P1 and G2 = {(4r + 1)a + ε, (4r + 1)a +
δ + ε, (4r + 1)a+ 2δ + ε} ⊂ P2.

The instance of D-DVP has n = 8r + 14 points and asks to place k = 2r + 6 sites to
realize a score of z = 7r+14, which can be achieved if and only if the corresponding Subset
Sum instance has a solution. Intuitively, we want to use the sites to create boundaries
that separate the first three pairs of points, the last three pairs of points, either Dj

3 or Dj
4,

and also E. Separating Dj
3 corresponds to not choosing aj in a subset and separating Dj

4
corresponds to choosing aj . If we choose the correct aj , the boundary between the last site
chosen for Dr and the first site chosen for G will magically separate the points in E, due to
its careful placement. Then, only one point of each Dj is not scored. An example can be
seen in Figure 4.

The proof of correctness essentially shows that there are no other options: the Subset
Sum instance has a solution if and only if the DVP instance can score 7r + 14. For details
we refer to the full version.

References
1 M. Abbasi, S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian. Fairness in repre-

sentation: quantifying stereotyping as a representational harm. In Proceedings of the 2019
SIAM International Conference on Data Mining, pages 801–809. SIAM, 2019.

2 S. Bereg, P. Bose, and D. Kirkpatrick. Equitable subdivisions within polygonal regions.
Computational Geometry, 34(1):20–27, 2006.

10 205 150 25

Figure 4 An induced D-DVP instance is illustrated. Here we have a1 = 1, a2 = 2 and b = 2.
The sites and boundaries for a score of 7r + 14 are indicated.

EuroCG’20

61:6 Diverse Voronoi Partitions of 1D Colored Points

3 S. Bereg, F. Hurtado, M. Kano, M. Korman, D. Lara, C. Seara, R. I. Silveira, J. Urrutia,
and K. Verbeek. Balanced partitions of 3-colored geometric sets in the plane. Discrete
Applied Mathematics, 181:21–32, 2015.

4 S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink. Generalizing ham sandwich cuts to
equitable subdivisions. Discrete & Computational Geometry, 24(4):605–622, 2000.

5 F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii. Fair clustering through fairlets.
In Advances in Neural Information Processing Systems, pages 5029–5037, 2017.

6 A. Dumitrescu and J. Pach. Partitioning colored point sets into monochromatic parts.
International Journal of Computational Geometry & Applications, 12(05):401–412, 2002.

7 R. Z. Farahani, M. SteadieSeifi, and N. Asgari. Multiple criteria facility location problems:
A survey. Applied Mathematical Modelling, 34(7):1689–1709, 2010.

8 V. Gupta, P. Nokhiz, C. D. Roy, and S. Venkatasubramanian. Equalizing recourse across
groups. arXiv preprint arXiv:1909.03166, 2019.

9 A. Kaneko and M. Kano. Discrete geometry on red and blue points in the plane, a survey. In
Discrete and Computational Geometry, The Goodman-Pollack Festschrift, pages 551–570.
Springer, 2003.

10 S. Majumder, S. C. Nandy, and B. B. Bhattacharya. Separating multi-color points on a
plane with fewest axis-parallel lines. Fundamenta Informaticae, 99(3):315–324, 2010.

Smoothed Analysis of Resource Augmentation

Jeff Erickson1, Ivor van der Hoog2, and Tillmann Miltzow2

1 University of Illinois
jeffe@illinois.edu

2 Utrecht University
i.d.vanderhoog@uu.nl
t.mitzow@gmail.com

Abstract
The predominant approach to find decent solutions for hard optimization problems is to compute an
approximation. An alternative approach is resource augmentation (a form of problem relaxation),
where you consider an optimal solution subject to slightly weaker problem constraints. This alterna-
tive approach has considerably less traction in theoretical computer science than approximation algo-
rithms have. We study optimization problems with natural resource augmentations and show that the
bit-precision of their optimal solution can be bounded using smoothed analysis of their augmentation.
Our results imply that for realistic problem constraints, the optimal solution to a augmented version
of a problem yields an optimal solution for the original problem. We hope our results help solidify
the traction that resource augmentation has in theoretical computer science.

1 Introduction

This paper is an extended abstract from [14]. The RAM is a mathematical model of a computer
which emulates how a computer can manipulate data. Within computational geometry, algorithms
are often analyzed within the real RAM [15,18,23] where values with infinite precision can be
stored and compared in constant space and time. By allowing these infinite precision computations,
it becomes possible to verify geometric primitives in constant time, which simplifies the analysis
of geometric algorithms. Mairson and Stolfi [19] point out that “without this assumption it is
virtually impossible to prove the correctness of any geometric algorithms.” The downside of the
real RAM is that it neglects the bit-precision of the underlying algorithms. If an algorithm can be
correctly executed with a limited bit-precision then the algorithm is called robust. Many classical
examples in computational geometry are inherently nonrobust [23].

Often inputs which require excessive bit-precision are contrived and do not resemble realistic
inputs. A natural way to theoretically model this is smoothed analysis, which interpolates smoothly
between worst case analysis and average case analysis [28]. Practical inputs are constructed
inherently with small amount of noise and random perturbation. This perturbation helps to show
performance guarantees in terms of the input size and and the magnitude of the perturbation. By
now smoothed analysis is well-established, for instance Spielman and Teng received the Gödel

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5
...

CPU

instructions

real registers

word registers

Figure 1. The dominant model in computational geometry is the real RAM. It consists of a central
processing unit, which can operate on real and word registers in constant time, following a set of instructions.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the community and should
be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear eventually in more final form at a
conference with formal proceedings and/or in a journal.

62:2 Smoothed Analysis of Resource Augmentation

inputs

runtime / bit-precision

δ

Figure 2. The x-axis symbolizes all inputs. The red line indicates the worse case running time or
required bit-precision. The blue line indicates the average however, typical instances are not always average.
Smoothed analysis considers the average of inputs near some worst instance (shown in green).

Prize for it. However, within computational geometry its application is limited to smoothed
analysis of the bit-precision of the art gallery problem [10] and order type realisability [29], and
smoothed analysis of the runtime of k-means clustering [3, 20], Euclidean TSP [12, 21], and
partitioning algorithms for Euclidean functionals [5].

In this paper, we introduce a framework applicable to a wide class of real RAM optimization
problems and show that under smoothed analysis of their resource augmentation, the optimal
solution to these problems can be computed with logarithmic bit-precision. This is an extended
abstract of Section 3 of [14].

Smoothed analysis. In smoothed analysis, the performance of an algorithm is studied for worst
case input which is randomly perturbed by a magnitude of δ. Intuitively, smoothed analysis
interpolates between average case and worst case analysis (Figure 2). The smaller δ, the closer
we are to true worst case input. Correspondingly larger δ is closer to the average case analysis.

Formally, for smoothed analysis we fix some δ ∈ [0,1], which describes the magnitude of
perturbation. In this paper, we consider an array I = (a, b) ∈ Rn ×Zm of n real numbers and m
integers as the input of the optimization problem (for an extensive overview of the real RAM
model that takes both real and integer input refer to [14], A.1). We assume that each real number
is perturbed independently and that the integers stay as they are. We denote by (Ωδ, µδ) the
probability space where each x ∈ Ωδ defines for each instance I a new ‘perturbed’ instance
Ix = (a+ x , b). We denote by C (Ix) the cost of instance Ix (note that traditionally, smoothed
analysis is applied to algorithms where the cost of an instance is the runtime required by that
algorithm on the instance. In this paper, the cost is the required number of bits to represent the
optimal solution of the instance). The smoothed expected cost of instance I equals:

Cδ(I) = Ex∈Ωδ
C (Ix) =

∫

Ωδ

C (Ix)µδ(x) dx .

If we denote by Γn the set of all instances of size n, then the smoothed complexity equals:

Csmooth(n,δ) =max
I∈Γn
E

x∈Ωδ
[C (Ix)] .

Intuitively smoothed analysis shows that not only do the majority of instances behave nicely,
but actually in every neighborhood (bounded by the maximal perturbation δ) the majority of
instances behave nicely. The smoothed complexity is measured in terms of n and δ. If the expected
complexity is small in terms of 1/δ then we have a theoretical verification of the hypothesis
that worst case examples are well-spread. Following [8,28] we perceive an algorithm to have
polynomial cost in practice, if the expected cost of the algorithm is polynomial in n and in 1/δ.

Erickson, Hoog, Miltzow 62:3

?

Figure 3. Left: given a set of segments S, they define a segment intersection graph GS .
Right: given a graph G, is there a set of segments S′ such that GS′ = G?

Spielman and Teng explain smoothed analysis by applying it to the simplex algorithm, which
was known for a particularly good performance in practice that was seemingly impossible to verify
theoretically [16]. Since the introduction of smoothed analysis, it has been applied to numerous
problems. Most relevant for us is the recent smoothed analysis of the art gallery problem [10]
and of order types [29]. Both papers deal with the required bit-precision needed in computations
under slight perturbations. In the worst case, both problems need an exponential bit-precision,
as both problems are complete for the existential theory of the reals.

The Existential Theory of the Reals. The required precision of an algorithm plays an important
role if we want to show that a problem lies in the class NP. It is often easy to describe a potential
witness to an NP-hard problem, but the bit-precision of the witness is unknown. A concrete
example is the recognition of segment intersection graphs (Figure 3): given a graph, can we
represent it as the intersection graph of segments? The canonical witness is the set of segments,
but the required bit-precision is unclear. Matoušek [22] comments on this as follows:

Serious people seriously conjectured that the number of digits can be polynomially bounded—but it cannot.

Indeed, there are examples which require an exponential number of bits in any numerical
representation. This exponential bit-precision phenomenon occurs not only for segment intersection
graphs, but also for many other natural algorithmic problems [1,2,4,6,7,9,11,13,24–27]. It turns
out that all of those algorithmic problems do not accidentally require exponential bit-precision,
but are closely linked, as they are all complete for a certain complexity class called ∃R. Thus
either all of those problems belong to NP, or none of them do. Using our results on smoothed
analysis, we show that for many ∃R-hard optimization problems the exponential bit-precision
phenomenon only occurs for near-degenerate input.

The complexity class ∃R can be defined as the set of decision problems that are polynomial-
time equivalent to deciding if a formula of the Existential Theory of the Reals (ETR) is true or not.
An ETR formula has the form:

Ψ = ∃x1, . . . , xn Φ(x1, . . . , xn),

where Φ is a well-formed sentence over the alphabet

Σ= {0,1, x1, . . . ,+, ·,=,≤,<,∧,∨,¬}.

More specifically, Φ is quantifier-free and x1, . . . , xn are all variables of Φ. We say Ψ is true if and
only if there are real numbers x1, . . . , xn ∈ R such that Φ(x1, . . . , xn) is true.

2 Results of Smoothed Analysis of Resource Augmentation

Under the resource augmentation of an algorithmic problem, you try to find an optimal solution
to a problem formulation with weaker problem constraints. Resource augmentation does not
compromise on optimality: the aim is to find an optimal solution to the newly augmented problem.

EuroCG’20

62:4 Smoothed Analysis of Resource Augmentation

Figure 4.We augment the container from left to right. This extra space can lead to a better solution. If
the optimal solution value does not change, the extra space allows for a solution with low bit-precision.

Using smoothed analysis, we argue that studying slight augmentations of algorithmic problems is
justifiable for practical applications of the algorithm as we show that the problem conditions that
make the problem hard are brittle.

An example of resource augmentation exists for the geometric packing problem (Figure 4)
where an algorithm needs to pack a set of convex objects into a unit-size square container.
To pack the optimal number of objects into this container is ∃R-complete [2] and therefore a
word RAM algorithm cannot hope to correctly find an optimal solution with limited time or
memory. A resource augmentation algorithm looks to find a way to pack as many objects into a
container C ′ which is larger by a factor (1+α) (α being the augmentation parameter). We apply
smoothed analysis to resource augmentation problems, where we study these problems under
a slight perturbation of such an augmentation parameter. We prove in [14] that the resource
augmentation problems that we study have an optimal solution with expected logarithmic bit-
precision.

É Theorem 2.1. Let P be a resource augmentation problem that is monotonous, moderate and
smoothable. Under perturbations of the augmentation of magnitude δ, the problem P has an optimal
solution with an expected bit-precision of O(log(n/δ)).

In the proof of this theorem (see full version) we argue about the solution space of the problem P
and we define three natural properties of this solution space. The monotonous property demands
that as we augment P more and more, the solution space only gains more candidate solutions. The
moderate property demands that as we continuously augment the problem, we do not encounter
more than a polynomial number of new optimums. In many hard optimization problems, the
optimum is a value between 1 and n and the moderate property is then immediately implied.
The smoothable property is the least intuitive of the three, it demands if you augment a problem P
by ε, then it contains a solution which is optimal for the original problem and has a bit-precision
of O (log(n/ε)). It might appear as though the third property immediately implies the theorem,
yet recall that we look for an optimal solution for the newly augmented problem. The other two
properties, together with common bounds in probability theory, bound the expected bit-precision
of an optimal solution to the perturbed problem.

Implications of Theorem 2.1. To illustrate the applicability of our findings, we give 3 corollaries:
The art gallery problem has been shown to be ∃R-complete [1] which (assuming ∃R 6= N P)

prohibits a compact representation for all art gallery solutions. Yet our corollary states that under
realistic conditions, the solution to the art gallery problem can be represented using logarithmic
bit-precision. This result was already shown in [10], however with Theorem 2.1 this result can
be re-proven by showing that the art gallery problem, with a resource augmentation of edge
inflation is in fact monotonous, moderate and smoothable.

Recently Kostitsyna et al. showed that an optimal solution to the minimum-link path in a

Erickson, Hoog, Miltzow 62:5

1 + α 1 + α+ ε 1 + α+ ε 1 + α+ ε

Figure 5.We increase a container of size (1+α) to size (1+α+ ε). This extra space allows us to take
the original solution, and space each object by a distance of O(ε/n), which in turn allows us to find a more
favourable rotation and / or translation for the object.

simple polygon has linear bit-precision in the worst case [17]. Just as the art gallery problem, this
problem can be augmented by inflating the edges of the simple polygon. With a similar analysis,
it then swiftly follows that the problem of computing the minimum-link path in a simple polygon
is monotonous, moderate and smoothable.

The proof for ∃R-completeness of the packing problems is in preparation [2] and just as for
the art gallery problem this implies that the optimal solution to a packing problem cannot always
be compactly represented. The packing problem has a natural resource augmentation, where one
simply increases the size of the container. In the full version we show that the packing problem
with container augmentation is monotonous, moderate and smoothable in the following way: if
a container of size 1 can fit a collection I of items then a container of size (1+α) can also fit I
and possibly more, thereby the monotonous property is trivial. If the input is a set of n elements
that need to be packed in a container, then an optimal solution can pack at most k elements with
k ∈ [n]. Therefore as we increase the container size continuously, there can be at most O(n) new
optimal solutions which implies the moderate property. The monotonous property is the hardest
to show (Figure 5). In a solution to the packing problem, every object is rotated and translated
and especially describing the rotation of an object is hard if you have to use limited bit-precision.
In the full version we consider an optimal solution to a given container size, and show that if that
container size increases by a value ε, then all the convex objects in the container can freely move
and rotate a distance of O(ε/n). This in turn, allows us to describe the translation and rotation of
each object with a bit-precision of O (log(n/ε)). Note that computing an embedding of an object
with such a translation and rotation, might require more bit-precision.

É Corollary 2.2. Under perturbations of the augmentation of magnitude δ, the following problems
have an optimal solution with an expected bit-precision of O(log(n/δ)).

the art gallery problem under perturbation of edge inflation [10].
packing polygonal objects into a square container under perturbation of the container width.
computing the minimum-link path in a simple polygon under perturbation of edge inflation.

Limitations. We hope that Corollary 2.2 provides a convincing argument that our framework
applies to a wide set of algorithmic problems that have a natural resource augmentation. Yet,
our result is not wihout limiations: given an algorithmic problem, it is not clear a priori whether
there is a way to augment resources such that it is both mathematically sound, satisfying, as
well as practically plausible. For example, if we search for the smallest square container that fits
a given set of items, the number of changes in the optimum is unbounded thus the moderate
property does not hold.

EuroCG’20

62:6 Smoothed Analysis of Resource Augmentation

Acknowledgments. The third author acknowledges the generous support of the NWO Veni grant
EAGER.The second author acknowledges the support of the NWO grant 614.001.504.

References

1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is ∃R-
complete. In STOC, pages 65–73, 2018.

2 Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. A framework for ∃R-completeness
of two-dimensional packing problems. in Preparation, 2020.

3 David Arthur, Bodo Manthey, and Heiko Röglin. k-means has polynomial smoothed complexity.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 405–414. IEEE,
2009.

4 Daniel Bienstock. Some provably hard crossing number problems. Discrete & Computational
Geometry, 6(3):443–459, 1991.

5 Markus Bläser, Bodo Manthey, and Raghavendra Rao. Smoothed analysis of partitioning algo-
rithms for euclidean functionals. Algorithmica, 66(2):397–418, 2013.

6 Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhuber. In-
tersection graphs of rays and grounded segments. In International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 153–166. Springer, 2017.

7 Jean Cardinal and Udo Hoffmann. Recognition and complexity of point visibility graphs. Dis-
crete & Computational Geometry, 57(1):164–178, 2017.

8 Daniel Dadush and Sophie Huiberts. A friendly smoothed analysis of the simplex method. In
STOC, pages 390–403. ACM, 2018.

9 Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rza̧żewski. ∀∃R-completeness
and area-universality. ArXiv 1712.05142, 2017.

10 Michael Gene Dobbins, Andreas Holmsen, and Tillmann Miltzow. Smoothed analysis of the art
gallery problem. CoRR, abs/1811.01177, 2018. arXiv:1811.01177.

11 Michael Gene Dobbins, Andreas Holmsen, and Tillmann Miltzow. A universality theorem for
nested polytopes. arXiv, 1908.02213, 2019.

12 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and probabilistic analysis of
the 2-opt algorithm for the tsp. In SODA, pages 1295–1304, 2007.

13 Jeff Erickson. Optimal curve straightening is ∃R-complete. arXiv:1908.09400, 2019.
14 Jeff Erickson, Ivor van der Hoog, and Tillmann Miltzow. A framework for robust realistic geo-

metric computations. CoRR, abs/1912.02278, 2019. arXiv:1912.02278.
15 Steven Fortune and Christopher Van Wyk. Efficient exact arithmetic for computational geometry.

In Proceedings of the ninth annual symposium on Computational geometry, pages 163–172. ACM,
1993.

16 Victor Klee and George Minty. How good is the simplex algorithm. Technical report, Washington
Univ. Seattle Dept. of Mathematics, 1970.

17 Irina Kostitsyna, Maarten Löffler, Valentin Polishchuk, and Frank Staals. On the complexity of
minimum-link path problems. Journal of Computational Geometry, 8(2):80–108, 2017.

18 Chen Li, Sylvain Pion, and Chee-Keng Yap. Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programming, 64(1):85–111, 2005.

19 Harry Mairson and Jorge Stolfi. Reporting and counting intersections between two sets of line
segments. In Theoretical Foundations of Computer Graphics and CAD, pages 307–325. Springer,
1988.

20 Bodo Manthey and Heiko Röglin. Improved smoothed analysis of the k-means method. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 461–
470. Society for Industrial and Applied Mathematics, 2009.

Erickson, Hoog, Miltzow 62:7

21 Bodo Manthey and Rianne Veenstra. Smoothed analysis of the 2-opt heuristic for the tsp: Poly-
nomial bounds for gaussian noise. In International Symposium on Algorithms and Computation,
pages 579–589. Springer, 2013.

22 Jǐrí Matoušek. Intersection graphs of segments and ∃R. 2014. ArXiv 1406.2636.
23 David Salesin, Jorge Stolfi, and Leonidas Guibas. Epsilon geometry: building robust algorithms

from imprecise computations. In Proceedings of the fifth annual symposium on Computational
geometry, pages 208–217. ACM, 1989.

24 Marcus Schaefer. Complexity of some geometric and topological problems. In Proceedings of
the 17th International Symposium on Graph Drawing (GD 2009), Lecture Notes in Computer
Science (LNCS), pages 334–344. Springer, 2009.

25 Marcus Schaefer. Realizability of graphs and linkages. In János Pach, editor, Thirty Essays on
Geometric Graph Theory, chapter 23, pages 461–482. Springer-Verlag New York, 2013.

26 Marcus Schaefer and Daniel Štefankovič. Fixed points, Nash equilibria, and the existential
theory of the reals. Theory of Computing Systems, 60(2):172–193, 2017.

27 Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. 2016, jour-
nal=ArXiv 1606.09068.

28 Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

29 Ivor van der Hoog, Tillmann Miltzow, and Martijn van Schaik. Smoothed analysis of order
types. arXiv:1907.04645, 2019.

EuroCG’20

The Multivariate Schwartz-Zippel Lemma
M. Levent Doğan1, Alperen A. Ergür2, Jake D. Mundo3, and Elias
Tsigaridas4

1 Technische Universität Berlin, Institut für Mathematik, Strasse des 17. Juni
136, 10623, Berlin, Germany
dogan@math.tu-berlin.de

2 Carnegie Mellon University, School of Computer Science, 5000 Forbes Avenue,
Pittsburgh, PA, 15213, USA
aergur@cs.cmu.edu

3 Inria Paris and Institut de Mathématiques de Jussieu-Paris Rive Gauche,
Sorbonne Université and Paris Université, France
elias.tsigaridas@inria.fr

4 Swarthmore College, Department of Mathematics & Statistics, 500 College
Avenue, Swarthmore, PA, 19081, USA
jakedmundo@gmail.com

Abstract
Motivated by applications in combinatorial geometry, we consider the following question: Let λ =
(λ1, . . . , λm) be anm-partition of n, let Si ⊆ Cλi be finite sets, and let S := S1×S2×· · ·×Sm ⊆ Cn

be the multi-grid defined by Si. If p is a degree d polynomial with n variables, how many zeros
can p have on S?

We show that, except for a special family of polynomials –that we call λ-reducible– a natural
generalization of the Schwartz-Zippel-DeMillo-Lipton Lemma holds. Moreover, we mention a
symbolic algorithm to detect λ-reducibility for a special case. Along the way, we also present
a multivariate generalization of Combinatorial Nullstellensatz, which might be of independent
interest.

We refer the reader to the extended version of work [2] for further details, the missing proofs,
and the presentation of the symbolic algorithm [2].

1 Introduction

Counting the number of zeros of a polynomial on a finite grid of points has been a subject
of extensive research in combinatorics and theoretical computer science, see, for example,
[6], [5]. The Schwartz-Zippel-DeMillo-Lipton Lemma is a well-known result in this line of
research [7, 12, 3].

I Theorem 1.1 (The Schwartz-Zippel-DeMillo-Lipton Lemma). Let F be a field, let S ⊆ F be
a finite set, and let p ∈ F[x1, . . . , xn] be a polynomial of degree d. Suppose |S| > d and let
Sn := S × S × · · · × S. Then we have

|Z(p) ∩ Sn| ≤ d|S|n−1

where Z(p) = {v ∈ Fn | p(v) = 0} is the zero set of p.

Alon [1] presents a similar statement for polynomials and grids. The result is known as
Combinatorial Nullstellensatz:

I Theorem 1.2 (Combinatorial Nullstellensatz). Let p ∈ F[x1, . . . , xn] with deg(p) =
∑n
i=1 di

for some positive integers di, and assume that the coefficient of
∏n
i=1 x

di
i in p is non-zero.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

63:2 The Multivariate Schwartz-Zippel Lemma

Let Si ⊆ F be finite sets with |Si| > di and let S ⊆ Fn be defined by S := S1 × S2 × · · · × Sn.
Then there exists v ∈ S such that

p(v) 6= 0.

We generalize the Schwartz-Zippel-DeMillo-Lipton Lemma and the Combinatorial Nullstel-
lensatz to multi-grids.

I Definition 1.3 (Algebraic Degree of a Finite Set). Let F be a field, and let S ⊆ Fn be a
finite set of points. Let I(S) ⊆ F[x1, . . . , xn] be the ideal of polynomials vanishing on S. We
define the algebraic degree, deg(S), of S to be

deg(S) := min
0 6=p∈I(S)

deg(p).

For the univariate case we have S ⊆ F and so deg(S) = |S|. However, for n ≥ 2, one can
have arbitrarily large sets of degree one. For example, in Fn we can consider arbitrarily many
points sampled from a hyperplane. The only general relation between the size and the degree
of a set S ⊆ Fn seems to be the following inequality that we can prove using basic linear
algebra:

|S| ≥
(

deg(S)− 1 + n

n

)
.

Notation We call a sequence λ = (λ1, . . . , λm) a partition of n into m parts if n =
λ1 + λ2 + · · · + λm. In this case, we write λ

m̀
n. Given a partition λ

m̀
n, we introduce

the notation x1 = (x1, x2, . . . , xλ1), x2 = (xλ1+1, . . . , xλ1+λ2), and so on. Given a polynomial
p ∈ F[x1, x2, . . . , xn], we denote by degi(p), the degree of p with respect to the variables in
xi. Given finite sets S1 ⊆ Fλ1 , S2 ⊆ Fλ2 etc. we call the product

S1 × S2 × · · · × Sm ⊆ Fn

the multi-grid defined by S1, S2, . . . , Sm.
Now we can give our first result that forbids polynomials to vanish on multi-grids defined

by finite sets of large degree:

I Theorem 1.4. Let F be a field, λ
m̀
n be a partition of n into m parts, and let p ∈

F[x1, . . . , xn] be a polynomial with deg(p) =
∑m
i=1 di. Furthermore, suppose that there exists

a non-zero term xα in p with degi(xα) = di for all i ∈ [m]. Let Si ⊆ Fλi be finite sets, and
let the multi-grid S ⊆ Fn be defined by S := S1 × S2 × · · · × Sm. If deg(Si) > di for all
i ∈ [m], then there exists v ∈ S such that

p(v) 6= 0.

In the case that λ = (1, 1, . . . , 1) ` n, we obtain Alon’s Combinatorial Nullstellensatz. In
this sense, the above theorem is a generalization of Combinatorial Nullstellensatz. However,
for the applications in incidence geometry, we want to obtain quantitative statements. In
other words, we want to give bounds in terms of |Si|. The next observation shows that it is
not always possible to obtain such bounds:

I Observation 1.5. Let g1 ∈ C[x1, x2] \ C and g2 ∈ C[x3, x4] \ C. For any h1, h2 ∈
C[x1, x2, x3, x4] and p = g1h1 + g2h2, the zero set Z(p) of p contains Z(g1)× Z(g2) which
is a positive dimensional variety. Thus, we can have arbitrarily large finite sets S1 ⊆ Z(g1)
and S2 ⊆ Z(g2) such that

S1 × S2 ⊆ Z(p).

M. L. Doğan, A. Ergür, J. D. Mundo, E. Tsigaridas 63:3

As the above observation shows, in order to have a quantitative statement on |Z(p)∩ S|, one
has to assume certain compatibility conditions between p and S:

I Definition 1.6 (λ-irreducibility). Let λ
m̀
n be a partition of n into m parts, and let

V ⊆ Cn be an algebraic set. We call V λ-reducible if there exist positive dimensional varieties
Vi ⊆ Cλi for i = 1, . . . ,m such that

V1 × V2 × · · · × Vm ⊆ V.

We call V λ-irreducible otherwise. If V is a hypersurface defined by a polynomial p, then we
say p is λ-reducible (resp. λ-irreducible).

Mojarrad et al. [4] study the same problem for the special case of λ = (2, 2). Their
observation is that (2, 2)-reducible polynomials have a particularly concrete form. Namely,
a polynomial p ∈ C[x1, x2, x3, x4] is λ-reducible if and only if there exist polynomials
g1 ∈ C[x1, x2] \ C, g2 ∈ C[x3, x4] \ C and h1, h2 ∈ C[x1, x2, x3, x4] such that

p = g1h1 + g2h2.

Mojarrad et al. ask for an algorithm to check whether a given polynomial p ∈ C[x1, x2, x3, x4]
is (2, 2)-reducible. In the last section, we mention an algorithm which detects λ-reducibility
for partitions of the form λ = (2, 2, . . . , 2). The full details of this algorithm can be found in
[2]. For now, we turn our attention back to polynomials and multi-grids.

Now, using the concept of λ-reducibility, we can give a bound on the cardinality of
multi-grids on which a λ-irreducible polynomial can vanish:

I Theorem 1.7. Let λ
m̀
n be a partition of n into m parts, and let p ∈ C[x1, . . . , xn]

be a λ-irreducible polynomial such that degi(p) = di. Let Si ⊆ Cλi be finite sets, and set
S := S1 × S2 × · · · × Sm. If |Si| > dλii , then there exists v ∈ S such that

p(v) 6= 0.

We state our main theorem.

I Theorem 1.8. Let λ
m̀
n, let Si ⊆ Cλi , i = 1, . . . ,m be finite sets, and let S := S1 × S2 ×

· · · × Sm be the multi-grid defined by Si. Then for a λ-irreducible polynomial p of degree
d ≥ 2, and for every ε > 0 we have

|Z(p) ∩ S| = On,ε

(
d5

m∏

i=1
|Si|1−

1
λi+1 +ε + d2n4

m∑

i=1

∏

j 6=i
|Sj |

)

where On,ε notation only hides constants depending on n and ε.

2 Applications

As our first application, we recover the complex version of Szemerédi-Trotter Theorem [10]
on the number of incidences between points and lines in real plane. To our knowledge, this
version is first proven by Tóth except for the ε in the exponent [11].

I Corollary 2.1. Let P be a set of points and L be a set of lines in the complex plane C2,
and let I(P,L) denote the set of point-line incidences. Then, for all ε > 0, we have

|I(P,L)| = O(|P | 23 +ε|L| 23 +ε + |P |+ |L|).

EuroCG’20

63:4 The Multivariate Schwartz-Zippel Lemma

Proof. Let p = x1 + x2x3 + x4. It is straightforward to show that p is (2, 2)-irreducible.
Moreover, for a point v = (z1, z2) ∈ C2 and a line l : x + by + c = 0, we have p ∈ l if and
only if p(z1, z2, b, c) = 0. Theorem 1.8 yields the result. J

As a second application, we consider the following problem: Given a set P of n points in the
complex plane C2, can we bound the number of pairs ((v1, v2), (w1, w2)) ∈ P × P such that
(v1 − w1)2 + (v2 − w2)2 = 1? In the real plane, the problem is known as the unit distance
problem and a subquadratic upper bound is given by Spencer, Szemerédi and Trotter [9].
In the complex case, Solymosi and Tao reproduced the same bound except for the ε in the
exponent. [8]. We obtain the same bound using Theorem 1.8.

I Corollary 2.2. Let P ⊆ C2 be a finite set of points in the complex plane. Set S =
{((v1, v2), (w1, w2)) ∈ P × P | (v1 − w1)2 + (v2 − w2)2 = 1}. Then, for all ε > 0, we have

|S| = O(|P |4/3+ε).

Proof. Let p = (x1−y1)2 +(x2−y2)2−1 ∈ C[x1, x2, y1, y2]. We claim that no 3×3 multi-grid
is contained in Z(p). Given three distinct points u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ C2,
the system

p(u1, u2, y1, y2) = 0
p(v1, v2, y1, y2) = 0
p(w1, w2, y1, y2) = 0

has at most one solution: If u, v, w are on an affine (complex) line, a direct computation
shows that the above system has no solution. If they are not on an affine (complex) line then
taking differences between pairs of polynomials in the above system, we see that

[
y1 y2

]
·
[
v1 − u1 w1 − u1 w1 − v1
v2 − u2 w2 − u2 w2 − v2

]
= 0

and as u, v, w are affinely independent, we obtain y = 0. We deduce that p is (2, 2)-irreducible
and applying Theorem 1.8 to ε/2 yields the result. J

I Theorem 2.3 (The Sparse Hypersurface-Point Incidence Theorem). Let A = {a1, a2, . . . , ak}
be a set of lattice points in Zn≥0 with

∑n
j=1 aij ≤ d for all 1 ≤ i ≤ k. We say a polynomial f

is supported in A if

f =
k∑

j=1
cjx

aj

where cj ∈ C and xaj = x
aj1
1 x

aj2
2 . . . x

ajn
n . Let P be a set of points in Cn, L be a set of

polynomials supported in A, and let I(P,L) denote the set of incidences between P and L.
We assume for any sets U1 ⊆ P with |U1| > dn and U2 ⊆ L with |U2| > dk, the product
U1 × U2 is not included in I(P,L). Then, for all ε > 0, we have

|I(P,L)| = On,k,ε(d3|P |1− 1
n+1 +ε|L|1− 1

k+1 +ε + d(n+k)4
(|P |+ |L|)).

3 Algorithms

In [2], Section 3, we give an algorithm for the following problem:

M. L. Doğan, A. Ergür, J. D. Mundo, E. Tsigaridas 63:5

Problem: Consider the partition λ = (n, n, . . . , n) of n(m + 1) into m + 1 parts. Given
a polynomial p ∈ Q[x1, x2, . . . , xm+1], are there polynomials gi ∈ Q[xi] \ Q and hi ∈
Q[x1, x2, . . . , xm+1] such that

p =
m+1∑

i=1
gihi ? (1)

Equivalently, are there hypersurfaces Vi ⊆ Cn such that

V1 × V2 × · · · × Vm+1 ⊆ V (p) ⊆ Cn(m+1),

where Vi = V (gi) are the zero sets of the polynomials gi for i ∈ [m+ 1]?
In the case that λ = (2, 2, . . . , 2), we can check λ-reducibility using the previous algorithm:

If p is (2, 2, . . . , 2)-reducible, then it contains a product

V1 × V2 × · · · × Vm ⊆ Z(p)

where each Vi is an algebraic curve in C2. As Vi are hypersurfaces, they can be written as
Vi = Z(gi) for some polynomials gi ∈ C[x2i, x2i+1] \ C and thus p is contained in the ideal
generated by g1, . . . , gm. Conversely, if p is contained in the ideal generated by (g1, . . . , gm),
then p contains the product V1 ×V2 × · · · × Vm in its zero set. We deduce that a polynomial
p ∈ C[x1, x2, . . . , x2n] is (2, 2, . . . , 2)-reducible if and only if it is of the form

p(x1, . . . , x2n) =
n∑

i=1
gi(x2i, x2i+1)hi(x1, . . . , x2n),

for some gi ∈ C[x2i, x2i+1] \ C and hi ∈ C[x1, . . . , x2n]. We can detect this property using
our algorithm.

We leave the existence of an algorithm that detects λ-reducibility for general λ as an
open problem.

Acknowledgements
ET is partially supported by ANR JCJC GALOP (ANR-17-CE40-0009), a public grant as
part of the Investissement d’avenir project reference ANR-11-LABX-0056-LMH LabEx LMH
(PGMO ALMA), and the PHC GRAPE.

References
1 N. M. Alon. Combinatorial Nullstellensatz. Combinatorics Probability and Computing,

8(1-2):7–29, 1 1999. doi:10.1017/S0963548398003411.
2 M. L. Doğan, A. A. Ergür, J. D. Mundo, and E. Tsigaridas. The multivariate schwartz-

zippel lemma, 2019. arXiv:1910.01095.
3 R. J. Lipton. The curious history of the Schwartz-

Zippel lemma. https://rjlipton.wordpress.com/2009/11/30/
the-curious-history-of-the-schwartz-zippel-lemma/.

4 H. N. Mojarrad, T. Pham, C. Valculescu, and F. de Zeeuw. Schwartz-Zippel bounds for
two-dimensional products. Discrete Analysis, 2018. URL: http://dx.doi.org/10.19086/
da.2750, doi:10.19086/da.2750.

5 Orit E. Raz, Micha Sharir, and József Solymosi. Polynomials vanishing on grids: The
Elekes-Rónyai problem revisited, 2014. arXiv:1401.7419.

6 N. Saxena. Progress on Polynomial Identity Testing - II, 2014. arXiv:1401.0976.

EuroCG’20

63:6 The Multivariate Schwartz-Zippel Lemma

7 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, October 1980. URL: https://doi.org/10.1145/322217.322225,
doi:10.1145/322217.322225.

8 József Solymosi and Terence Tao. An incidence theorem in higher dimensions. Dis-
crete & Computational Geometry, 48(2):255–280, 2012. URL: https://doi.org/10.1007/
s00454-012-9420-x, doi:10.1007/s00454-012-9420-x.

9 J. Spencer, E. Szemerédi, and W.T. Trotter. Unit distances in the Euclidean plane, pages
294–304. Academic Press, 1984.

10 E. Szemerédi and W. T. Trotter. Extremal problems in discrete geometry. Combina-
torica, 3(3):381–392, 1983. URL: https://doi.org/10.1007/BF02579194, doi:10.1007/
BF02579194.

11 C. D. Tóth. The Szemerédi-Trotter theorem in the complex plane. Combinatorica,
35(1), Feb 2015. URL: http://dx.doi.org/10.1007/s00493-014-2686-2, doi:10.1007/
s00493-014-2686-2.

12 R. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, pages 216–226, Berlin, Heidelberg, 1979. Springer Berlin Heidelberg.

Orthogonal Schematization
with Minimum Homotopy Area
Bram Custers1, Jeff Erickson2, Irina Kostitsyna1,
Wouter Meulemans1, Bettina Speckmann1, and Kevin Verbeek1

1 TU Eindhoven, the Netherlands
[b.a.custers|i.kostitsyna|w.meulemans|b.speckmann|k.a.b.verbeek]@tue.nl

2 University of Illinois at Urbana-Champaign, United States of America
jeffe@illinois.edu

1 Introduction

Visualizing data in its geographic context is useful for exploration, analysis and communication.
Thematic maps show data as layers on top of a base cartographic map. However, in many cases
high accuracy of spatial locations is restrictive and only of secondary concern for visualization:
the spatial dimension may be distorted to further emphasize the data itself. This process
of simplifying beyond the needs of a target scale is called cartographic schematization [12],
and is often accompanied by stylistic restrictions on the used geometric primitives. The
prototypical example is the London Underground map with its iconic octilinear style.

We typically distinguish schematization types based on the object to be schematized
and the geometry restrictions. Objects are typically either graphs (e.g. transit networks)
or polygons (e.g. territorial outlines such as countries). Geometry restrictions are often
formulated via a set of admissible orientations [2, 11, 10], with orthogonal, hexilinear and
octilinear being the most common, using angles that are a multiple of 90, 60 or 45 degrees.
Alternatives include curves, popularized by Roberts [13], such as Bézier curves [6, 15] or
circular arcs [7, 14, 15, 16]. Here we focus on orthogonal schematization of polygons.

When schematizing polygons, there are two main quality criteria beyond using few
geometric primitives [2]: (1) the result should be a simple polygon, if the input is simple; and
(2) the result should resemble the input polygon, as the schematic often functions as a base
map for thematic data. Requiring simplicity of the output often causes simplification and
schematization problems to be NP-hard [1, 8, 9]. Moreover, the similarity measure used to
capture resemblance has a large impact on the visual quality of the schematic. This schematic
may also exhibit undesirable behavior when optimizing for a measure, even in the most
restricted orthogonal case [2]. Both factors have led to various heuristics being developed to
schematize polygons either enforcing simplicity [2] or permitting self-intersections [4].

Problem definition. Given a simple orthogonal polygon P with n vertices and an integer
k < n, compute an orthogonal polygon S∗ with at most k vertices such that σ(P, S∗) is
minimized. Here, σ denotes the minimal homotopy area [3] between the two polygons; see
Section 2 for definitions. We may require S∗ to be a simple polygon or allow self-intersections.

Contributions. In Section 3 we illustrate the differences in homotopy area between the
simple and nonsimple case, and lower bound the number of intersections in a nonsimple
optimal solution. In Section 4 we present a dynamic program to compute in O(n5k) time
the optimal solution which may self-intersect. Details and full proofs will be available in the
full version of this paper.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

64:2 Orthogonal Schematization with Minimum Homotopy Area

2 Preliminaries

Ortho-polygons. We consider only orthogonal polygons and polylines, which we abbre-
viate to ortho-polygons and ortho-polylines. We use P = 〈v1, . . . , vn〉 to denote a simple
ortho-polygon with n edges. Edge ei connects vertices vi and vi+1, where vn+1 = v1. A
schematization of P is an ortho-polygon S with at most k edges. The complexity of an
ortho-polygon or ortho-polyline is its number of edges.

Homotopy area. Homotopy area [3], measures the similarity between curves. To define this
measure, interpret polygons P and S as continuous functions mapping the unit interval [0, 1]
to R2 for an arbitrary fixed starting point on the polygon. A homotopy H : [0, 1]× [0, 1]→ R2

between polygons P and S is defined as a continuous deformation from P to S over a time
t ∈ [0, 1] such that H(a, t = 0) = P (a) and H(b, t = 1) = S(b). Here, a and b are the
parameters for the parameterization of P and S.

The homotopy area of H is defined as the total area that is swept by the deformation,
with multiplicity. The minimal homotopy, H∗, between two curves is a homotopy with the
smallest homotopy area; the minimal homotopy area, σ(P, S), is then the area swept by H∗.

As shown by Chambers and Wang [3], the minimal homotopy between two simple curves
can be decomposed into smaller subhomotopies that deform the curve in a consistent direc-
tion relative to the deforming curve. These subhomotopies are delimited by anchorpoints,
which are a subset of the intersections between P and S. These anchorpoints are stationary
in the minimal homotopy and must therefore occur in the same order along both curves
(Observation 3.1 in [3]). The subhomotopies are minimal homotopies for the curves between
the delimiting anchorpoints. Moreover, any minimal homotopy without (or between) anchor-
points is sense preserving (Lemma 3.2 in [3]): intuitively, during the morph between the two
curves, a point either consistently moves locally to the left (or stands still) or consistently to
the right (or stands still). A careful inspection of the proofs in [3] reveals that these results
also hold for the case of self-intersecting curves, as the arguments are fully local.

The homotopy area of any subhomotopy is given by the areas of the cells of the arrangement
induced by the affected subcurves, multiplied by their winding number (Lemma 4.3 in [3]).
The winding number of a cell is intuitively defined as the (possibly negative) number of
counterclockwise rotations one makes when standing at a point in the cell and following the
boundary of the curve.

Formally, homotopy area requires the given curves to be at least C1 continuous, for the
derivatives to be well defined. This is not the case for polygons, but we may imagine each
corner to be an infinitesimally small smooth curve instead; see also [5].

3 Comparing simple and nonsimple schematization

Simplicity. Is the optimal schematization S always simple if the input polygon P is simple?
Unfortunately, this is not the case. Let P be an ortho-polygon with a ratio δ � 1 between
the longest and shortest edge length (see Figure 1). Let S and S′ be the optimal simple and
nonsimple schematization of P . In the worst case, σ(P, S)/σ(P, S′) = Ω(1/δ).

Self-intersections. The optimal nonsimple schematization S′ can have Ω(k2) self-intersec-
tions, asymptotically matching the trivial upper bound (see Figure 2). As length d can be
arbitrarily large with respect to area A, S′ smooths out the top linesFor κ repetitions of the
top lines and κ repetitions of the comb-like structure below, we obtain Θ(κ2) intersections.
With k = Θ(κ) and n = Θ(κ), the lower bound follows.

B. Custers, J. Erickson, I. Kostitsyna, W. Meulemans, B. Speckmann & K. Verbeek 64:3

(a)

1

1

δ

δ

ε

ε

(b) (c)

Figure 1 (a) Ortho-polygon with 10 edges. (b) Optimal nonsimple schematization S′ with 8
edges self-intersects and has homotopy area δ2. (c) Optimal simple schematization S has homotopy
area greater than (δ − ε) · (1 − ε) = Ω(δ) for small ε.

(a)

A

d d

d

(b)

Figure 2 (a) Ortho-polygon with n = 34 and κ = 4. Length d is larger than area A; drawing
shows d to be smaller for clarity of illustration. (b) Optimal nonsimple schematization S′ for k = 18,
with κ2 = Ω(k2) intersections.

4 Dynamic program for nonsimple S∗

We now compute an optimal schematization S∗ for a given value of k that is allowed to
self-intersect. Leveraging Chambers and Wang [3], we first prove that optimal solutions have
a canonical form. Then, we discuss a dynamic program that establishes the following result.

I Theorem 4.1. Given a simple ortho-polygon P with n vertices and an integer k < n, we
can compute the schematization S∗ with minimal homotopy area in O(n5k) time, if S∗ is
allowed to self-intersect.

4.1 Canonical form
I Lemma 4.2. Each edge of S∗ has at least one anchorpoint.

Proof sketch. If an edge e has no anchorpoints, then it must be part of a single subhomotopy
of the minimal homotopy. By sense preservation (Lemma 3.1 of [3]), moving e in the direction
of sense preservation decreases the subhomotopy area. J

Hence, in an optimal solution, subhomotopies span at most two edges in S∗ and the matching
subcurve is simple. Thus, self-intersections of S∗ can occur only between edges separated
by anchorpoints. An anchorsegment is a nonempty subsegment of an edge e of S∗ that
coincides with an edge e′ of P , such that all points on this anchorsegment are anchorpoints;
the direction of e and e′ must match, if this segment is more than a single point.

EuroCG’20

64:4 Orthogonal Schematization with Minimum Homotopy Area

I Lemma 4.3. Each edge of S∗ has an anchorsegment of non-zero length.

Proof. For a contradiction, assume we have an edge e in S∗ that does not overlap an edge
of P with the same direction. Let H∗ denote the minimal homotopy between S∗ and P . By
Lemma 4.2, we know that e has one or more anchorpoints and thus we may consider the two
or more subhomotopies H1, . . . ,Hm that involve part of e. Each Hi is between two simple
curves and thus sense preserving (Lemma 3.2 of [3]).

Without loss of generality, assume e is horizontal. As the subcurves are simple, each
subhomotopy area is the multiplication of area and winding number, summed over all faces
in the arrangement (Lemma 4.1 and Lemma 4.3 of [3]). Consider moving e up or down: this
move may change the homotopy area for each Hi, but cannot cause local intersections in
the subcurves. Hence, the total change ∆h in the area of all minimal subhomotopies is the
change in face area with winding-number multiplicity. Either ∆h is zero in both directions,
or ∆h is positive in one direction and negative in the other.

In the latter case, we find a contradiction with the optimality of S∗, so assume ∆h = 0.
We may freely move the edge up or down, until one of the considered arrangements changes;
see Figure 3(a,b). At this moment e must overlap some edge e′ of P , also considered in one of
the original subhomotopies. Let S′ denote the new schematization, with minimal homotopy
H ′. Now, either (a part of) this overlap is stationary in H ′ and thus an anchorsegment, or
the entire edge still moves in H ′. The former case implies an overlap in more than a single
point: otherwise, ∆h does not change. That is, the arrangement may have a face split, but
these have the same winding numbers. In the latter case, we can continue shifting our edge e
as ∆h is zero (or positive in the same direction, contradicting optimality). See Figure 3(c)
for an example.

Note that we cannot make an edge of S∗ disappear during this motion. J

(a) (b) (c)

e

a1 a2

Figure 3 Moving an edge in the schematization. The black line shows part of the input polygon;
the red line is part of the schematization. Dots indicate anchorpoints. (a) Moving the horizontal
edge down to the dashed line decreases (red) and increases (blue) homotopy area for subhomotopies.
The areas are exactly balanced: ∆h = 0. (b) The edge coincides with an edge of the polygon, causing
the arrangement of the middle subhomotopy to change: its cell collapsed. Moving the edge further
down increases homotopy. (c) Moving the edge down causes the edge to overlap with input edge e.
This edge moves in the underlying homotopy and thus can be ignored. Moving the edge further
down results in anchor segments a1 and a2.

Lemma 4.3 implies a canonical form for S∗, in which each edge is anchored to an edge of
P through its anchorsegment. Consequently, every vertex of S∗ lies on the grid G induced
by the edges of P . The forward halfline of an edge ei is the halfline originating from vi,
overlapping ei. Similarly, the backward halfline of an edge ei originates from vi+1, overlapping
ei. An edge e of S∗ must start on the backward halfline of its anchored edge in P and end
on the forward halfline, and the direction of e matches the direction of its anchored edge.

B. Custers, J. Erickson, I. Kostitsyna, W. Meulemans, B. Speckmann & K. Verbeek 64:5

4.2 Dynamic Programming
First, we pick a midpoint of an edge of G that is on an edge of P to cut P into an ortho-
polyline P ′. In the DP, we select only vertices of G as intermediate vertices. Thus, an optimal
schematization of P ′ with k + 1 edges is a schematization of P with k edges. Testing all
O(n2) midpoints yields the optimal schematization S∗, as any anchorsegment must contain
such a midpoint. In the remainder P is an ortho-polyline, to be schematized with k edges.

Partial solutions. A partial solution is an ortho-polyline S where each edge has an an-
chorsegment. The first anchorsegment starts at v1 on e1. The last anchorsegment anchors to
some edge ei, but is not yet complete. Instead, the last vertex of S is a gridpoint γi,j of G
on the backward halfine of ej and forward halfline of an ei, i < j. If γi,j lies on ej , then the
anchorsegment must contain γi,j ; otherwise, the start of ej must eventually be part of the
anchorsegment. Between two anchorsegments of S we can compute the minimal subhomotopy
area, even if the last is not yet complete. That is, consider two subsequent anchorsegments
of S, anchored to edges ei and ej of P with i < j. The corresponding subhomotopy σi,j

can be computed purely from this information. This follows from one of four cases (see
Figure 4) depending on the intersection γi,j . If the halflines do not intersect, we call such a
pair incompatible and use σi,j =∞. Subhomotopy areas σ1,i and σj,n+1 are independent of
the choice of starting point v1, though the corresponding γ-values do. As anchorsegments
are directed and ordered, we need to consider only pairs of compatible edges (γi,j exists).

ej

ei

γi,j

(a)

ej

ei

(b)

γi,j

ei

(c)

ejγi,j ej

ei

(d)

γi,j

Figure 4 Four cases for compatible edges ei′ and ei to compute σi′,i. The gridpoint γi′,i (red
marker) can be outside both edges (a), on one of both edges (b,c), or on both edges (d).

However, we must be careful not to reverse an edge of S. Suppose S ends with edges
anchored at ei′′ , ei and ej , such that the first two edges are compatible, as well as the last
two. If γi,j is after γi′′,i in the direction of ei, then the edge of S anchored on ei is directed
along ei. However, if this is not the case, this edge of S is reversed and does not follow the
canonical form. Hence, we do not need to consider these cases.

To decide whether we can extend partial solution S ending at ei thus depends on where
the last vertex of S is located with respect to ei. We thus pair indices i with gridpoints g′.
We call a pair (i, g′) a compatible predecessor for (j, g) if i < j, γi,j occurs after g′ on the
forward halfline of ei, and γi,j does not occur before g on the backward halfline of ej ; see
Figure 5 for examples. Observe that the latter two conditions are independent of each other.

Dynamic program. We characterize a subproblem of our DP as D[j, g, l]: the minimal
homotopy area for the optimal partial solution S with at most l edges, such that g lies on
the backward halfline of ej and the last vertex of S is not before g on this backward halfline.
Figure 6 shows an example for such a partial solution. The main question is how to compute
D[j, g, l] based on “smaller” instances D[i, g′, l′]. We are effectively choosing anchorsegments
one at a time. As these occur in order, smaller instances have 1 ≤ i < j and l′ = l − 1.

We should consider compatible predecessors for (j, g) described by D[i, g′, l − 1]. If g′′ is
closer to γi,j than g′, g′′ is less restrictive for the partial solution and hence D[i, g′′, l − 1] ≤

EuroCG’20

64:6 Orthogonal Schematization with Minimum Homotopy Area

ei
g

γi,j ej

g′′

g′

(a)

ei
g

ej

g′

(b)

γi,j

ei
g

ej
g′

(c)

Figure 5 Examples of compatibility of predecessors. Black dots denote gridpoints, arrows give the
directions of the edges. (a) (i, g) is a compatible predecessor of (j, g′′), but not of (j, g′), since γi,j

occurs before g′ in the backward direction of ej . (b) (i, g) is not a compatible predecessor of (j, g′)
since γi,j occurs after g on ei in the backward direction. (c) (i, g) is not a compatible predecessor of
any gridpoint on ej , since γi,j does not exist.

v1

g

e2

e3
e4

e8

e5

e6

e7

e9

e1 e1
e2

e3

e4

e8

e5

e6

e7

e9

v1

g g

e1
e2

e3

e4

e8

e5

e6

e7

e9

v1

Figure 6 Partial solutions for input P (blue) with v1 at the top. Shown in red are D[9, g, 3] for
various gridpoints g. Homotopy areas are given by the red, hatched area.

D[i, g′, l − 1]. Thus, the appropriate neighbor of γi,j in G suffices if γi,j lies on ei, or the
endpoint of ei otherwise; we denote this least restrictive neighbor by λi,j .

We obtain the following dynamic program. If j < l, the schematization should have
more edges than the input so far, thus we set D[j, g, l] to ∞. If l = j = 1, we have not
created a second anchorsegment and thus D[j, g, l] = 0. Otherwise, we set D[j, g, l] to
min

1≤i<j
σi,j +D[i, λi,j , l − 1], testing all least restrictive compatible predecessors.

Running time. We first compute all σi,j values in O(n4 logn) total time using [3]: each
pair of subcurves has O(n) intersections. For the DP, computing λi,j takes O(1) time using
G and we can lookup σi,j : computing all O(n2k) cells takes O(n3k) time. Running the DP
for all O(n2) starting points thus takes O(n5k) time.

B. Custers, J. Erickson, I. Kostitsyna, W. Meulemans, B. Speckmann & K. Verbeek 64:7

References
1 Quirijn Bouts, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Willem Sonke, and

Kevin Verbeek. Mapping Polygons to the Grid with Small Hausdorff and Fréchet Distance.
In Proceedings of the 24th Annual European Symposium on Algorithms, volume 57 of LIPIcs,
pages 22:1–22:16, 2016.

2 Kevin Buchin, Wouter Meulemans, André Van Renssen, and Bettina Speckmann. Area-
preserving simplification and schematization of polygonal subdivisions. ACM Transactions
on Spatial Algorithms and Systems, 2(1), April 2016.

3 Erin Wolf Chambers and Yusu Wang. Measuring similarity between curves on 2-manifolds
via homotopy area. In Proceedings of the 29th Annual Symposium on Computational Ge-
ometry, pages 425–434. ACM, 2013.

4 Serafino Cicerone and Matteo Cermignani. Fast and simple approach for polygon schema-
tization. In Proceedings of the International Conference on Computational Science and Its
Applications, LNCS 7333, pages 267–279. Springer, 2012.

5 Brittany Fasy, Selcuk Karakoc, and Carola Wenk. On minimum area homotopies of normal
curves in the plane. arXiv preprint arXiv:1707.02251, 2017.

6 Martin Fink, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian Schuhmann,
and Alexander Wolff. Drawing metro maps using Bézier curves. In Proceedings of the
International Symposium on Graph Drawing, LNCS 7704, pages 463–474. Springer, 2012.

7 Martin Fink, Magnus Lechner, and Alexander Wolff. Concentric metro maps. In Schematic
Mapping Workshop, 2014.

8 Leonidas Guibas, John Hershberger, Joseph Mitchell, and Jack Scott Snoeyink. Approx-
imating polygons and subdivisions with minimum-link paths. International Journal of
Computational Geometry & Applications, 3(04):383–415, 1993.

9 Maarten Löffler and Wouter Meulemans. Discretized approaches to schematization. In
Proceedings of the 29th Canadian Conference on Computational Geometry, 2017.

10 Gabriele Neyer. Line simplification with restricted orientations. In Proceedings of the 6th
International Workshop on Algorithms and Data Structures, page 13–24. Springer-Verlag,
1999.

11 Martin Nöllenburg and Alexander Wolff. Drawing and labeling high-quality metro maps by
mixed-integer programming. IEEE Transactions on Visualization and Computer Graphics,
17(5):626–641, 2011.

12 Andreas Reimer. Cartographic modelling for automated map generation. PhD thesis, Tech-
nische Universiteit Eindhoven, 2015.

13 Maxwell Roberts. Underground maps unravelled: Explorations in information design. Self
published, 2012.

14 Thomas van Dijk, Arthur van Goethem, Jan-Henrik Haunert, Wouter Meulemans, and
Bettina Speckmann. Map schematization with circular arcs. In Proceedings of the Inter-
national Conference on Geographic Information Science, LNCS 8728, pages 1–17. Springer,
2014.

15 Arthur van Goethem, Wouter Meulemans, Andreas Reimer, Herman Haverkort, and Bet-
tina Speckmann. Topologically safe curved schematization. The Cartographic Journal,
50(3):276–285, 2013.

16 Arthur van Goethem, Wouter Meulemans, Bettina Speckmann, and Jo Wood. Exploring
curved schematization of territorial outlines. IEEE Transactions on Visualization and
Computer Graphics, 21(8):889–902, 2015.

EuroCG’20

Improved space bounds for Fréchet distance
queries
Maike Buchin1, Ivor van der Hoog2, Tim Ophelders3, Rodrigo I.
Silveira4, Lena Schlipf5, and Frank Staals2

1 Ruhr University Bochum
maike.buchin@rub.de

2 Utrecht University
[i.d.vanderhoog,f.staals]@uu.nl

3 Michigan State University
ophelder@egr.msu.edu

4 Universitat Politècnica de Catalunya
rodrigo.silveira@upc.edu

5 Universität Tübingen
schlipf@informatik.uni-tuebingen.de

Abstract
We revisit a data structure from de Berg, Mehrabi and Ophelders that can store a polygonal
curve P , such that for any directed horizontal query segment pq one can compute the Fréchet
distance between P and pq in polylogarithmic time. We extend their analysis of the geometric
constructions that can realize the Fréchet distance between P and pq and prove that in fact, their
data structure only requires O(n3/2) space, as opposed to the O(n2) space originally believed.

1 Introduction

Comparing the shapes of polygonal curves is an important task that arises in many contexts
such as GIS applications [2, 4], protein classification [8], curve simplification [3], curve
clustering [1] and even speech recognition [9]. Within computational geometry, there are two
well studied distance measures for polygonal curves: the Hausdorff and the Fréchet distance.
In this paper, we consider the problem of preprocessing a polygonal curve P of n edges in
the plane, such that given a query segment pq traversed from p to q, the Fréchet distance
between pq and P can be computed in sublinear time. The curve may self-intersect and pq
may intersect P . For this version, the proofs have been omitted.

We give an overview of recent results that preprocess a polygonal chain P in order
to compute the Fréchet distance between P and a query segment pq. Driemel and Har-
Peled [6] studied how to process a polygonal chain P , such that given a query segment
pq one can compute a (1 + ε)-approximation of the Fréchet distance between P and pq in
O(ε−2 logn log logn) time. Gudmundsson, Mirzanezhad, Mohades and Wenk [7] consider the
Fréchet distance between polygonal curves where each curve contains only edges which are
long when compared to the Fréchet distance between the two curves. A corollary of their
result is that they can preprocess a curve P such that given a query segment pq one can
compute the exact Fréchet distance between P and pq in O(log2 n) time, provided that the
length of pq and each edge of P is relatively large compared to this distance. Recently [5],
de Berg, Mehrabi and Ophelders presented a paper in which they preprocess a curve P in
O(n log2 n) time, using O(n2) space, such that for any horizontal query segment pq one can
compute the Fréchet distance between P and pq in O(log2 n) time. In this paper we extend
these results, by showing, via a more involved analysis, that the data structure by de Berg,
Mehrabi and Ophelders requires only O(n3/2) space.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

65:2 Improved space bounds for Fréchet distance queries

1.1 Preliminaries.
The directed Hausdorff distance is a distance measure between any two point sets. Let
A and C be two point sets, we define the directed Hausdorff distance from A to C as
D−→
H

(A,C) := supa∈A infc∈C ||a − c||. The Fréchet distance is a distance measure between
any two curves, which is commonly explained with the following “leash” analogy: consider
two curves in the plane P and Q where a person walks along curve P and a dog walks along
curve Q, and neither of them is allowed to walk backwards. Then what is the minimum
length that a leash between the person and the dog needs to have? Formally, we denote by
α : [0, 1]→ P a (non-strict) monotone traversal of P in the time interval [0, 1] and we denote
by β : [0, 1]→ Q an identical traversal of Q. The Fréchet distance between P and Q is the
infimum over all choices of α and β, of the maximal distance realized during the traversal:

DF (P,Q) = inf
α:[0,1]→P
β:[0,1]→Q

{
max
t∈[0,1]

||α(t)− β(t)||
}

De Berg, Mehrabi and Ophelders consider the scenario where P is a polygonal curve
P = (v0, v1, . . . , vn), where each vertex vi is a point in the plane, and Q is a horizontal
segment pq in the plane, at height y with p left of q. Their data structure uses the notion of
backward pairs: any ordered pair of vertices (vi, vj) with i ≤ j in P form a backward pair if
vj lies further to the left than vi. Note that a vertex of P can be be part of many backward
pairs, even if its outgoing edge is pointed along the directed edge from p to q (Figure 1).
There are O(n2) backward pairs in total. We denote the set of backward pairs by B(P). De
Berg, Mehrabi and Ophelders note that a backward pair vi, vj has the following effect on the
Fréchet distance. For the point on the query segment minimizing the distance to the farthest
of vi and vj , that distance is a lower bound on the Fréchet distance. This point on the query
segment lies either on the bisector Bvi,vj

between vi and vj , or it is the point on the query
segment closest to vi or vj . We define the distance function F(y, vi, vj) := ||vi − `y ∩Bvi,vj ||
from vi to the closest point that lies both on the bisector of vi and vj , and on the horizontal
line `y at height y. De Berg, Mehrabi and Ophelders observe the following:

vj

vi vi

vjvj

vi

p q p q p q

Figure 1 (Left) a polygonal curve that zigzags and a query segment from left to right. (Middle)
The red vertex vj forms a backward pair with all but one blue vertex. (Right) For a fixed backward
pair (vi, vj), we consider the point of intersection between their bisector and pq (cross) and we are
interested in the distance between that point and either vi or vj .

I Observation 1 (From [5]). For all (vi, vj) ∈ B(P), for any y, if the intersection between `y
and Bvi,vj lies in the rectangle spanned by vi and vj , then F(y, vi, vj) is a hyperbolic segment
with absolute slope smaller than 1. Otherwise, it is a line with slope 1 or −1 (Fig 2).

They prove that for any backward pair (vi, vj), the value F(y, vi, vj) is a lower bound for
the Fréchet distance between pq and P if pq has height y. Note that the Fréchet distance is
also lower-bounded by the distance between (1) p and the start of P , (2) q and the end of P

M. Buchin, I. van der Hoog, T. Ophelders, R.I. Silveira, L. Schlipf, and F. Staals 65:3

and (3) by the directed Hausdorff distance from P to pq. Specifically, de Berg, Mehrabi and
Ophelders prove that the Fréchet distance is the maximum of any of these lower bounds:

DF (P, pq) = max
{
||v0 − p||, ||vn − q||, d−→

H
(P, pq), max

(vi,vj)∈B(P)
F(y, vi, vj)

}

In this paper, we perform a deeper analysis on the data structure of de Berg, Mehrabi and
Ophelders that computes these four terms, and give better bounds on its space complexity.

2 A data structure for horizontal segments

For any polygonal curve P = (v0, v1, . . . , vn) and for any segment pq the distance ||v0 − p||
and ||vn − q|| can be computed in constant time. De Berg, Mehrabi and Ophelders present a
linear space data structure that can compute the directed Hausdorff distance from P to pq
in O(log2 n) time. To compute the remaining component of the lower bound on the Fréchet
distance they provide a data structure with O(log2 n) query time whose space is linear in
the number of backward pairs. They obtained this as follows: they consider the function
F(y, vi, vj) for every backward pair (vi, vj) ∈ B(P) and compute the upper envelope of all
these functions. They argue that the upper envelope is linear in the number of backward
pairs, which gives a quadratic upper bound on the space of the data structure.

We extend their analysis with the following observation: consider a vertex vi ∈ P , the set
of vertices Vi := {v′ | (vi, v′) ∈ B(P)} and the upper envelope of all {F(y, v′, vi) | v′ ∈ Vi}
(Figure 3). We define Li(y) := minvj∈Vi

(`y ∩Bvij,vi
)x as the left chain of Vi and the function

FLi (y) := ||`y ∩Li(y)−vi|| as the distance from a point on Li at height y to vi. Note that the
points (Li(y), y), that for simplicity we will denote Li, correspond to the “left envelope” in the
arrangement of bisectors. We use the term chain to avoid confusion with the upper envelope
of the distances functions FLi , which we denote by FL(y) := maxi{FLi (y)}. Analogously, we
define the right chain Ri, its corresponding distance function FRi , and the upper envelope
FR(y) = maxi FRi (y). It then follows that F(y) = max{FL(y), FR(y)} and thus:
I Observation 2. If the complexity of FL(y) and FR(y) are both upper bounded by O(n3/2)
then the complexity of F(y) is upper bound by O(n3/2).

In the remainder of this section, we bound the complexity of FL(y), the proof for FR(y)
is analogous. We denote by V ∗i the subset of Vi, such that v′ ∈ V ∗i if and only if a piece

`3

vj

vi
F (3, vi, vj)

`1

vj

vi

F (1, vi, vj)

y

F (y, vi, vj)

vi.y vj .y1 3

Figure 2 (Left) The backward pair (vi, vj), a line at height 3 and the distance F(3, vi, vj).
(Middle) A line at height 1 and the distance F(1, vi, vj). (Right) The function F(y, vi, vj).

EuroCG’20

65:4 Improved space bounds for Fréchet distance queries

y

vi

Vi

Li

Ri

F (y, a, vi)

x

a

b

c d

F (y, x, vi)

F (y, d, vi)

FR
i (y)

y

F (y, a, vi)

F (y, d, vi)

F (y, c, vi)

FL
i (y)

Figure 3 (Left) A point vi and the set of vertices Vi that form a backward pair with vi, together
with the left and the right chains; vertices of V ∗

i in green. (Middle) The envelope F L
i (y) is a piecewise

curve with three pieces. (Right) The envelope F R
i (y) is also a piecewise curve with three pieces.

of the bisector Bv′,vi
appears on Li, and the distance function FLi is maximal there, i.e.,

FLi (y) = FL(y). The proofs of the following observations are deferred to the appendix.

I Lemma 2.1. For any vertex vi, the vertices V ∗i lie in convex position and the left chain
Li is a convex chain where the clockwise ordering of the bisectors on Li is identical to the
clockwise ordering of the vertices of V ∗i .

I Lemma 2.2. Let v ∈ V ∗i ∩ V ∗j be a point that forms a backward pair with both vi and vj.
The bisectors Bv,vi and Bv,vj intersect Bvi,vj at a single point.

I Lemma 2.3. For any vi, vj, the chains Li and Lj intersect Bvi,vj
in a common point c.

Moreover, the bisectors that intersect in c correspond to the same point v ∈ V ∗i ∩ V ∗j .

I Corollary 2.4. For any vi, vj, for any horizontal line `y of height y, the line `y intersects
Li and Lj on the same side of the bisector Bvi,vj

.

I Lemma 2.5. (Illustrated by Figure 4) For any two vertices vi, vj consider their Voronoi
diagram. If the set V ∗i ∩ V ∗j contains at least four elements, then there is an edge (which is
not a halfline) on Li that is entirely contained in the Voronoi cell of vi, or there is an edge
(which is not a halfline) on Lj that is entirely contained in the Voronoi cell of vj.

Recall that the upper envelope FL(y) begins and ends with halflines of slope -1/1. All
other bisectors generate at most one hyperbolic segment on FL(y). In the following lemma,
we consider all pairs vi, vj ∈ P that do not participate in these two halflines.

I Lemma 2.6. For any vi, vj that do not participate in a halfline of FL(y), the set V ∗i ∩ V ∗j
contains at most three vertices.

Proof. Suppose for the sake of contradiction that V ∗i ∩ V ∗j contains four vertices (a, b, c, d)
in counter-clockwise order, with vi below the bisector Bvi,vj . By Lemma 2.5, we can assume
without loss of generality that Ba,vi

and Ba,vj
are entirely contained in the Voronoi cell of vi.

Because of the assumption of the lemma, and because a ∈ V ∗i , the bisector Ba,vi
generates a

hyperbolic segment on FL(y). Next we prove that this hyperbolic segment cannot appear on
the upper envelope of {FLi (y), FLj (y)} which contradicts the assumption that a is in V ∗i .

We denote the point of intersection between `y and Ba,vi by Si. Consider the point of
intersection between `y and Lj and denote it by Sj . Observe that Sj must also lie in the

M. Buchin, I. van der Hoog, T. Ophelders, R.I. Silveira, L. Schlipf, and F. Staals 65:5

vj

vi

a

b

c d
Lj

vj

vi

a

b

c d
Li

Ba,vj

Bb,vj

Bc,vj

Bd,vj

Ba,vi

Bb,vi

Bc,vi

Bd,vi

Figure 4 Two vertices vi and vj and their Voronoi diagram. We drew four points a, b, c, d ∈ V ∗
i ∩V ∗

j .
Left we see the bisectors between these points and V ∗

j , and their left chain Lj . Right we see the
bisectors between these points and V ∗

i , and their left chain Li.

Voronoi cell of vi (Corollary 2.4). We split the proof in three cases depending on Si. We
prove that the first case cannot exists. The remaining cases are illustrated in Figure 5.

Case Sj lies left of Si. Following Observation 1 and the assumption that vi and vj are
both the rightmost points of the backward pairs, Si must lie left of vi and Sj must lie left of
vj . Thus the distance ‖vi − Si‖ is smaller than the distance ‖vi − Sj‖. But since Sj lies in
the Voronoi cell of vi, the distance ‖vi − Sj‖ is smaller than the distance ‖vj − Sj‖. This
implies that the distance ‖vi − Si‖ is smaller than the distance ‖vj − Sj‖ which contradicts
the assumption that for this y-coordinate F (y, vi, a) lies on FLi (y).

Case Sj lies right of Si and on the bisector Ba,vj
. We note, that since Si and Sj

lie on bisectors, that ‖vi−Si‖ = ‖a−Si‖ and ‖vj −Sj‖ = ‖a−Sj‖ and thus per assumption
‖a− Sj‖ > ‖a− Si‖. However, Sj and Si both lie to the right of a and they have the same
y-coordinate. Since Sj lies further to the right than Si, we know that ‖a− Si‖ < ‖a− Sj‖
which is a contradiction.

Case Sj lies right of Si and not on the bisector Ba,vj . We say that Sj lies on Bb,vj

but the argument works for any bisector further than a in the ordering, the argument is
illustrated by Figure 6. We pinpoint the location of the point a with three observations:
1. The bisector Ba,vi is the last bisector in the clockwise ordering of the left chain Li,

therefore the point a must lie above the line through b and vi (Lemma 2.1).

vj

vi

a

Ba,vi

Si

Sj

Ba,vj

Figure 5 A horizontal line at a y-coordinate in yellow. The points of intersection Sj lies right of
Si and the intersection points originate from the bisectors Ba,vi and Ba,vj .

EuroCG’20

65:6 Improved space bounds for Fréchet distance queries

vj

vi

b
Ba,vi

Si Sj

Bb,vj

1

2

b

3

a

Figure 6 (left) Case Sj left of Si and Sj lies on Bb,vj . (right) Three regions where a can lie.

2. The point a must lie on the opposite side of `y with respect to vi since Ba,vi
realizes a

hyperbolic segment on the upper envelope FL(y) and all hyperbolic segments come from
intersection points that lie in the rectangle bound by a and vi (Observation 1).

3. Per assumption, ‖b− Sj‖ < ‖a− Si‖. The point a must lie on the circle centered at Si
with radius ‖a− Si‖. Combining our assumption with the fact that Sj lies right of Si,
we know that the point b cannot lie left of this circle. Since a lies clockwise of b with
respect to Vi, it now follows that a lies left of b.

These three observations imply that the bisector Ba,vj intersects the line `y left of Sj
which contradicts the assumption that Sj lies on Lj . J

I Lemma 2.7. The function FL has complexity O(n3/2).

Proof. We upper bound the number of hyperbolic segments on FL by bounding the number
of elements in ∪iV ∗i . Let va, vb be the (at most) two rightmost vertices that participate in
a backward pair whose bisector is a halfline of slope 1/-1 on FL(y). The sets V ∗a and V ∗b
contain at most O(n) elements. Now consider the bipartite graph G = (L ∪R\{va, vb}, E)
in which L and R are two copies of the vertices in P\{va, vb}. There is an edge between
vj ∈ L and vi ∈ R if and only if vj ∈ V ∗i . By Lemma 2.6, the graph G is K4,2-free, and thus
has at most O(n3/2) edges [10, Theorem 4.5.2]. Since every edge corresponds to a (relevant)
backward pair, it follows that the number of elements in ∪iV ∗i and therefore the number of
hyperbolic segments on FL is bounded by O(n3/2). J

By Observation 2 the function F thus has complexity at most O(n3/2) as well. Therefore,
the data structure of de Berg et al. [5] uses at most O(n3/2) space. We conclude:

I Theorem 2.8. Given a polygonal curve P in R2 with n vertices, there is a data structure
of size O(n3/2), that can be built in O(n2 log2 n) time, that can report the Fréchet distance
between P and a horizontal query segment in O(log2 n) time.

Acknowledgements. This research was initiated during the Dagstuhl seminar 19352.

M. Buchin, I. van der Hoog, T. Ophelders, R.I. Silveira, L. Schlipf, and F. Staals 65:7

References
1 Pankaj K Agarwal, Sariel Har-Peled, Nabil H Mustafa, and Yusu Wang. Near-linear time

approximation algorithms for curve simplification. Algorithmica, 42(3-4):203–219, 2005.
2 H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of algorithms,

49(2):262–283, 2003.
3 K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting commuting

patterns by clustering subtrajectories. International Journal of Computational Geometry
& Applications, 21(03):253–282, 2011.

4 Kevin Buchin, Maike Buchin, Marc Van Kreveld, Maarten Löffler, Rodrigo I Silveira, Carola
Wenk, and Lionov Wiratma. Median trajectories. Algorithmica, 66(3):595–614, 2013.

5 Mark de Berg, Ali D Mehrabi, and Tim Ophelders. Data structures for fréchet queries in
trajectory data. In CCCG, pages 214–219, 2017.

6 A. Driemel and S. Har-Peled. Jaywalking your dog: Computing the fréchet distance with
shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013.

7 J. Gudmundsson, M. Mirzanezhad, A. Mohades, and C. Wenk. Fast fréchet distance be-
tween curves with long edges. In Proceedings of the 3rd International Workshop on Inter-
active and Spatial Computing, IWISC ’18, pages 52–58. ACM, 2018.

8 M. Jiang, Y. Xu, and B. Zhu. Protein structure–structure alignment with discrete Fréchet
distance. Journal of bioinformatics and computational biology, 6(01):51–64, 2008.

9 S. Kwong, QH He, K. Man, KS Tang, and CW Chau. Parallel genetic-based hybrid pat-
tern matching algorithm for isolated word recognition. International Journal of Pattern
Recognition and Artificial Intelligence, 12(05):573–594, 1998.

10 J. Matoušek. Lectures on discrete geometry, volume 108. Springer, 2002.

EuroCG’20

Balanced Independent and Dominating Sets on
Colored Interval Graphs∗

Sujoy Bhore1, Jan-Henrik Haunert2, Fabian Klute1,
Guangping Li1, and Martin Nöllenburg1

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{sujoy, fklute, guangping, noellenburg}@ac.tuwien.ac.at

2 Geoinformation Group, University of Bonn, Bonn, Germany
haunert@igg.uni-bonn.de

Abstract
We study two new versions of independent and dominating set problems on vertex-colored interval
graphs, namely f -Balanced Independent Set (f -BIS) and f -Balanced Dominating Set (f -BDS).
Let G = (V,E) be a vertex-colored interval graph with a k-coloring γ : V → {1, . . . , k} for some
k ∈ N. A subset of vertices S ⊆ V is called f -balanced if S contains f vertices from each color
class. In the f -BIS and f -BDS problems, the objective is to compute an independent set or a
dominating set that is f -balanced. We show that both problems are NP-complete even on proper
interval graphs. For the BIS problem on interval graphs, we design two FPT algorithms, one
parameterized by (f, k) and the other by the vertex cover number of G. Moreover, we present a
2-approximation algorithm for a slight variation of BIS on proper interval graphs.

1 Introduction

A graph G is an interval graph if it has an intersection model consisting of intervals on the
real line. Formally, G = (V,E) is an interval graph if there is an assignment of an interval
Iv ⊆ R for each v ∈ V such that Iu ∩ Iv is nonempty if and only if (u, v) ∈ E. A proper
interval graph is an interval graph that has an intersection model in which no interval
properly contains another [8]. Consider an interval graph G = (V,E) and additionally
assume that the vertices of G are k-colored by a mapping γ : V → {1, . . . , k}. We define and
study color-balanced versions of two classical graph problems: maximum independent set
and minimum dominating set on vertex-colored (proper) interval graphs. In what follows,
we define the problems formally and discuss their underlying motivation.

f-Balanced Independent Set (f-BIS): Let G = (V,E) be an interval graph with vertex
coloring γ : V → {1, . . . , k}. Find an f -balanced independent set of G, i.e., an independent
set L ⊆ V that contains exactly f elements from each color class.

The classic maximum independent set problem serves as a natural model for many real-
life optimization problems and finds applications across fields, e.g., computer vision [2],
information retrieval [14], and scheduling [16]. Specifically, it has been used widely in map-
labeling problems [1, 4, 17, 18], where an independent set of a given set of label candidates
corresponds to a conflict-free and hence legible set of labels. To display as much relevant
information as possible, one usually aims at maximizing the size or, in the case of weighted
label candidates, the total weight of the independent set. This approach may be appropriate
if all labels represent objects of the same category. In the case of multiple categories, however,

∗ We thank Robert Ganian for useful discussions and suggestions.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

66:2 Balanced Independent and Dominating Sets on Colored Interval Graphs

maximizing the size or total weight of the labeling does not reflect the aim of selecting a
good mixture of different object types. For example, if the aim was to inform a map user
about different possible activities in the user’s vicinity, labeling one cinema, one theater,
and one museum may be better than labeling four cinemas. In such a setting, the f -BIS
problem asks for an independent set that contains f vertices from each object type.

We initiate this study for interval graphs which is a primary step to understand the
behavior of this problem on intersection graphs. Moreover, solving the problem for interval
graphs gives rise to optimal solutions for certain labeling models, e.g., if every label candidate
is a rectangle that is placed at a fixed position on the boundary of the map [9].

While there exists a simple greedy algorithm for the maximum independent set problem
on interval graphs, it turns out that f -BIS is much more resilient and NP-complete even
for proper interval graphs and f = 1 (Section 2.1). Then, in Section 3, we complement
this complexity result with two FPT algorithms for interval graphs, one parameterized by
(f, k) and the other parameterized by the vertex cover number. We conclude with a 2-
approximation algorithm for a slight variation of BIS on proper interval graphs.

The second problem we discuss is

f-Balanced Dominating Set (f-BDS): Let G = (V,E) be an interval graphs with ver-
tex coloring γ : V → {1, . . . , k}. Find an f -balanced dominating set, i.e., a subset D ⊆ V

such that every vertex in V \ D is adjacent to at least one vertex in D, and D contains
exactly f elements from each color class.

The dominating set problem is another fundamental problem in theoretical computer
science which also finds applications in various fields of science and engineering [5, 10].
Several variants of the dominating set problem have been considered over the years: k-tuple
dominating set [6], Liar’s dominating set [3], independent dominating set [11], and more.
The colored variant of the dominating set problem has been considered in parameterized
complexity, namely, red-blue dominating set, where the objective is to choose a dominating
set from one color class that dominates the other color class [7]. Instead, our f -BDS problem
asks for a dominating set of a vertex-colored graph that contains f vertices of each color
class. Similar to the independent set problem, we primarily study this problem on vertex-
colored interval graphs, which can be of independent interest. In Section 2.2, we prove that
f -BDS on vertex-colored proper interval graphs is NP-complete, even for f = 1.

2 Complexity Results

In this section we show that f -BIS and f -BDS are NP-complete even if the given graph G is
a proper interval graph and f = 1. Our reductions are from restricted, but still NP-complete
versions of 3SAT, namely 3-bounded 3SAT [15] and 2P2N-3SAT (hardness follows from the
result for 2P1N-SAT [19]). In the former 3SAT variant a variable is allowed to appear in at
most three clauses and clauses have two or three literals, in the latter each variable appears
exactly four times, twice as positive literal and twice as negative literal. Here we give the
constructions for both reductions; for detailed proofs we refer to the full version of this
paper.

I Remark. NP-completeness of 1-balanced independent (dominating) set implies the NP-
completeness of f -balanced independent (dominating) set for f > 1. Let I1 be the interval
graph in an 1-balanced independent (dominating) set instance. We construct an interval
graph If consisting of f independent copies of I1. Clearly I1 has 1-balanced independent
(dominating) set if and only if If has an f -balanced independent (dominating) set.

Sujoy Bhore, Jan-Henrik Haunert, Fabian Klute, Guangping Li, and Martin Nöllenburg 66:3

(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

x1 x2 x3 x4

Negative

Positive u1,1u1,2 u1,4 u2,1 u2,4
u3,2 u3,3 u3,4 u4,1 u4,3u4,2

Figure 1 The graph resulting from the reduction for 1-balanced independent set in Theorem 1
depicted as interval representation with the vertex colors being the colors of the intervals.

2.1 f -Balanced Independent Set
Let φ(x1, . . . , xn) be a 3-bounded 3SAT formula with variables x1, . . . , xn and clause set
C = {C1, . . . , Cm}. From φ we construct a proper interval graph G = (V,E) and a vertex
coloring γ of V as follows. We choose the set of colors to contain exactly m colors, one for
each clause in C and we number these colors from 1 to m. We add a vertex ui,j ∈ V for each
occurrence of a variable xi in a clause Cj in φ. Furthermore, we insert an edge ui,jui,j′ ∈ E
whenever xi appears positively in Cj and negatively in Cj′ (or vice versa). Finally, we color
each vertex ui,j ∈ V with color j. See Figure 1 for an example. The graph G created from
φ is a proper interval graph as it consists only of disjoint paths of length at most three and
can clearly be constructed in polynomial time and space.

I Theorem 1. The f -balanced independent set problem on a graph G = (V,E) with vertex
coloring γ : V → {1, . . . , k} is NP-complete, even if G is a proper interval graph and f = 1.

2.2 f -Balanced Dominating Set
We reduce from 2P2N-3SAT where each variable appears exactly twice positive and twice
negative. Let φ(x1, . . . , xn) be a 2P2N-3SAT formula with variables x1, . . . , xn and clause
set C = {C1, . . . , Cm}. For variable xi in φ we denote with Cxi

= {C1
t , C

2
t , C

1
f , C

2
f} the four

clauses xi appears in, where C1
t , C

2
t are clauses with positive occurrences of xi and C1

f , C
2
f

are clauses containing negative occurrences of xi.
We construct a graph G = (V,E) from φ(x1, . . . , xn) as follows. For each variable xi

we introduce six vertices t1, t2, f1, f2, ht, and hf and for each clause Cj with occurrences of
variables xj1 , xj2 , and xj3 we add up to three vertices ck for each k ∈ {j1, j2, j3} (In case a
clause has less than three literals we add only one or two vertices). If the connection to the
variable is clear, we also write c1

t , c2
t , c1

f , and c2
f for the vertices introduced for this variable’s

occurrences in the clauses C1
t , C

2
t , C

1
f , and C2

f , respectively. Furthermore, we add for each
variable xi the edges (ht, t1), (ht, t2), (hf , f1), and (hf , f2), as well as for each clause Cj
all possible edges between the three vertices introduced for Cj . For each variable xi we
introduce five colors, namely z1

t , z2
t , z1

f , z2
f , and zh. We set γ(ht) = γ(hf) = zh. Finally, we

x1 x2 x3 x1 ∨ x2 ∨ x3

Positive Negative Positive Negative Positive Negative

t1

t2

f1

f2
hfht

c1f

c2t
c2f

Figure 2 Illustrations of three variable gadgets and a clause gadget from Theorem 2 as interval
representations. The vertex colors are given as the colors of the intervals.

EuroCG’20

66:4 Balanced Independent and Dominating Sets on Colored Interval Graphs

set γ(t1) = γ(c1
t) = z1

t . Equivalently for t2, f1, and f2. See Figure 2 for an example.
In total we create 6n+ 3m many vertices and 4n+ 3m many edges, thus the reduction

is in polynomial time. All variable and clause gadgets are independent components and
only consist of paths of length three and triangles, hence G is a proper interval graph.
Furthermore, G can clearly be constructed in polynomial time and space.

I Theorem 2. The f -balanced dominating set problem on a graph G = (V,E) with vertex
coloring γ : V → {1, . . . , C} is NP-complete, even if G is a proper interval graph and f = 1.

3 Algorithmic Results for the Balanced Independent Set Problem

In this section we first take a parameterized perspective on f -BIS and provide two FPT
algorithms1 with different parameters. Then we give a 2-approximation algorithm for the
related problem of maximizing the number of different colors in the independent set. For
omitted proofs see the full version of this paper.

3.1 An FPT Algorithm Parameterized by (f, k)
Assume we are given an instance of f -BIS with G = (V,E) being an interval graph with
vertex coloring γ : V → {1, . . . , k}. We can construct an interval representation I =
{I1, . . . , In}, n = |V |, from G in linear time [12]. Then our algorithm works as follows.
To start we sort the right end-points of the n intervals in I in ascending order. We define
for all intervals Ii with i > 0 the index 0 ≤ pi < n as the index of the interval Ipi whose
right endpoint is rightmost before Ii’s left endpoint. For each color κ ∈ {1, . . . , k}, let êκ
denote the k-dimensional unit vector of the form (0, . . . , 0, 1, 0, . . . , 0), where the element at
the κ-th position is 1 and the rest are 0. For a subset I ′ ⊆ I we define a cardinality vector
as the k-dimensional vector CI′ = (c1, . . . , ck), where each element ci represents the number
of intervals of color i in I ′. We say CI′ is valid if all ci ≤ f and the set I ′ is independent.

The key observation here is that there are at most O(fk) many different valid cardinality
vectors as there are only k colors and we are interested in at most f intervals per color. In
the following let Uj , j ∈ {1, . . . , n}, be the union of all valid cardinality vectors of the
first j intervals in I. Let U0 = {(0, . . . , 0)} in the beginning. To compute an f -balanced
independent set the algorithm simply iterates over all right endpoints of the intervals in I
and in the i-th step computes Ui as Ui = {u+ êγ(Ii) | u ∈ Upi

and u+ êγ(Ii) is valid}∪Ui−1.
Finally, we check the cardinality vectors in Un and return true in case there is one with entries
being all f and false otherwise. An f -balanced independent set can be easily retrieved by
backtracking the decisions we made to compute the cardinality vector.

I Theorem 3. Let G = (V,E) be an interval graph with a vertex coloring γ : V → {1, . . . , k}.
We can compute an f -balanced independent set of G or determine that no such set exists in
O(n logn+ nfkα(fk)) time, where α is the inverse Ackermann function.

3.2 An FPT Algorithm Parameterized by the Vertex Cover Number
Here we will give an alternative FPT algorithm for f -BIS, this time parameterized by the
vertex cover number τ(G) of G, i.e., the size of a minimum vertex cover of G.

1 FPT is the class of parameterized problems that can be solved in time O(g(k)nO(1)) for input size n,
parameter k, and some computable function g.

Sujoy Bhore, Jan-Henrik Haunert, Fabian Klute, Guangping Li, and Martin Nöllenburg 66:5

I Lemma 4. Let G = (V,E) be a graph with vertex cover number τ(G). There are O(2τ(G))
maximal independent sets of G.

Proof. Consider a minimum vertex cover Vc in G and its complement Vind = V \ Vc. Note
that since Vc is a (minimum) vertex cover, Vind is a (maximum) independent set. Further-
more, any maximal independent set M of G can be constructed from Vind by adding M ∩Vc
and removing its neighborhood in Vind, namely M = (Vind ∪ (M ∩Vc)) \N(M ∩Vc) (see the
full version for details). Thus there are O(2τ(G)) maximal independent sets of G. J

I Theorem 5. Let G = (V,E) be an interval graph with a vertex coloring γ : V → {1, . . . , k}.
We can compute an f -balanced independent set of G or determine that no such set exists in
O(2τ(G) · n) time.

Proof. According to Lemma 4, there are O(2τ(G)) maximal independent sets of G. The
basic idea is to enumerate all the O(2τ(G)) maximal independent sets and compute their
maximum balanced subsets. Enumerating all maximal independent sets of an interval graph
takes O(1) time per output [13]. Given an arbitrary independent set of G we can compute
an f -balanced independent subset in O(n) time or conclude that no such subset exists.
Therefore, the running time of the algorithm is O(2τ(G) · n). J

3.3 A 2-Approximation for 1-Max-Colored Independent Sets
Here we study a variation of BIS, which asks for a maximally colorful independent set.

1-Max-Colored Independent Set (1-MCIS): Let G = (V,E) be a proper interval graph
with vertex coloring γ : V → {1, . . . , k}. Find a 1-max-colored independent set of G, i.e., an
independent set L ⊆ V , whose vertices contain a maximum number of colors.

We note that the NP-completeness of 1-BIS implies that 1-MCIS is an NP-hard optimiza-
tion problem as well. In the following, we will show a simple sweep algorithm for 1-MCIS
with approximation ratio 2.

Our algorithm selects one interval for each color greedily. We maintain an array S of
size k to store the selected intervals. After sorting the n right end-points in ascending order,
we scan the intervals from left to right. For each interval Ii in this order, we check if the
color of Ii is still missing in our solution (by checking if S[γ(Ii)] is not yet occupied). If
so, we store Ii in S[γ(i)] and remove all remaining intervals overlapping Ii. Otherwise, if
S[γ(Ii)] is not empty, we remove Ii and continue scanning the intervals. This is repeated
until all intervals are processed. Using that G is a proper interval graph and a charging
argument on the colors in an optimal solution that are missing in the greedy solution, we
obtain our approximation result.

I Theorem 6. Let G = (V,E) be a proper interval graph with a vertex coloring γ : V →
{1, . . . , k}. In O(n logn) time, we can compute an independent set with at least d c2e colors,
where c is the number of colors in a 1-max-colored independent set.

References
1 Pankaj K. Agarwal, Marc J. Van Kreveld, and Subhash Suri. Label placement by maximum

independent set in rectangles. Computational Geometry: Theory and Applications, 11(3-
4):209–218, 1998. doi:10.1016/S0925-7721(98)00028-5.

2 Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph. SIAM
Journal on Computing, 15(4):1054–1068, 1986. doi:10.1137/0215075.

EuroCG’20

66:6 Balanced Independent and Dominating Sets on Colored Interval Graphs

3 Sandip Banerjee and Sujoy Bhore. Algorithm and hardness results on liar’s dominating
set and k-tuple dominating set. In Proceedings of the 30th International Workshop on
Combinatorial Algorithms (IWOCA’19), volume 11638 of LNCS, pages 48–60. Springer,
2019. doi:10.1007/978-3-030-25005-8_5.

4 Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff. Optimizing ac-
tive ranges for consistent dynamic map labeling. Computational Geometry: Theory and
Applications, 43(3):312–328, 2010. doi:10.1016/j.comgeo.2009.03.006.

5 Gerard J. Chang. Algorithmic aspects of domination in graphs. In Handbook of Combina-
torial Optimization, pages 1811–1877. Springer, 1998. doi:10.1007/978-1-4613-0303-9_
28.

6 Mustapha Chellali, Odile Favaron, Adriana Hansberg, and Lutz Volkmann. k-domination
and k-independence in graphs: A survey. Graphs and Combinatorics, 28(1):1–55, 2012.
doi:10.1007/s00373-011-1040-3.

7 Valentin Garnero, Ignasi Sau, and Dimitrios M. Thilikos. A linear kernel for planar red–
blue dominating set. Discrete Applied Mathematics, 217:536–547, 2017. doi:10.1016/j.
dam.2016.09.045.

8 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.
9 Jan-Henrik Haunert and Tobias Hermes. Labeling circular focus regions based on a

tractable case of maximum weight independent set of rectangles. In Proceedings of the 2nd
ACM SIGSPATIAL Workshop on MapInteraction, 2014. doi:10.1145/2677068.2677069.

10 Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater. Fundamentals of domination in
graphs, volume 208 of Pure and applied mathematics. Dekker, 1998.

11 Robert W. Irving. On approximating the minimum independent dominating set. Informa-
tion Processing Letters, 37(4):197–200, 1991. doi:10.1016/0020-0190(91)90188-N.

12 C. Lekkeikerker and J. Boland. Representation of a finite graph by a set of intervals on the
real line. Fundamenta Mathematicae, 51(1):45–64, 1962. doi:10.4064/fm-51-1-45-64.

13 Yoshio Okamoto, Takeaki Uno, and Ryuhei Uehara. Counting the number of independent
sets in chordal graphs. Journal of Discrete Algorithms, 6(2):229–242, 2008. doi:10.1016/
j.jda.2006.07.006.

14 Panos M. Pardalos and Jue Xue. The maximum clique problem. Journal of Global Opti-
mization, 4(3):301–328, 1994. doi:10.1007/BF01098364.

15 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathe-
matics, 8(1):85–89, 1984. doi:10.1016/0166-218X(84)90081-7.

16 René Van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval
scheduling and colorful independent sets. Journal of Scheduling, 18(5):449–469, 2015.
doi:10.1007/s10951-014-0398-5.

17 Marc J. van Kreveld, Tycho Strijk, and Alexander Wolff. Point labeling with sliding labels.
Computational Geometry: Theory and Applications, 13(1):21–47, 1999. doi:10.1016/
S0925-7721(99)00005-X.

18 Frank Wagner and Alexander Wolff. A combinatorial framework for map labeling. In
Proceedings of the 6th International Symposium on Graph Drawing (GD’98), volume 1547
of LNCS, pages 316–331. Springer, 1998. doi:10.1007/3-540-37623-2_24.

19 Ryo Yoshinaka. Higher-order matching in the linear lambda calculus in the absence of
constants is NP-complete. In Proceedings of the 16th International Conference on Term
Rewriting and Applications (RTA’05), volume 3467 of LNCS, pages 235–249. Springer,
2005. doi:10.1007/978-3-540-32033-3_18.

The Complexity of Finding Tangles
Oksana Firman1, Stefan Felsner2, Philipp Kindermann1,
Alexander Ravsky3, Alexander Wolff1, and Johannes Zink1

1 Universität Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

2 TU Berlin, Germany
felsner@math.tu-berlin.de

3 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, Lviv, Ukraine
alexander.ravsky@uni-wuerzburg.de

Abstract
We study the following combinatorial problem. Given a set of n y-monotone curves, which we
call wires, a tangle determines the order of the wires on a number of horizontal layers such that
the orders of the wires on any two consecutive layers differ only in swaps of neighboring wires.
Given a multiset L of swaps (that is, unordered pairs of wires) and an initial order of the wires,
a tangle realizes L if each pair of wires changes its order exactly as many times as specified by L.
Finding a tangle that realizes a given multiset of swaps and uses the least number of layers is
known to be NP-hard. We show that it is even NP-hard to decide if a realizing tangle exists.

1 Introduction

The subject of this paper is the visualization of so-called chaotic attractors, which occur
in chaotic dynamic systems. Such systems are considered in physics, celestial mechanics,
electronics, fractals theory, chemistry, biology, genetics, and population dynamics. Birman
and Williams [3] were the first to mention tangles as a way to describe the topological
structure of chaotic attractors. They investigated how the orbits of attractors are knotted.
Later Mindlin et al. [6] showed how to characterize attractors using integer matrices that
contain numbers of swaps between the orbits.

Olszewski et al. [7] studied computational aspects of visualizing chaotic attractors. In the
framework of their paper, one is given a set of y-monotone curves called wires that hang off
a horizontal line in a fixed order, and a multiset of swaps between the wires (called list). A
tangle then is a visualization of these swaps, i.e., a sequence of permutations of the wires such
that consecutive permutations differ only in swaps of neighboring wires (but disjoint swaps
can be done simultaneously). For examples of lists and tangles realizing them, see Figs. 1
and 2. The list L in Fig. 1 admits a tangle realizing it. We call such a list feasible. The
list L′, in contrast, is not feasible. In Fig. 2, the list Ln is described by an (n× n)-matrix.
The gray horizontal bars correspond to the permutations (or layers). Olszewski et al. gave

L = {(1, 2), (1, 3)}

L′ = {(1, 2)2, (1, 3)}

1 2 3

2 3 1

Figure 1 Lists L and L′ for three wires (left). The list L is feasible (a tangle realizing L is to the
right), whereas L′, which has two copies of the swap (1, 2), is infeasible.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

67:2 The Complexity of Finding Tangles

Ln =

0 1 1 . . . 1 0 2
1 0 1 . . . 1 2 0
1 1 0 . . . 1 0 2
...

...
...

...
...

1 1 1 . . . 0 0 2
0 2 0 . . . 0 0 n− 1
2 0 2 . . . 2 n− 1 0

(The bold zeros and twos must be exchanged if n is even.)

· · ·1 2 n−2 n−1 n

· · ·n−2 1 n−1 n2

Figure 2 A list Ln for n wires (left) and a tangle realizing Ln (right). Entry (i, j) of Ln defines
how often wires i and j must swap in the tangle. Here, n = 7.

an exponential-time algorithm for minimizing the height of a tangle, that is, the number of
layers. They tested their algorithm on a benchmark set.

Later, we [5] showed that in fact tangle-height minimization is NP-hard. Our proof was
by reduction from 3-Partition. We also presented an (exponential-time) algorithm for the
problem. Using an extended benchmark set, we showed that in almost all cases our algorithm
is faster than the algorithm of Olszewski et al.

Sado and Igarashi [8] used the same optimization criterion for tangles, given only the
final permutation. They used odd-even sort, a parallel variant of bubble sort, to compute
tangles with at most one layer more than the minimum. Wang [10] showed that there is
always a height-optimal tangle where no swap occurs more than once. Bereg et al. [1, 2]
considered a similar problem. Given a final permutation, they showed how to minimize the
number of bends or moves (which are maximal “diagonal” segments of the wires).

In this paper we strengthen our previous results and show that it is even NP-hard to test,
given a multiset of swaps and a start permutation of the wires, whether there is any tangle
that realizes the given swaps. We call this problem List-Feasibility.

2 Complexity

We show that List-Feasibility is NP-hard by reducing from Positive NAE 3-SAT Diff,
a variant of Not-All-Equal 3-SAT. Recall that in Not-All-Equal 3-SAT one is given
a conjunctive normal form with three literals per clause and the task is to decide whether
there exists a variable assignment such that in no clause all three literals have the same truth
value. By Schaefer’s dichotomy theorem [9], Not-All-Equal 3-SAT is NP-hard even if no
negative literals are admitted. In Positive NAE 3-SAT Diff, additionally each clause
contains three different variables. It is easy to see that this variant is NP-hard, too.

I Lemma 1. Positive NAE 3-SAT Diff is NP-hard.

For a formal proof, see the full version [4]. Our main result is as follows.

I Theorem 2. List-Feasibility is NP-hard (even if every pair of wires has at most eight
swaps).

O. Firman, S. Felsner, Ph. Kindermann, A. Ravsky, A. Wolff, and J. Zink 67:3

We split our proof into several parts. First we introduce some notation, then we give the
intuition behind our reduction. Next, we explain variable and clause gadgets in more detail.
Finally, we show the correctness of the reduction.

Notation. We label the wires by their index in the initial permutation of a tangle. In
particular, for a wire ε, its neighbor to the right is wire ε+ 1. If a wire µ is to the left of
some other wire ν, we write µ < ν. If all wires in a set M are to the left of all wires in a
set N , we write M < N . For any integer k > 0, let [k] = {1, 2, . . . , k}.

Setup. Given an instance F = d1 ∧ · · · ∧ dm of Positive NAE 3-SAT Diff with variables
w1, . . . , wn, we construct in polynomial time a list L of swaps such that there is a tangle T
realizing L if and only if F is a yes-instance.

In L we have two inner wires λ and λ′ = λ+ 1 that swap eight times. This yields two
types of loops (see Fig. 3): four λ′–λ loops, where λ′ is on the left and λ is on the right side,
and three λ–λ′ loops with λ on the left and λ′ on the right side. Notice that we consider
only closed loops, which are bounded by swaps between λ and λ′. In the following, we
construct variable and clause gadgets. Each variable gadget will contain a specific wire that
represents the variable, and each clause gadget will contain a specific wire that represents
the clause. The corresponding variable and clause wires swap in one of the four λ′–λ loops.
We call the first two λ′–λ loops true-loops, and the last two λ′–λ loops false-loops. If the
corresponding variable is true, then the variable wire swaps with the corresponding clause
wires in a true-loop, otherwise in a false-loop.

Apart from λ and λ′, our list L contains (many) other wires, which we split into groups. For
every i ∈ [n], we introduce sets Vi and V ′i of wires that together form the gadget for variable wi
of F . These sets are ordered (initially) Vn < Vn−1 < · · · < V1 < λ < λ′ < V ′1 < V ′2 < · · · < V ′n;
the order of the wires inside these sets will be detailed in the next two paragraphs. Let
V = V1 ∪V2 ∪ · · · ∪Vn and V ′ = V ′1 ∪V ′2 ∪ · · · ∪V ′n. Similarly, for every j ∈ [m], we introduce
a set Cj of wires that contains a clause wire cj and three sets of wires D1

j , D2
j , and D3

j

that represent occurrences of variables in a clause dj of F . The wires in Cj are ordered
D3
j < D2

j < D1
j < cj . Together, the wires in C = C1 ∪ C2 ∪ · · · ∪ Cm represent the clause

gadgets; they are ordered V < Cm < Cm−1 < · · · < C1 < λ. Additionally, our list L contains
a set E = {ϕ1, . . . , ϕ7} of wires that will make our construction rigid enough. The order of
all wires in L is V < C < λ < λ′ < E < V ′. Now we present our gadgets in more detail.

Variable gadget. For each variable wi of F , i ∈ [n], we introduce two sets of wires Vi
and V ′i . Each V ′i contains a variable wire vi that has four swaps with λ and no swaps with
λ′. Therefore, vi intersects at least one and at most two λ′–λ loops. In order to prevent vi
from intersecting both a true- and a false-loop, we introduce two wires αi ∈ Vi and α′i ∈ V ′i
with αi < λ < λ′ < α′i < vi; see Fig. 3. These wires neither swap with vi nor with each other,
but they have two swaps with both λ and λ′. We want to force αi and α′i to have the two
true-loops on their right and the two false-loops on their left, or vice versa. This will ensure
that vi cannot reach both a true- and a false-loop.

To this end, we introduce, for j ∈ [5], a βi-wire βi,j ∈ Vi and a β′i-wire β′i,j ∈ V ′i . These
are ordered βi,5 < βi,4 < · · · < βi,1 < αi and α′i < β′i,1 < β′i,2 < · · · < β′i,5 < vi. Every pair
of βi-wires as well as every pair of β′i-wires swaps exactly once. Neither βi- nor β′i-wires swap
with αi or α′i. Each β′i-wire has four swaps with vi. Moreover, βi,1, βi,3, βi,5, β′i,2, β′i,4 swap
with λ twice. Symmetrically, βi,2, βi,4, β′i,1, β′i,3, β′i,5 swap with λ′ twice; see Fig. 3.

EuroCG’20

67:4 The Complexity of Finding Tangles

T

T

F

F

λ λ′

λ′λ

viα′
i · · ·β′

i,5β′
i,1

T

T

F

F

λ λ′

λ′λ

︷ ︸︸ ︷V ′
i︷ ︸︸ ︷Vi

αi· · ·βi,5 βi,1

αi· · ·βi,1 βi,5 viα′
i · · ·β′

i,1β′
i,5

︷ ︸︸ ︷Vi

· · ·βi,5 βi,1

· · ·βi,1 βi,5

αi

αi

· · ·β′
i,5β′

i,1

︷ ︸︸ ︷V ′
i

· · ·β′
i,1β′

i,5

vi

vi

α′
i

α′
i

Figure 3 A variable gadget with a variable wire vi that corresponds to the variable that is true
(on the left) or false (on the right).

We use the βi- and β′i-wires to fix the minimum number of λ′–λ loops that are on the
left of αi and on the right of α′i, respectively. Note that, together with λ and λ′, the βi- and
β′i-wires have the same rigid structure as the wires in Fig. 2.

I Observation 1 ([5]). The tangle in Fig. 2 realizes the list Ln specified there; all tangles
that realize Ln have the same order of swaps along each wire.

This means that there is a unique order of swaps between the βi-wires and λ or λ′, i.e.,
for j ∈ [4], every pair of βi,j+1–λ swaps (or βi,j+1–λ′ swaps, depending on the parity of j)
can be done only after the pair of βi,j–λ′ swaps (or βi,j–λ swaps, respectively). We have
the same rigid structure on the right side with β′i-wires. Hence, there are at least two λ′–λ
loops to the left of αi and at least two to the right of α′i. Since αi and α′i do not swap, there
cannot be a λ′–λ loop that appears simultaneously on both sides.

Note that the λ–λ′ swaps that belong to the same side have to be consecutive, otherwise
αi or α′i would need to swap more than twice with λ and λ′. Thus, there are only two ways
to order the swaps among the wires αi, α′i, λ, λ′; the order is either α′i–λ′, α′i–λ, four times
λ–λ′, α′i–λ, α′i–λ′, αi–λ, αi–λ′, four times λ–λ′, αi–λ′, αi–λ (see Fig. 3(left)) or the reverse
(see Fig. 3(right)). It is easy to see that in the first case vi can reach only the first two λ′–λ
loops (the true-loops), and in the second case only the last two (the false-loops).

To avoid that the gadget for variable wi restricts the proper functioning of the gadget
for some variable wj with j > i, we add the following swaps to L: for any j > i, αj and α′j
swap with both Vi and V ′i twice, the βj-wires swap with α′i and Vi twice, and, symmetrically,
the β′j-wires swap with αi and V ′i twice, vj swaps with αi and all wires in V ′i six times. We

O. Firman, S. Felsner, Ph. Kindermann, A. Ravsky, A. Wolff, and J. Zink 67:5

T

T

F

F

λ λ′

λ′λ

viα′
i · · ·β′

i,5β′
i,1

︷ ︸︸ ︷V ′
i

αi

αi viα′
i · · ·β′

i,1β′
i,5

T

T

F

F

λ λ′

λ′λ

viα′
i · · ·β′

i,5β′
i,1

︷ ︸︸ ︷V ′
i

αi

αi viα′
i · · ·β′

i,1β′
i,5

vj

vj

vj

vj

Figure 4 A realization of swaps between the variable wire vj and all wires that belong to the
variable gadget corresponding to the variable wi. On the left the variables wi and wj are both true,
and on the right wi is true, whereas wj is false.

briefly explain these multiplicities. Wires from Vj and V ′j \ {vj} swap their partners twice so
that they reach the corresponding λ–λ′ or λ′–λ loops and go back. None of the wires from
Vi or V ′i is restricted in which loop to intersect. Considering the wire vj , note that it has to
reach the λ′–λ loops twice. For simplicity and in order not to have any conflicts with the
β′i-wires, we introduce exactly six swaps with αi and all wires in V ′i , see Fig. 4.

Clause gadget. For every clause dj from F , j ∈ [m], we introduce a set of wires Cj . It
contains the clause wire cj that has eight swaps with λ′. We want to force each cj to appear
in all λ′–λ loops. To this end, we use the set E with the seven ϕ-wires ϕ1, . . . , ϕ7 ordered
ϕ1 < · · · < ϕ7. They create a rigid structure similar to the one of the βi-wires. Each pair of
ϕ-wires swaps exactly once. For each k ∈ [7], if k is odd, ϕk swaps twice with λ and twice
with cj for every j ∈ [m]. If k is even, ϕk swaps twice with λ′. Since cj does not swap with λ,
each pair of swaps between cj and a ϕ-wire with odd index appears inside a λ′–λ loop. Due
to the rigid structure, each of these pairs of swaps occurs in a different λ′–λ loop; see Fig. 5.

If a variable wi belongs to a clause dj , then L contains two vi–cj swaps. Since every clause
has exactly three different positive variables, we want to force variable wires that belong to
the same clause to swap with the corresponding clause wire in different λ′–λ loops. This
way, every clause contains at least one true and at least one false variable if F is satisfiable.

We call a part of a clause wire cj that is inside a λ′–λ loop—i.e., a λ′–cj loop—an arm of
the clause cj . We want to “protect” the arm that is intersected by a variable wire from other
variable wires. To this end, for every occurrence k ∈ [3] of a variable in dj , we introduce four
more wires. The wire γkj will protect the arm of cj that the variable wire of the k-th variable

EuroCG’20

67:6 The Complexity of Finding Tangles

T

T

F

F

λ λ′

λ λ′

vi

vi

cj ϕ1 ϕ7· · ·

ϕ1ϕ7 · · ·

γkjψk
j,1ψk

j,2ψk
j,3

︷ ︸︸ ︷E︷ ︸︸ ︷Dk
j

cjγkjψk
j,3ψk

j,2ψk
j,1

Figure 5 A gadget for clause cj showing only one of the three variables, namely vi.

of dj intersects. To achieve this, γkj has to intersect one of the ϕ-wires that swaps with the
arm. In order not to restrict the choice of the λ′–λ loop, γkj swaps twice with each ϕ` with
odd ` ∈ [7]. Similarly to cj , the wire γkj has eight swaps with λ′ and appears once in every
λ′–λ loop. Additionally, γkj has two swaps with cj .

We force γkj to protect the correct arm in the following way. Consider the λ′–λ loop where
an arm of cj swaps with a variable wire vi. We want the order of swaps along λ′ inside this
loop to be fixed as follows: λ′ first swaps with γkj , then twice with cj , and then again with γkj .
This would prevent all variable wires that do not swap with γkj from reaching the arm of cj .
To achieve this, we introduce three ψkj -wires ψkj,1, ψkj,2, ψkj,3 with ψkj,3 < ψkj,2 < ψkj,1 < γkj .

The ψkj -wires also have the rigid structure similar to the one that βi-wires have, so that
there is a unique order of swaps along each ψkj -wire. Each pair of ψkj -wires swaps exactly
once, ψkj,1 and ψkj,3 have two swaps with cj , and ψkj,2 has two swaps with λ′ and vi. Note
that no ψkj -wire swaps with γkj . Also, since ψkj,2 does not swap with cj , the ψkj,2–vi swaps can
appear only inside the λ′–cj loop that contains the arm of cj we want to protect from other
variable wires. Since cj has to swap with ψkj,1 before and with ψkj,3 after the ψkj,2–λ′ swaps,
and since there are only two swaps between γkj and cj , there is no way for any variable wire
except for vi to reach the arm of cj without also intersecting γkj ; see Fig. 5.

Finally, we consider the behavior of wires from different clause gadgets among each other
and with respect to wires from variable gadgets. For every ` > k and for every j ∈ [m], the
wires cj and γ`j have eight swaps and the ψ`j-wires have two swaps with all wires in Cj . Since
all wires in V are to the left of all wires in C, each wire in C swaps twice with all wires in V
and, for i ∈ [n], with α′i. Finally, all α- and α′-wires swap twice with each ϕ-wire.

O. Firman, S. Felsner, Ph. Kindermann, A. Ravsky, A. Wolff, and J. Zink 67:7

T

T

F

F

λ λ′

λ λ′

v2

v2

c1

c1

c2

c2

v1

v1

v3

v3

v4

v4

c3

c3

c4

c4

v5

v5

Figure 6 A tangle obtained from the satisfiable formula F = (w1 ∨ w2 ∨ w3) ∧ (w1 ∨ w3 ∨ w4) ∧
(w2 ∨ w3 ∨ w4) ∧ (w2 ∨ w3 ∨ w5). Here w1, w4 and w5 are set to true, whereas w2 and w3 are set to
false. Note that we show here only “crucial” wires, namely λ, λ′, and all variable and clause wires.

Note that the order of the arms of the clause wires inside a λ′–λ loop cannot be chosen
arbitrarily. If a variable wire intersects more than one clause wire, the arms of these clause
wires should be consecutive, as for v2 and v3 in the shaded region in Fig. 6. If we had an
interleaving pattern of variable wires (see inset), say v2 first intersects c1, then v3 intersects c2,
then v2 intersects c3, and finally v3 intersects c4, then v2 and v3 would have to swap at least
three times within the same λ′–λ loop. However, we have reserved only eight swaps for each
pair of variable wires—two for each of the four λ′–λ loops.

Correctness. Clearly, if F is satisfiable, then there is a tangle obtained from F as described
above that realizes the list L, so L is feasible; see Fig. 6 for an example.

On the other hand, if there is a tangle that realizes the list L that we obtain from
the reduction, then F is satisfiable. This follows from the rigid structure of a tangle that
realizes L. The only flexibility is in which type of loop (true or false) a variable wire swaps
with the corresponding clause wire. As described above, a tangle exists if, for each clause,
the corresponding three variable wires swap with the clause wire in three different loops (at
least one of which is a true-loop and at least one is a false-loop). In this case, the position of
the variable wires yields a truth assignment satisfying F .

EuroCG’20

67:8 The Complexity of Finding Tangles

3 Open Problems

We recall three open questions of our previous paper [5].
Can we decide the feasibility of a list faster than finding its optimal realization?
For simple lists, that is, lists where each swap occurs at most once, odd-even sort efficently
computes tangles with at most one layer more than minimum [8]. Can minimum-height
tangles be computed efficiently for simple lists?
In this paper, we showed that it is NP-hard to decide whether general lists are feasible.
Earlier, we showed that the problem is easy for odd lists [5], i.e., if every swap occurs
an odd number of times or zero times. A list is non-separable if, for every three wires
i < k < j, there is no swap between i and k, and none between k and j, then there isn’t
any between i and j either. We conjecture that every non-separable even list is feasible.

References
1 Sergey Bereg, Alexander Holroyd, Lev Nachmanson, and Sergey Pupyrev. Representing

permutations with few moves. SIAM J. Discrete Math., 30(4):1950–1977, 2016. URL:
https://arxiv.org/abs/1508.03674, doi:10.1137/15M1036105.

2 Sergey Bereg, Alexander E. Holroyd, Lev Nachmanson, and Sergey Pupyrev. Drawing
permutations with few corners. In Stephen Wismath and Alexander Wolff, editors, Proc.
Int. Symp. Graph Drawing (GD’13), volume 8242 of LNCS, pages 484–495. Springer, 2013.
URL: http://arxiv.org/abs/1306.4048, doi:10.1007/978-3-319-03841-4_42.

3 Joan S. Birman and R. Fredrick Williams. Knotted periodic orbits in dynamical systems—I:
Lorenz’s equation. Topology, 22(1):47–82, 1983. doi:10.1016/0040-9383(83)90045-9.

4 Oksana Firman, Stefan Felsner, Philipp Kindermann, Alexander Ravsky, Alexander Wolff,
and Johannes Zink. The complexity of finding tangles. Arxiv report, 2020. URL: http:
//arxiv.org/abs/2002.12251.

5 Oksana Firman, Philipp Kindermann, Alexander Ravsky, Alexander Wolff, and Johannes
Zink. Computing optimal-height tangles faster. In Daniel Archambault and Csaba D.
Tóth, editors, Proc. 27th Int. Symp. Graph Drawing & Network Vis. (GD’19), volume
11904 of LNCS, pages 203–215. Springer, 2019. URL: http://arxiv.org/abs/1901.06548,
doi:10.1007/978-3-030-35802-0_16.

6 Gabo Mindlin, Xin-Jun Hou, Robert Gilmore, Hernán Solari, and N. B. Tufillaro. Clas-
sification of strange attractors by integers. Phys. Rev. Lett., 64:2350–2353, 1990. doi:
10.1103/PhysRevLett.64.2350.

7 Maya Olszewski, Jeff Meder, Emmanuel Kieffer, Raphaël Bleuse, Martin Rosalie, Grégoire
Danoy, and Pascal Bouvry. Visualizing the template of a chaotic attractor. In Therese
Biedl and Andreas Kerren, editors, Proc. 26th Int. Symp. Graph Drawing & Network Vis.
(GD’18), volume 11282 of LNCS, pages 106–119. Springer, 2018. URL: https://arxiv.
org/abs/1807.11853, doi:10.1007/978-3-030-04414-5_8.

8 Kazuhiro Sado and Yoshihide Igarashi. A function for evaluating the computing time of
a bubbling system. Theor. Comput. Sci., 54:315–324, 1987. doi:10.1016/0304-3975(87)
90136-8.

9 Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annu. ACM
Symp. Theory Comput. (STOC’78), pages 216–226, 1978. doi:10.1145/800133.804350.

10 Deborah C. Wang. Novel routing schemes for IC layout part I: Two-layer channel routing.
In Proc. 28th ACM/IEEE Design Automation Conf. (DAC’91), pages 49–53, 1991. doi:
10.1145/127601.127626.

Sparse Regression via Range Counting∗†

Jean Cardinal1 and Aurélien Ooms2

1 Université libre de Bruxelles (ULB), Brussels, Belgium
jcardin@ulb.ac.be

2 BARC, University of Copenhagen, Denmark
aurelien.ooms@di.ku.dk

Abstract
The sparse regression problem, also known as best subset selection problem, can be cast as
follows: Given a set S of n points in Rd, a point y ∈ Rd, and an integer 2 ≤ k ≤ d, find an affine
combination of at most k points of S that is nearest to y. We describe a O(nk−1 logd−k+2 n)-time
randomized (1 + ε)-approximation algorithm for this problem with d and ε constant. This is the
first algorithm for this problem running in time o(nk). Its running time is similar to the query time
of a data structure recently proposed by Har-Peled, Indyk, and Mahabadi (ICALP’18), while not
requiring any preprocessing. Up to polylogarithmic factors, it matches a conditional lower bound
relying on a conjecture about affine degeneracy testing. In the special case where k = d = O(1),
we provide a simple Oδ(nd−1+δ)-time deterministic exact algorithm, for any δ > 0. Finally, we
show how to adapt the approximation algorithm for the sparse linear regression and sparse convex
regression problems with the same running time, up to polylogarithmic factors.

1 Introduction

Searching for a point in a set that is the closest to a given query point is certainly among the
most fundamental problems in computational geometry. It motivated the study of crucial
concepts such as multidimensional search data structures, Voronoi diagrams, dimensionality
reduction, and has immediate applications in the fields of databases and machine learning.
A natural generalization of this problem is to search not only for a single nearest neighbor,
but rather for the nearest combination of a bounded number of points. More precisely, given
an integer k and a query point y, we may wish to find an affine combination of k points of
the set that is the nearest to y, among all possible such combinations. This problem has
a natural interpretation in terms of sparse approximate solutions to linear systems, and
is known as the sparse regression, or sparse approximation problem in the statistics and
machine learning literature. Sparsity is defined here in terms of the `0 pseudonorm ‖.‖0, the
number of nonzero components. The sparse affine regression problem can be cast as follows:
I Problem 1 (Sparse affine regression). Given a matrix A ∈ Rd×n, a vector y ∈ Rd, and
an integer 2 ≤ k ≤ d, find x ∈ Rn minimizing ‖Ax− y‖2, and such that ‖x‖0 ≤ k,
and

∑n
i=1 xi = 1.

By interpreting the columns of A as a set of n points in Rd, the problem can be
reformulated in geometric terms as the nearest induced flat problem.
I Problem 2 (Nearest induced flat). Given a set S of n points in Rd, an additional point y ∈ Rd,
and an integer k such that 2 ≤ k ≤ d, find k points of S such that the distance from y to
their affine hull is the smallest.

∗ First author supported by the Fonds de la Recherche Scientifique-FNRS under CDR Grant J.0146.18.
Second author supported by the VILLUM Foundation grant 16582. Part of this research was accomplished
while the second author was a PhD student at ULB under FRIA Grant 5203818F (FNRS).

† A full version of this paper is available at https://arxiv.org/abs/1908.00351 [8].

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

68:2 Sparse Regression via Range Counting

Here the distance from a point to a flat is the distance to the closest point on the flat. Note
that if we allow k = 1 in the definition above, we have the nearest neighbor problem as a
special case. We consider the setting in which the dimension d of the ambient space as well
as the number k of points in the sought combination are constant, and study the asymptotic
complexity of the problem with respect to n. As observed recently by Har-Peled, Indyk,
and Mahabadi [15], the problem is closely related to the classical affine degeneracy testing
problem, defined as follows.

I Problem 3 (Affine degeneracy testing). Given a set S of n points in Rd, decide whether
there exist d+ 1 distinct points of S lying on an affine hyperplane.

The latter can be cast as deciding whether a point set is in so-called general position, as is
often assumed in computational geometry problems. In the special case d = 2, the problem
is known to be 3SUM-hard [14, 7]. In general, it is not known whether it can be solved
in time O(nd−δ) for some positive δ [13, 2], even for randomized algorithms. Supposing
it cannot, we directly obtain a conditional lower bound on the complexity of the nearest
induced flat problem. This holds even for approximation algorithms, which return an induced
flat whose distance is within some bounded factor of the distance of the actual nearest flat.

I Lemma 1.1 (Har-Peled, Indyk, and Mahabadi [15]). If the nearest induced flat problem can
be approximated within any multiplicative factor in time O(nk−1−δ) for some positive δ, then
affine degeneracy testing can be solved in time O(nd−δ).

Proof. Suppose we have an approximation algorithm for the nearest induced flat problem.
Then given an instance of affine degeneracy testing, we can go through every point y ∈ S
and run this algorithm on an instance composed of the set S \ {y}, the point y, and k = d.
The answer to the degeneracy testing instance is positive if and only if for at least one of
these instances, the distance to the approximate nearest flat is zero. The running time
is O(nd−δ). J

For more motivation on the subject, see the full version [8].

Our results
We prove that the nearest induced flat problem (Problem 2), can be solved within a (1 + ε)
approximation factor for constant d and ε in time O(nk−1 logd−k+2 n), which matches the
conditional lower bound on affine degeneracy testing, up to polylogarithmic factors. Har-
Peled, Indyk, and Mahabi [15] gave a data structure to preprocess a set of data points to
allow solving the nearest induced flat problem on this set for any query point. Their data
structure requires Õ(nk) preprocessing and Õ(nk−1) query time. We propose an algorithm
that gets rid of the preprocessing for single queries: the overall running time of our algorithm
is equal to the query time of their data structure, up to polylogarithmic factors. To the best
of our knowledge, this is a near-linear improvement on all previous methods for this special
case.

The two main tools that are used in our algorithms are on the one hand the approximation
of the Euclidean distance by a polyhedral distance, as is done in Agarwal, Rubin, and Sharir [1],
and on the other hand a reduction of the decision version of the problem to orthogonal range
queries. Note that orthogonal range searching data structures are also used in [15], albeit in
a significantly distinct fashion.

In §2, as warm-up, we focus on the special case of Problem 2 in which d = 3 and k = 2.

J. Cardinal and A. Ooms 68:3

Table 1 Results. For the approximation algorithms, the dependency on ε in the running time
is of the order of ε(1−d)/2. Only the details for the first result are included in this abstract. The
details for the other results can be found in the full version [8].

Problem Details Approximation Running Time
Problem 4: Nearest induced line in R3 §2 1 + ε Oε(n log3 n)
Problem 2: Nearest induced flat [8] 1 + ε Od,ε(nk−1 logd−k+2 n)
Problem 5: Nearest induced hyperplane [8] 1 Od,δ(nd−1+δ), ∀δ > 0
Problem 6: Nearest induced simplex [8] 1 + ε Od,ε(nk−1 logd n)

I Problem 4 (Nearest induced line in R3). Given a set S of n points in R3, and an additional
point y, find two points a, b ∈ S such that the distance from y to the line going through a
and b is the smallest.

Our algorithm for this special case already uses all the tools that are subsequently generalized
for arbitrary values of k and d. The general algorithm for the nearest induced flat problem
is described in the full version [8]. In the full version, we also consider the special case of
Problem 2 in which k = d, which can be cast as the nearest induced hyperplane problem.

I Problem 5 (Nearest induced hyperplane). Given a set S of n points in Rd, and an additional
point y, find d points of S such that the distance from y to the affine hyperplane spanned by
the d points is the smallest.

For this case, we design an exact algorithm with running time O(nd−1+δ), for any δ > 0. The
solution solely relies on classical computational geometry tools, namely point-hyperplane
duality and cuttings [11, 10].

Our algorithms can be adapted to perform sparse linear regression, instead of sparse
affine regression. In the former, we drop the condition that the sum of the coefficients must
be equal to one. This is equivalent to the nearest linear induced k-flat problem. It can be
solved in the same time as in the affine case. To see this, realize that the problem is similar
to the nearest induced flat problem where the first vertex is always the origin. The obtained
complexity is the same as the one for the nearest induced flat problem.

Adapting our algorithm to sparse convex regression, which differs from sparse affine
regression by requiring x to be positive, is a bit more involved. The sparse convex regression
problem can be cast as the problem of finding the nearest simplex induced by k points of S.

I Problem 6 (Nearest induced simplex). Given a set S of n points in Rd, an additional point y,
and an integer k such that 2 ≤ k ≤ d, find k points of S such that the distance from y to
their convex hull is the smallest.

We prove that this problem can also be approximated within a (1 + ε) approximation factor
for constant d and ε in time O(nk−1 logd n), hence with an extra O(logk−2 n) factor in the
running time compared to the affine case. This is described in the full version [8].

Our results and the corresponding sections are summarized in Table 1.

2 A (1 + ε)-approximation algorithm for the nearest induced line
problem in R3

We first consider the nearest induced line problem (Problem 4). We describe a near-linear
time algorithm that returns a (1 + ε)-approximation to the nearest induced line in R3, that
is, a line at distance at most (1 + ε) times larger than the distance to the nearest line.

EuroCG’20

68:4 Sparse Regression via Range Counting

I Theorem 2.1. For any constant ε > 0, there is a randomized (1 + ε)-approximation
algorithm for the nearest induced line problem in R3 running in time Oε(n log3 n) with high
probability.

The sketch of our algorithm is as follows: First, reduce the problem of minimizing
the Euclidean distance to that of minimizing the polyhedral distance for some well-chosen
polyhedron depending on ε. Second, reduce the problem of minimizing the polyhedral
distance to that of edge-shooting. Third, reduce the problem of edge-shooting to that of
deciding whether an edge shot at a certain distance would hit any induced line through some
sort of binary search. Fourth, efficiently solve this decision problem using orthogonal range
counting data structures.

(1 + ε)-approximation via polyhedral distances.

The polyhedral distance dQ(y, v) between two points y and v with respect to a polyhedron Q
centered on the origin is the smallest λ such that the dilation λQ of Q centered on y contains v,
hence such that v ∈ y + λQ. Our proof uses the following result, of which a weaker variant
due to Dudley [12] is a major ingredient in the design of the data structure described by
Agarwal, Rubin, and Sharir [1].

I Lemma 2.2 (Arya, Arya, da Fonseca, Mount [3]). For any positive integer d and positive
real ε, there exists a d-dimensional polyhedron Q with O(1/ε(d−1)/2) faces such that for
every y, v ∈ Rd:

‖y − v‖2 ≤ dQ(y, v) ≤ (1 + ε) · ‖y − v‖2 .

This bound is asymptotically optimal. See [4, 6, 5] for more details.
Next, we reduce Problem 4 to a counting problem in two steps.

Edge-shooting.

We use Lemma 2.2 for d = 3. We give an exact algorithm for computing the nearest induced
line with respect to a polyhedral distance dQ, where Q is defined from ε as in Lemma 2.2.
Given a polyhedron Q, one can turn it into a simplicial polyhedron by triangulating it.
Therefore, for constant values of ε, this reduces the problem to a constant number of
instances of the edge-shooting problem, defined as follows: Given an edge e of Q, find the
smallest value λ such that y + λe intersects a line through two points of S. We iterate this
for all edges of Q, and pick the minimum value. This is exactly the polyhedral distance
from y to its nearest induced line.

Binary search.

Using a randomized binary search procedure, we reduce the edge-shooting problem to a
counting problem, defined as follows: given the triangle ∆ defined as the convex hull of y
and y + λe, count how many pairs of points a, b ∈ S are such that the line `(a, b) through
them intersects ∆. Suppose there exists a procedure for solving this problem. We can use
this procedure to solve the edge-shooting problem efficiently as follows.

First initialize λ to some upper bound on the distance. Then count how many lines `(a, b)
intersect ∆, using the procedure. If there is only one, then return its (polyhedral) distance
to y. Otherwise, pick one such line uniformly at random and compute the value λ′ such that
this line intersects y + λ′e. Then iterate the previous steps with λ ← λ′, unless λ′ = 0 in
which case we return 0. Since we picked the line at random, and since there are O(n2) such

J. Cardinal and A. Ooms 68:5

a

b

∆

Ca

Figure 1 The cone Ca.

lines at the beginning of the search, the number of iterations of this binary search is O(logn)
with high probability.

We therefore reduced the nearest induced line problem to O(ε−1 logn) instances of the
counting problem.

Orthogonal range counting queries.

Data structures for orthogonal range counting queries store a set of points in Rg in such a
way that the number of points in a given g-rectangle (cartesian product of g intervals) can
be returned quickly. Known data structures for orthogonal range counting queries in Rg
require O(n logg−1 n) preprocessing time and can answer queries in O(logg−1 n) time [16, 9].
Note that the actual coordinates of the points do not matter: We only need to know the
order of their projections on each axis. We now show how to solve the counting problem
using a data structure for orthogonal range queries in R3.

Let us fix the triangle ∆ and a point a ∈ R3, and consider the locus of points b ∈ R3

such that the line `(a, b) intersects ∆. This is a double simplicial cone with apex a and
whose boundary contains the boundary of ∆. This double cone is bounded by three planes,
one for each edge of ∆. In fact, we will only consider one of the two cones, because `(a, b)
intersects ∆ if and only if either b is contained in the cone of apex a, or a is contained in the
cone of apex b. Let us call Ca the cone of apex a. This is illustrated on Figure 1.

Let us consider one edge f of ∆ and all the planes containing f . These planes induce a
circular order on the points of S, which is the order in which they are met by a plane rotating
around the supporting line of f . This is illustrated on Figure 2. Now let us denote by Hf

the plane containing a and f and by H+
f the halfspace bounded by Hf and containing ∆.

The set of points of S contained in H+
f is an interval in the circular order mentioned above.

Hence the set of points contained in Ca is the intersection of three intervals in the three
circular orders defined by the three edges of ∆.

Proof of Theorem 2.1. Let Q be some polyhedron in R3, λ ∈ R, S ⊂ R3, y ∈ R3, and e an
edge of Q. We use an orthogonal range counting data structure for storing the points of S
with coordinates corresponding to their ranks in each of the three permutations induced by
the three edges of ∆ = conv({ y, y + λe }). We get those rank-coordinates by sorting S three

EuroCG’20

68:6 Sparse Regression via Range Counting

a

∆

f

Figure 2 The order of the points defined by the planes containing an edge f of ∆.

times, once for each induced permutation, in time O(n logn), then construct the orthogonal
range counting data structure with those coordinates in time O(n log2 n). Then for each of
the n points a ∈ S, we count the number of points b in the cone Ca by querying the data
structure in O(log2 n) time. Hence overall, the counting problem is solved in time O(n log2 n).
Note that the circularity of the order can be easily handled by doubling every point.

This can be combined with the previous reductions provided we can choose a line
intersecting ∆ uniformly at random within that time bound. This is achieved by first
choosing a with probability proportional to the number of points b such that `(a, b) ∩∆ 6= ∅.
Then we can pick a point b uniformly at random in this set in linear time.

Combining with the previous reductions, we obtain an approximation algorithm running
in time Oε(n log3 n) for the nearest induced line problem in R3. J

References

1 Pankaj K. Agarwal, Natan Rubin, and Micha Sharir. Approximate nearest neighbor search
amid higher-dimensional flats. In 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria, pages 4:1–4:13, 2017. doi:10.4230/LIPIcs.
ESA.2017.4.

2 Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. J. ACM,
52(2):157–171, 2005. doi:10.1145/1059513.1059515.

3 Rahul Arya, Sunil Arya, Guilherme D. da Fonseca, and David M. Mount. Optimal bound
on the combinatorial complexity of approximating polytopes. In SODA, pages 786–805.
SIAM, 2020.

4 Sunil Arya, Guilherme D. da Fonseca, and David M. Mount. On the combinatorial com-
plexity of approximating polytopes, 4 2016. arXiv:1604.01175v4.

5 Sunil Arya, Guilherme D. da Fonseca, and David M. Mount. Approximate convex in-
tersection detection with applications to width and minkowski sums, 7 2018. arXiv:
1807.00484v1.

6 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Near-optimal epsilon-kernel
construction and related problems. In Symposium on Computational Geometry, volume 77
of LIPIcs, pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

J. Cardinal and A. Ooms 68:7

7 Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam
Solomon. Subquadratic algorithms for algebraic 3SUM. Discrete & Computational Geom-
etry, 61(4):698–734, 2019. doi:10.1007/s00454-018-0040-y.

8 Jean Cardinal and Aurélien Ooms. Sparse regression via range counting, 8 2019. arXiv:
1908.00351.

9 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988. doi:10.1137/0217026.

10 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational
Geometry, 9:145–158, 1993. doi:10.1007/BF02189314.

11 Bernard Chazelle and Joel Friedman. A deterministic view of random sampling and its use
in geometry. Combinatorica, 10(3):229–249, 1990. doi:10.1007/BF02122778.

12 Richard M. Dudley. Metric entropy of some classes of sets with differentiable bound-
aries. Journal of Approximation Theory, 10(3):227 – 236, 1974. URL: http://www.
sciencedirect.com/science/article/pii/0021904574901208, doi:https://doi.org/
10.1016/0021-9045(74)90120-8.

13 Jeff Erickson and Raimund Seidel. Better lower bounds on detecting affine and spher-
ical degeneracies. Discrete & Computational Geometry, 13:41–57, 1995. doi:10.1007/
BF02574027.

14 Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.

15 Sariel Har-Peled, Piotr Indyk, and Sepideh Mahabadi. Approximate sparse linear regression.
In 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic, pages 77:1–77:14, 2018. doi:10.4230/
LIPIcs.ICALP.2018.77.

16 Dan E. Willard. New data structures for orthogonal range queries. SIAM J. Comput.,
14(1):232–253, 1985.

EuroCG’20

The Very Best of
Perfect Non-crossing Matchings∗†

Ioannis Mantas1, Marko Savić2, and Hendrik Schrezenmaier3

1 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
ioannis.mantas@usi.ch

2 Faculty of Informatics, Department of Mathematics and Informatics, Faculty
of Sciences, University of Novi Sad, Serbia
marko.savic@dmi.uns.ac.rs

3 Institut für Mathematik, Technische Universität Berlin, Germany
schrezen@math.tu-berlin.de

Abstract
Given a set of points in the plane, we are interested in matching them with straight line segments.
We focus on perfect (all points are matched) non-crossing (no two edges intersect) matchings.
Apart from the well known MinMax variation, where the length of the longest edge is minimized,
we extend work by looking into three new optimization variants such as MaxMin, MinMin, and
MaxMax. We consider both the monochromatic and bichromatic versions of these problems
and provide efficient algorithms for various input point configurations.

1 Introduction

In the matching problem, we are given a set of objects and the goal is to partition the set
into pairs such that no object belongs to two pairs. This simple problem is a classic in graph
theory, which has received a lot of attention, both in an abstract and in a geometric setting.

In this paper, we consider the geometric setting where given a set P of 2n points in
the plane, the goal is to match points of P with straight line segments, in the sense that
each pair of points induces an edge of the matching. A matching is perfect if it consists
of exactly n pairs. A matching is non-crossing if the edges of the matching are pairwise
disjoint. When there are no restrictions on which points can be matched, the problem is
called monochromatic. In the bichromatic variant, P is partitioned into two sets B and R
of blue and red points, respectively, and only points of different colors are allowed to be
matched. When |B| = |R| = n, the point set P is called balanced.

Related work on perfect non-crossing matchings. Geometric matchings find applications
in various areas, as in operations research, in the field of shape matching, in pattern
recognition, in VLSI design problems and map construction or comparison algorithms among
others. In any application, requiring the matching to be non-crossing or perfect, seems
natural. Given a point set, monochromatic or balanced bichromatic, a perfect non-crossing
matching always exists and it can be found in O(n logn) time by recursively computing
ham-sandwich cuts [13] or by using the algorithm of Hershberger and Suri [12].

∗ I. M. was partially supported by the Swiss National Science Foundation, project SNF 200021E-154387,
M. S. was partially supported by Ministry of Education, Science and Technological Development,
Republic of Serbia, project 174019, and H. S. was partially supported by the German Research
Foundation, DFG grant FE-340/11-1.

† A full version of this extended abstract is available at https://arxiv.org/abs/2001.03252.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

69:2 The Very Best of Perfect Non-crossing Matchings

Figure 1 Optimal MinMin1, MaxMax1, MinMax1, and MaxMin1 matching of a point set.

A well-studied optimization criterion is minimizing the sum of lengths of all edges, referred
to as MinSum, and also known as the Euclidean assignment or matching problem. It is
interesting, and easy to see, that such a matching is always non-crossing. For monochromatic
point sets, an O(n3/2 logn)-time algorithm was given by Varadarajan [19]. For bichromatic
point sets, Agarwal et al. [2] presented an O(n2+ε)-time algorithm. When points are in convex
position, Marcotte and Suri [14] solved the problem in O(n logn) time in both settings.

Another popular goal is to minimize the length of the longest edge, which we refer to as
the MinMax variant and is also known as the bottleneck matching. For monochromatic point
sets, Abu-Affash et al. [1] showed that finding such a matching is NP-hard and accompanied
this with an O(n3)-time algorithm for points in convex position. This was recently improved
to O(n2) time by Savić and Stojaković [15]. For bichromatic point sets, Carlsson et al. [7]
showed that finding such a matching is also NP-hard. Biniaz et al. [6] gave an O(n3)-time
algorithm for points in convex position and an O(n logn)-algorithm for points on a circle.
These were recently improved to O(n2) and O(n), respectively, by Savić and Stojaković [16].

More optimization goals have been studied, as the uniform or fair matching, where the
goal is to minimize the length difference between the longest and the shortest edge, and the
minimum deviation matching, where the difference between the shortest edge length and
the average edge length should be minimized. Both can be solved in polynomial time, see
Efrat et al. [10, 11]. Another example is the MaxSum variant, where the goal is to maximize
the sum of the edge lengths. Alon et al. [4] conjectured that the problem is NP-hard.

Problem variants considered and our contribution. We continue exploring similar opti-
mization variants in different settings. We consider solely perfect non-crossing matchings,
without further mention. We deal with four variants: MinMin where the length of the
shortest edge is minimized, MaxMax where the length of the longest edge is maximized,
MaxMin where the length of the shortest edge is maximized, and MinMax, see Fig. 1.

To the best of our knowledge, out of the four variants, only MinMax, has been considered
before. Apart from the theoretical interest, MinMin and MaxMax are motivated by worst-
case analyses of matchings, where there is no control over the choice of edges, and short or
long edges are undesirable. Apart from the applications of MinMax, together with MaxMin,
such matchings resemble fair matchings in the sense that all edges have similar lengths.

We investigate both the monochromatic and bichromatic versions of these variants. In the
bichromatic version, we assume that P is balanced. We denote the monochromatic problems
with the index 1, e.g., MinMin1, and the bichromatic with the index 2, e.g., MinMin2.

These problems are examined in different point configurations. In Section 2, we consider
points in general position. In Section 3, points are in convex position. In Section 4, points lie
on a circle. In Section 5, we consider doubly collinear bichromatic point sets, where the blue
points lie on one line and the red points on another line. By studying structural properties
of each variant and combining diverse techniques, we come up with a series of interesting
results that are summarized in Table 1.

I. Mantas et al. 69:3

Table 1 The running times for finding the values of optimal matchings regarding different
objective functions. The times marked with (*) indicate the extra time needed to return also the
matching. h denotes the size of the convex hull. Results without reference are given in this paper.

Monochromatic MinMin1 MaxMax1 MinMax1 MaxMin1

General Position O(nh+ n logn) O(nh) +O(n logn)∗ NP-hard [1] ?
Convex Position O(n) O(n) O(n2) [15] O(n3)
Points on circle O(n) O(n) O(n) O(n)
Bichromatic MinMin2 MaxMax2 MinMax2 MaxMin2

General Position ? ? NP-hard [7] ?
Convex Position O(n) O(n) O(n2) [16] O(n3)
Points on circle O(n) O(n) O(n) [16] O(n3)
Doubly collinear O(n) O(1) +O(n)∗ O(n4 logn) ?

2 Monochromatic points in general position

In this section, P is a set of points in general position, where we assume that no three points
are collinear. We denote by CH(P) ⊆ P the set of points on the boundary of the convex hull
of P and set h := |CH(P)|. By d(v, w) we denote the Euclidean distance of two points v, w.

An edge (v, w) of points is feasible if there exists a matching which contains (v, w).

I Lemma 2.1. An edge (v, w) is infeasible if and only if v, w ∈ CH(P) and there is an odd
number of points on each side of the line through (v, w). See Fig. 2a.

This criterion can be checked efficiently using the radial orderings of the points p ∈ P ,
i.e., the circular orderings of the points in P \ p by angle around p. The radial orderings of
all points in P can be computed in O(n2) time, see, e.g., [3, 5]. Instead, we define the weak
radial orderings. Given a set A ⊆ P , in the A-weak radial ordering of p the points from A

occurring between two points from A := P \A are given as an unordered set, see Fig. 2b-c.

I Lemma 2.2. The A-weak radial orderings of all points in A can be computed in O(n|A|) time.

MinMin1. We are looking for the shortest feasible edge. We first compute CH(P) in
O(n log h) time [8] and the CH(P)-weak radial orderings of points in CH(P) in O(nh) time.
Then, we find m1 := min({ d(v, w) : v ∈ P \ CH(P), w ∈ P }) in O(n logn) time using a
Voronoi diagram and m2 := min({ d(v, w) : v, w ∈ CH(P) }) in O(nh) time using weak radial
orderings. The solution is then msol = min(m1,m2), resulting in the following theorem.

I Theorem 2.3. MinMin1 can be solved in O(nh+ n logn) time.

v

w

(a)
p

p1

p2

p5

p7

p8p12

p13

(b)

p

p1
p2

p5

p7
p8

p12
p13

(c)

Figure 2 (a) An infeasible edge (v, w). (b-c) The CH(P)-weak radial ordering of a point p.

EuroCG’20

69:4 The Very Best of Perfect Non-crossing Matchings

MaxMax1. We can use the same O(nh+n logn)-time algorithm, considering maximizations
inm1,m2, andmsol instead of minimizations. Using Lemma 2.4 we can reduce the time needed
to find m1 in O(nh), by simply comparing all (n− h)h edges. This results in Theorem 2.5.

I Lemma 2.4. If (v, w) is a longest feasible edge, then one of v, w ∈ CH(P).

I Theorem 2.5. MaxMax1 can be solved in O(nh) time.

3 Points in convex position

In this section, we assume that points in P are in convex position with the counterclockwise
ordering, p0, . . . , p2n−1, given. We address a point pi by its index i, and do arithmetic
operations modulo 2n. We call edges of the form (i, i+ 1) boundary edges.

Dynamic programming. We can easily solve all four optimization variants in O(n3) time
using a classic dynamic programming approach, which is also used for MinMax [1, 6, 7].

I Theorem 3.1. If P is convex, MaxMin1 and MaxMin2 can be solved in O(n3) time.

3.1 MinMin and MaxMax matchings in convex position
Monochromatic. We split P into two (convex) sets, Podd and Peven, according to the parity
of the indices. A pair (i, j) is feasible if and only if i and j are of different parity [1]. Hence,
any (i, j) with i ∈ Podd and j ∈ Peven is feasible. Given two convex sets P,Q, we can find in
O(|P |+ |Q|) time the points that realize the minimum [18] and the maximum [9] distance
between them. Applying these algorithms to Podd and Peven, we obtain the following.

I Theorem 3.2. If P is convex, MinMin1 and MaxMax1 can be solved in O(n) time.

Bichromatic. We now combine the monochromatic algorithms with the theory of orbits [16],
a concept which captures well the nature of bichromatic matchings in convex position. More
specifically, P can be partitioned in O(n) time into orbits, which are balanced sets of points.
In each orbit point colors alternate and a bichromatic edge (b, r) is feasible if and only if b
and r are in the same orbit. Thus, to each orbit separately we can use the algorithms of
[9, 18] and return the overall longest or shortest edge, see Fig. 3, resulting in the following.

I Theorem 3.3. If P is convex, MinMin2 and MaxMax2 can be solved in O(n) time.

Given an extremal feasible edge, we can extend it to an optimal matching, in O(n) time,
by applying the following lemma to the sets {i+ 1, . . . , j − 1} and {j + 1, . . . , i− 1}.
I Lemma 3.4. If P is in convex position, we can construct an arbitrary matching in O(n)
time, both in the monochromatic and bichromatic case.

(a) (b) (c)

Figure 3 MinMin2 for a set in convex position. (a) Find orbits. (b) Find the shortest edge
between the blue and red polygon of an orbit. (c) Extend to a perfect matching using Lemma 3.4.

I. Mantas et al. 69:5

4 Points on a circle

Next, we assume that all points of P lie on a circle. Obviously, the results from Section 3 also
apply here. Apart from convexity, these results rely only on a property of point sets lying on
a circle, which we call the decreasing chords property. A point set P has this property if, for
any edge (i, j), for at least one of its sides, all the possible edges between two points on that
side are not longer than (i, j) itself, see Fig. 4a. Using this, we can easily infer the following.

I Lemma 4.1. Any shortest edge of a matching on P is a boundary edge.

MinMin1 and MinMin2. Due to Lemma 4.1, these can be solved in O(n) time significantly
simpler, without using Theorems 3.2 and 3.3, by finding the shortest feasible boundary edge.

MinMax1. We show that there exists a MinMax1 matching using only boundary edges.
There are two such matchings and we find the optimal in O(n) time, resulting in the following.

I Theorem 4.2. If P lies on a circle, MinMax1 can be solved in O(n) time.

MaxMin1. Lemma 4.1 suggests an approach for MaxMin1 by forbidding short boundary
edges and checking if we can find a matching without them. Let some boundary edges
be forbidden and the remaining be allowed. A forbidden chain is a maximal sequence of
consecutive forbidden edges. See Fig. 4b for an example (with forbidden edges shown dashed).

I Lemma 4.3. There exists a matching without the forbidden edges if and only if l < n,
where l is the length of a longest forbidden chain.

MaxMin1 is equivalent to finding the largest value µ such that there exists a matching
with all edges of length at least µ. By Lemma 4.1, it suffices to search for µ among the
lengths of the boundary edges. By Lemma 4.3, this means that we need to find the maximal
length µ of a boundary edge such that there are no n consecutive boundary edges all shorter
than µ. We can find µ as follows. Consider all 2n sets of n consecutive boundary edges and
associate to each set the longest edge in it. Then, out of the 2n longest edges, we search for
the shortest one. This fits under the sliding window maximum problem, for which several
simple algorithms are known, see, e.g., [17]. Adapting to our problem we obtain the following.

I Theorem 4.4. If P lies on a circle, MaxMin1 can be solved in O(n) time.

Using Lemma 4.5, we can construct an optimal matching within the same time complexity.

I Lemma 4.5. Given a value µ > 0, a matching consisting of edges of length at least µ can
be constructed in O(n) time if it exists.

i

j

(a)
i

j

i− 1
j + 1

(b)

Figure 4 (a) The decreasing chords property. (b) Example of a forbidden chain {i, . . . , j}.

EuroCG’20

69:6 The Very Best of Perfect Non-crossing Matchings

(a)

ri

bj

x

b1 bnbj∗

r1

ri∗

rn (b)

bjbj∗

ri

rn

Figure 5 A doubly collinear point set, with (a) a feasible and (b) an infeasible edge shown.

5 Doubly collinear points

A bichromatic point set P is doubly collinear if the blue points lie on a line lB and the red
points lie on a line lR. We assume that lB and lR are not parallel and that the ordering of
the points along each line is given. Let x = lB ∩ lR and assume, for simplicity, that x /∈ P .

5.1 MinMin2 and MaxMax2 matchings on doubly collinear points
We first give a feasibility criterion for an edge, see Fig. 5, which can be checked in O(1) time.
It also indicates an O(n)-time algorithm, to construct a matching, given a feasible edge (r, b).

I Lemma 5.1. Let r1, . . . , ri, . . . , ri∗ , x, ri∗+1, . . . , rn and b1, . . . , bj , . . . , bj∗ , x, bj∗+1, . . . , bn
be the points on lR and lB, respectively, in sorted order. Then, the edge (ri, bj) is feasible if
and only if i∗ − i ≤ n− j and j∗ − j ≤ n− i.

As a consequence of Lemma 5.1, the order of the closest feasible neighbors of the red
points on the line lB coincides with the order of the red points on lR. Thus, we can find the
closest feasible neighbor of all red points in total O(n) time, implying the following theorem.

I Theorem 5.2. If P is doubly collinear, MinMin2 can be solved in O(n) time.

The same algorithm solves MaxMax2. We show that the longest feasible edge is an edge
between the, at most four, points on CH(P), so we can further improve as follows.

I Theorem 5.3. If P is doubly collinear, MaxMax2 can be solved in O(1) time.

5.2 MinMax2 and MaxMin2 matchings on doubly collinear points
One-sided case. We first consider the case, where all red points are on one side of lB . This
can be solved via a dynamic program with O(n2) subproblems in total, see Fig. 6.

I Theorem 5.4. If P is one-sided doubly collinear, MaxMin2 can be solved in O(n2) time.

v v v

Figure 6 The one-sided case with the two possibilities to match v and the resulting subproblems.

I. Mantas et al. 69:7

(a) (b) (c)

Figure 7 Optimal matchings having a special structure (a) for MinMax2, (b) for MinMax2 and
MaxMin2 if α = π

2 , and (c) for MinMax2 if α < π
4 .

In the case of MinMax2 we can further improve upon this, by proving (also for the
two-sided case) the existence of an optimal matching with a special form where the points
are partitioned into a constant number of blocks and these blocks are matched, see Fig. 7a.

I Theorem 5.5. If P is one-sided doubly collinear, MinMax2 can be solved in O(n logn) time.

General case. For MinMax2, the aforementioned form can also be applied to the general
case, yielding Theorem 5.6. On the contrary, for MaxMin2 we are not aware if an optimal
matching with a special form exists. Thus, we do not know a polynomial time algorithm.

I Theorem 5.6. If P is doubly collinear, MinMax2 can be solved in O(n4 logn) time.

Special intersection angle. Let α be the angle of intersection of lB and lR. By proving the
existence of optimal matchings of a special form, see Fig. 7b-c, we can obtain the following.

I Theorem 5.7. If α = π
2 , MinMax2 and MaxMin2 can be solved in O(n) time.

I Theorem 5.8. If α ≤ π
4 , MinMax2 can be solved in O(n) time.

6 Concluding remarks

It comes as no surprise that the MaxMin variant exhibits this significant difficulty; devising
efficient algorithms even for simple configurations is not at all obvious and, hence, interesting
on its own. On the contrary, the MinMin and the MaxMax variants are relatively easier to
tackle; we managed to design optimal algorithms by exploiting structural properties combined
with existing techniques from diverse problems. We conclude with some open questions,
hoping to see Table 1 filled in. For bichromatic P in general position, can we check the
feasibility of an edge in polynomial time? This would imply polynomial time algorithms for
MinMin2 and MaxMax2. For P in convex position, do there exist o(n3)-time algorithms
for MaxMin? Maybe by using the theory of orbits for the bichromatic case? For P in
general position, can MaxMin be solved in polynomial time? What if P is doubly collinear?

Acknowledgements. Preliminary results were obtained during the IRP - DCCG (Barcelona,
4-6/2018). We are grateful to CRM, UAB for hosting the event and to the organizers for
providing us with the platform to meet and collaborate. We are also grateful to Carlos
Alegría, Carlos Hidalgo Toscano, Oscar Iglesias Valiño, and Leonardo Martínez Sandoval for
initial discussions, and to Carlos Seara for raising a question that motivated this work.

EuroCG’20

69:8 The Very Best of Perfect Non-crossing Matchings

References
1 A. Karim Abu-Affash, Paz Carmi, Matthew J. Katz, and Yohai Trabelsi. Bottleneck non-

crossing matching in the plane. Computational Geometry, 47(3A):447–457, 2014.
2 Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow

levels in 3-dimensional arrangements and its applications. SIAM Journal on Computing,
29(3):912–953, 2000.

3 Pankaj K. Agarwal and Micha Sharir. Arrangements and their applications. In Handbook
of Computational Geometry, chapter 2, pages 49–119. North-Holland, 2000.

4 Noga Alon, Sridhar Rajagopalan, and Subhash Suri. Long non-crossing configurations in
the plane. In Proc. 9th Annual Symposium on Computational Geometry, pages 257–263,
1993.

5 Tetsuo Asano, Subir K. Ghosh, and Thomas C. Shermer. Visibility in the plane. In
Handbook of Computational Geometry, chapter 19, pages 829–876. North-Holland, 2000.

6 Ahmad Biniaz, Anil Maheshwari, and Michiel H.M. Smid. Bottleneck bichromatic plane
matching of points. In Proc. 26th Canadian Conference on Computational Geometry, pages
431–435, 2014.

7 John G. Carlsson, Benjamin Armbruster, Saladi Rahul, and Haritha Bellam. A bottleneck
matching problem with edge-crossing constraints. International Journal of Computational
Geometry & Applications, 25(4):245–261, 2015.

8 Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry, 16(4):361–368, 1996.

9 Herbert Edelsbrunner. Computing the extreme distances between two convex polygons.
Journal of Algorithms, 6(2):213–224, 1985.

10 Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1–28, 2001.

11 Alon Efrat and Matthew J. Katz. Computing fair and bottleneck matchings in geometric
graphs. In Proc. 7th International Symposium on Algorithms and Computation, pages
115–125. Springer, 1996.

12 John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm.
BIT Numerical Mathematics, 32(2):249–267, 1992.

13 Chi-Yuan Lo, Jiří Matoušek, and William Steiger. Algorithms for ham-sandwich cuts.
Discrete & Computational Geometry, 11(4):433–452, 1994.

14 Odile Marcotte and Subhash Suri. Fast matching algorithms for points on a polygon. SIAM
Journal on Computing, 20(3):405–422, 1991.

15 Marko Savić and Miloš Stojaković. Faster bottleneck non-crossing matchings of points in
convex position. Computational Geometry, 65:27–34, 2017.

16 Marko Savić and Miloš Stojaković. Bottleneck bichromatic non-crossing matchings using
orbits, 2018. URL: arxiv.org/abs/1802.06301, arXiv:1802.06301.

17 Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. Low-latency sliding-window
aggregation in worst-case constant time. In Proc. 11th ACM International Conference on
Distributed and Event-based Systems, pages 66–77, 2017.

18 Godfried T. Toussaint. An optimal algorithm for computing the minimum vertex distance
between two crossing convex polygons. Computing, 32(4):357–364, 1984.

19 Kasturi R. Varadarajan. A divide-and-conquer algorithm for min-cost perfect matching in
the plane. In Proc. 39th Symposium on Foundations of Computer Science, pages 320–329,
1998.

One-Bend Drawings of Outerplanar Graphs Inside
Simple Polygons
Patrizio Angelini1, Philipp Kindermann2, Andre Löffler2,
Lena Schlipf3, and Antonios Symvonis4

1 John Cabot University, Rome, Italy
pangelini@johncabot.edu

2 Universität Würzburg, Würzburg, Germany
philipp.kindermann@uni-wuerzburg.de, andre.loeffler@uni-wuerzburg.de

3 Universität Tübingen, Tübingen, Germany
schlipf@informatik.uni-tuebingen.de

4 National Technical University of Athens, Athens, Greece
symvonis@math.ntua.gr

Abstract
We consider the problem of drawing an outerplanar graph with n vertices with at most one bend
per edge if the outer face is already drawn as a simple polygon with m corners. We prove that it
can be decided in O(mn) time if such a drawing exists. In the positive case, our algorithm also
outputs such a drawing.

1 Introduction

One of the fundamental problems in graph drawing is to draw a planar graph crossing-free
under certain geometric or topological constraints. Many classical algorithms draw planar
graphs under the constraint that all edges have to be straight-line segments [4, 14, 15]. But
we do not always have the freedom of drawing the whole graph from scratch. In practical
applications, parts of the graph may already be drawn and we want to extend it to a planar
drawing of the whole graph. For example, in visualizations of large networks, certain patterns
may be required to be drawn in a standard way, or a social network may be updated as new
people enter a social circle or as new links emerge between already existing persons.

This problem is known as the Partial Drawing Extensibility problem. Formally,
given a planar graph G = (V,E), and subgraph H = (V ′, E′) with V ′ ⊆ V and E′ (E, and
a planar drawing ΓH of H, the problem asks for a planar drawing ΓG of G such that the
drawing of H in ΓG coincides with ΓH . This problem was first proposed by Brandenburg et
al. [2] and has received a lot of attention in the previous years.

Related work. For the case of straight-line drawings, Patrignani showed the problem to be
NP-hard [12], but he could not prove membership in NP, as a solution may require coordinates
not representable with a polynomial number of bits. Recently, Lubiw et al. [8] proved that a
generalization of the problem where overlaps (but not proper crossings) between edges of
E \ E′ and E′ are allowed is hard for the existential theory of the reals (∃R-hard).

These results motivate allowing bends in the drawing. Angelini et al. [1] presented a
linear-time algorithm to test whether there exists any topological planar drawing of G, and
Jelínek et al. [7] gave a characterization via forbidden substructures. Chan et al. [3] showed
that a linear number of bends (72|V ′|) per edge suffices, which is also worst-case optimal as
shown by Pach and Wenger [11] for the special case that E′ = ∅.

Special attention has been given to the case that H is exactly the outer face of G.
Already Tutte’s seminal paper [15] showed how to obtain a straight-line convex drawing of a
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

70:2 One-Bend Drawings of Outerplanar Graphs Inside Simple Polygons

(a)

u
v

P (v, u)

P (u, v) s(e)

(b)

b

u v

(c)

Figure 1 (a) A biconnected outerplanar graph (in black) and the dual tree (in orange); (b) for
an edge e = (u, v), the straight line s(e) intersects both P (u, v) and P (v, u), the dashed red 1-bend
drawing of e only avoids crossing P (u, v), possible 2-bend drawing in green; (c) the edge connecting
u and v has to cut away at least the red region, b is the minimal bend point, and the modified
polygon has a reflex angle at b.

triconnected planar graph with its outer face drawn as a prescribed convex polygon. This
result has been extended by Hong and Nagamochi [6] to the case that the outer face is drawn
as a star-shaped polygon without chords (that is, interior edges between outer vertices).
Mchedlidze et al. [9] gave a linear-time testing algorithm for the existence of a straight-line
drawing of G in the case that H is an arbitrary cycle of G and is drawn as a convex polygon,
while Mchedlidze and Urhausen [10] study the number of bends required based on the shape
of the drawing of H and show that 1 bend suffices if H is drawn as a star-shaped polygon.

Our contribution. In this paper, we consider the case that G is an outerplanar graph and
H is exactly the outer face of G, which is drawn as a simple polygon P with arbitrarily
many bends between its vertices. Note that G has to be biconnected for its outer face to be
a simple cycle. For any constant number k of bends, there exists some instance such that G
has a k-bend drawing but no (k − 1)-bend drawing; see, e.g., Fig. 1b for k = 2. Hence, it
is of interest to test for a given k whether a k-bend drawing of G exists. This is trivial for
k = 0. In this paper, we prove that for k = 1 the problem can be solved in time O(mn),
where n is the number of vertices in G and m is the number of corners of P .

Notation. We assume that we are given a biconnected outerplanar graph G = (V,E), a
simple polygon P with boundary ∂P , and an injective mapping of V to ∂P such that ∂P
coincides with a plane drawing of the outer face H of G with arbitrarily many bends per
edge. We say that G can be drawn in P if there is a crossing-free drawing of G with its
vertices on ∂P as defined by the mapping, its outer face drawn as ∂P , and its interior edges
drawn with at most one bend per edge. Considering two vertices u and v, following ∂P in
counterclockwise order from u to v gives an open interval P (u, v) of ∂P .

For a pair of vertices u, v, denote by uv the straight-line segment between u and v and
by π(u, v) the shortest path between u and v in P .

The faces f1, . . . , fn of G induce a unique dual tree T [13] with edges e∗1, . . . , e∗n−1, where
e∗i is the dual of the interior edge ei; see Fig. 1a. Our algorithm will use T , incrementally
processing and pruning T and P . Consider T to be rooted at some degree-1 node fn. Denote
by p(fi) the parent of fi in T , and by ei the edge between fi and its parent. We say that fi

and fj are siblings if p(fi) = p(fj). For an edge ei = (u, v), let π(u, v) ◦ P (v, u) be the part
of P containing the root fn (where ◦ denotes the concatenation). Then for ei with P (u, v)
containing no other vertices of V , the face fi is a leaf in T .

P. Angelini, P. Kindermann, A. Löffler, L. Schlipf, and A. Symvonis 70:3

u v

Vu Vv

Ve

(a)

u v

Ve
b

Qb
e

(b)

u v

u′

pu pv

Qe

v′

Ve

Be

(c)

Figure 2 Illustrations for Lemma 2.2: (a) Visibility regions Vu, Vv and intersection Ve; (b) the
region cut off by drawing ei with its bend at point b; (c) construction of pu, pv and obstructed
region Qe.

2 Algorithm

An interior edge e = (u, v) divides the polygon into two parts. During the algorithm, we will
use these edges to cut some parts of the polygon off. We will make clear in each step which
part of the polygon is the remaining one.

We say that any edge e = (u, v) is a reflex edge if it has to be drawn with a bend that
defines a reflex angle inside the remaining polygon—see Fig. 1c—and a convex edge if it can
be drawn with a convex bend or as a straight line. Note that an edge e = (u, v) is reflex if
and only if uv intersects P (u, v) or is completely outside of P .

In the following analysis, we fix some leaf f ′ of T as the root and will consider the faces
of G in some order f1, . . . , fn with fn = f ′. Let Gi be the subgraph of G induced by the
vertices incident to the faces fi, . . . fn, hence G = G1. Symmetrically, define Ti to be the
dual tree of Gi with T = T1. In step i of our algorithm, we consider Ti and pick fi to be a
leaf, process the interior edge ei between fi and its parent, and refine the polygon to Pi+1
such that Gi+1 can be drawn in Pi+1 if and only if Gi can be drawn in Pi. So, P1 = P and,
in each step, the remaining part Pi of the polygon is the one containing the root fn (i.e., en.)

The algorithm chooses the next face fi to process as follows: If Ti has a leaf corresponding
to a reflex edge, we choose that face as fi. Otherwise, all leaves in Ti correspond to convex
edges, and we choose one of the lowest leaves, that is, a leaf with the largest distance (in the
graph-theoretic sense) to the root. This way, we can make sure that a convex edge is only
chosen if all its siblings that correspond to reflex edges have already been processed.

Let u and v be the end-vertices of the edge ei separating fi from its parent in Ti. Let
Vu and Vv be the regions of Pi visible from u and v, respectively, and let Vei

= Vu ∩ Vv

be their intersection. For any point b ∈ Vei , let Qb
ei

be the subpolygon of Pi bounded by
Pi(u, v) ◦ vb ◦ bu, that is, the part of Pi that is “cut off” by drawing ei with its bend at b; see
Fig. 2b. A point b ∈ Vei is called a minimal bend point for ei if there is no other point b′ ∈ Vei

with Qb′
ei

(Qb
ei
. Let Bei

be the set of all minimal bend points for ei. Further, let (u, u′) be
the segment of Pi(u, v) incident to u, and let (v′, v) be the segment of Pi(u, v) incident to v.

We define Qei
=
⋂

b∈Bei
Qb

ei
to be the region of Pi obstructed by ei: Wherever we place

the bend point of ei, all the points of Qei will be cut off; see Fig. 2c. Conversely, for every
point p ∈ Pi \Qei

, there is a placement of the bend point of ei such that p is not cut off.
To construct Qei

, proceed as follows: Rotate a ray around u starting from (u, u′) in
counterclockwise order until we hit Vei

, call this point pu. Rotate a ray around v starting
from (v′, v) in clockwise order until we hit Vei , call this point pv. Then Qei is the (not
necessarily simple) subpolygon of Pi bounded by vpv ◦ Ve(pu, pv) ◦ puu ◦ Pi(u, v); see Fig. 2c.

Similarly, we define Rei =
(⋃

b∈Bei
Qb

ei

)
\Qei to be the region of Pi restricted by ei: For

EuroCG’20

70:4 One-Bend Drawings of Outerplanar Graphs Inside Simple Polygons

u vxy

b
b′

(a)

u1

v1

u2

v2

b

b′
u2v2

(b)

Figure 3 (a) The gray part of P (x, y) forces b′ to be placed inside Rb
(u,v), inducing an intersection

of (u, v) and (x, y). For that to be necessary, b′ must create a reflex angle. (b) Two edges e1 = (u1, v1),
e2 = (u2, v2) with p(e2) = e1. Fixing the 1-bend drawing of e1 to intersect u2v2 makes e2 become a
reflex edge, eliminating any choice.

each point r ∈ Rei
, there are two minimal bend points b and b′ for ei such that bending ei

at b cuts off r, whereas bending ei at b′ does not.

I Lemma 2.1. Let e be a reflex edge. Then there is a unique minimal bend point b for e.

Consider how b is constructed in Fig. 1c; note that b is a vertex of Ve. Any point b′ above
the dashed lines would not be minimal, and any point inside the red region is not visible by
at least one of u and v.

I Lemma 2.2. Let e be a convex edge. Then Be ⊂ ∂Ve and we can safely remove Qe.

In step i, our algorithm computes Vei
. If Vei

= ∅, then it is impossible to draw Gi in Pi,
so by induction it is impossible to draw G in P and our algorithm stops. Otherwise, the
algorithm computes Qei and creates Pi+1 = Pi \Qei . If an edge ej (j > i) had to place its
bend point inside Qei

, then ei and ej would cross, independently of the choice of the bend
point of ei; in this case, our algorithm will conclude that it is impossible to draw G in P
when it processes ej . In the following, we will show that Gi+1 can be drawn in Pi+1 if and
only if Gi can be drawn in Pi.

I Lemma 2.3. Let S(f) be the set of all convex siblings with parent f in T . For any pair of
edges e1, e2 ∈ S(f), the restricted regions Re1 and Re2 are interior-disjoint.

Sketch of proof. For f = (u′, v′) consider P (u′, v′). Since e1 and e2 are siblings below f ,
they are “next to” each other along P (u′, v′), not nested. Consider edge (u, v) in Fig. 3a:
without the gray part of P (x, y) intersecting xy, the edge (x, y) would be convex. Since the
restricted regions R(u,v) and R(x,y) are “hidden” behind the corresponding straight lines,
they need to be disjoint. J

As a side note: If some parts of P would force two edges to cross, then at least one of
these edges has to be reflex; see Fig. 3a with the gray parts in place.

While we can fix the bend points for any reflex edges, convex bends remain undecided
until the root is reached, as only some of its minimal bend points might be compatible
with the valid bend points of its parent edge. Hence, our algorithm will work bottom-up,
fixing reflex edges and computing the obstructed regions for all edges, refining the polygon.
When the root fn is encountered, it is a leaf and the polygon is refined using the obstructed
region of its (unique) child. If Pn is not empty, then a solution exists, and we find it by
traversing the tree top-down. If en−1 is reflex, then we already fixed its bend point in the
bottom-up traversal; otherwise, we place the bend point of en−1 at an arbitrary point inside

P. Angelini, P. Kindermann, A. Löffler, L. Schlipf, and A. Symvonis 70:5

the restricted region of en−1 in Pn. Then we obtain the subpolygon P ∗n−1 that has to contain
the drawing of all children of P ∗n−1 by removing the subpolygon bounded by Pn(v, u) and
en−1 from Pn−1. When processing face fi, we again place the bend points of its convex
children at arbitrary points inside their restricted region in P ∗i . Since these regions are
interior-disjoint by Lemma 2.3, the edges will not intersect. Note that ei might have been
placed in the restricted region of one of its children ej in Pi; see Fig. 3b. However, since this
is the only bend point of the edges incident to fi that can lie in the restricted region of ej ,
by definition there is still a valid bend point for ej . We again construct the subpolygons P ∗j
by removing the subpolygon bounded by Pi(v, u) and ej from Pj .

This procedure allows us to limit correctness-considerations to consecutive decisions only,
and we get the following lemma.

I Lemma 2.4. Given the edge ei in step i, if Vei
is non-empty, then Gi+1 can be drawn in

Pi+1 if and only if Gi can be drawn in Pi.

Proof. Whenever we have Vei
= ∅ for any edge ei inside Pi, we stop. Further refining Pi

will only make it smaller and thus cannot increase the size of any visibility regions.
Otherwise, we either compute the unique best bend point b (Lemma 2.1), or the obstructed

region Qei (as described above), refining Pi to Pi+1 accordingly. Lemma 2.2 ensures that
the latter is safe.

By construction, no point of the drawing of Gi+1 can lie in the region Qei obstructed by
ei, but the restricted region of ei can overlap with other restricted regions. Since minimal
bend points cannot lie in restricted regions of siblings (Lemma 2.3), only the bend point of
the edge corresponding to p(ei) can possibly be placed in the restricted region Rei

of ei; any
other bend point that lies inside R(ei) must lie on the opposite side of the drawing of p(ei),
so it cannot influence the choice of the bend point for ei.

With at most one other bend point in any restricted region, routing the corresponding
edge is still possible by definition of Rei

. J

We are now ready to state the main result of this paper.

I Theorem 2.5. Given an outerplanar graph G with n vertices, a polygon P with m corners,
and a mapping of the vertices of G to ∂P , we can decide in O(mn) time whether G can be
drawn in P with at most one bend per edge.

Proof. We use the algorithm described above. The correctness follows immediately from
Lemma 2.4. The most time consuming part of the algorithm is to compute the region Ve

for each edge e = (u, v), namely the one that is visible from both points u and v. Since Ve

is a simple polygon with at most 2m edges, it can be computed in O(m) time [5, page 15].
Hence, all these regions can be computed in O(mn) total time. The remaining parts of the
algorithm (computing the dual graph of G, choosing the order of the faces fi in which we
traverse the graph, computing Qe, “cutting off” parts of P , and propagating the graph at
the end to fix the presentation) can clearly be done within this time. Thus, the total running
time is O(mn). J

Acknowledgments. This work was initiated at the Workshop on Graph and Network
Visualization 2019. We thank all the participants for helpful discussions and Anna Lubiw for
bringing the problem to our attention.

EuroCG’20

70:6 One-Bend Drawings of Outerplanar Graphs Inside Simple Polygons

References
1 Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maur-

izio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM
Trans. Algorithms, 11(4):32:1–32:42, 2015. doi:10.1145/2629341.

2 Franz-Josef Brandenburg, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov,
Giuseppe Liotta, and Petra Mutzel. Selected open problems in graph drawing. In Giuseppe
Liotta, editor, Proc. 11th Int. Symp. Graph Drawing (GD), volume 2912 of Lecture Notes
Comput. Sci., pages 515–539. Springer, 2003. doi:10.1007/978-3-540-24595-7_55.

3 Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw, Petra Mutzel, and
Marcus Schaefer. Drawing partially embedded and simultaneously planar graphs. J. Graph
Algorithms Appl., 19(2):681–706, 2015. doi:10.7155/jgaa.00375.

4 Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990. doi:10.1007/BF02122694.

5 Alexander Gilbers. Visibility Domains and Complexity. PhD thesis, Rheinische Friedrich-
Wilhelms-Universität Bonn, 2014.

6 Seok-Hee Hong and Hiroshi Nagamochi. Convex drawings of graphs with non-convex bound-
ary constraints. Discrete Appl. Math., 156(12):2368–2380, 2008. doi:10.1016/j.dam.2007.
10.012.

7 Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-type theorem for planarity of
partially embedded graphs. Comput. Geom., 46(4):466–492, 2013. doi:10.1016/j.comgeo.
2012.07.005.

8 Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. The complexity of drawing a
graph in a polygonal region. In Therese C. Biedl and Andreas Kerren, editors, Proc. 26th
Int. Symp. Graph Drawing Netw. Vis., volume 11282 of Lecture Notes Comput. Sci., pages
387–401. Springer, 2018. doi:10.1007/978-3-030-04414-5_28.

9 Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Drawing planar graphs with
a prescribed inner face. In Stephen K. Wismath and Alexander Wolff, editors, Proc. 21st
Int. Symp. Graph Drawing, volume 8242 of Lecture Notes Comput. Sci., pages 316–327.
Springer, 2013. doi:10.1007/978-3-319-03841-4_28.

10 Tamara Mchedlidze and Jérôme Urhausen. β-stars or on extending a drawing of a connected
subgraph. In Therese C. Biedl and Andreas Kerren, editors, Proc. 26th Int. Symp. Graph
Drawing Netw. Vis., volume 11282 of Lecture Notes Comput. Sci., pages 416–429. Springer,
2018. doi:10.1007/978-3-030-04414-5_30.

11 János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations.
Graphs Comb., 17(4):717–728, 2001. doi:10.1007/PL00007258.

12 Maurizio Patrignani. On extending a partial straight-line drawing. Int. J. Found. Comput.
Sci., 17(5):1061–1070, 2006. doi:10.1142/S0129054106004261.

13 Andrzej Proskurowski and Maciej Syslo. Efficient Vertex- and Edge-Coloring of Outerpla-
nar Graphs. SIAM J. Alg. Disc. Meth., 7:131–136, 01 1986. doi:10.1137/0607016.

14 Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, editor,
Proceedings 1st Ann. ACM-SIAM Symp. Discrete Alg. (SODA), pages 138–148. SIAM,
1990. URL: http://dl.acm.org/citation.cfm?id=320176.320191.

15 William Thomas Tutte. How to draw a graph. Proc. London Math. Soc., 3(1):743–767,
1963.

Labeling Nonograms
Maarten Löffler1 and Martin Nöllenburg2

1 Department of Computing and Information Sciences, Utrecht University, the
Netherlands
m.loffler@uu.nl

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

Abstract
Slanted and curved nonograms are a new type of picture puzzles introduced by van de Kerkhof
et al. (2019). They consist of an arrangement of lines or curves within a frame B, where some of
the cells need to be colored in order to obtain the solution picture. Up to two clues are attached
as numeric labels to each line on either side of B. In this paper we study the algorithmic problem
of optimizing or deciding the existence of a placement of the given clue labels to a nonogram. We
provide polynomial-time algorithms for restricted cases and prove NP-completeness in general.

1 Introduction

1 1

2 2

5

2 21 1

25

13

26

11 5

8

2 4

4

1

1

1

2

3

6 7

3

6

4

4

1

3 2

3

1 3

2

0

15

1

1 1 1

4

1
1
6
4

6
2

1
5

1
1

1
4

3

5

1
7

3 2
2

3
4

4 0
2
66

0

10

2
15

3
6

1
2
2
1

2
2

2
6

1
1

4

7

2
2

2

2

4

3
10

1

63
105

67

2

13

7

2
1

5
32

52
4

6
52 6

51
1

5
3 2

8 2

2 5 2

6

3
1

Figure 1 (left) A classic nonogram in solved state. (middle) A slanted nonogram. On the left,
we show all possible labels, creating a large amount of overlap. On the right, some
possible ways to resolve overlapping labels: extend labels from the same port, extend
parallel labels, draw both labels of the same line at the same side, or allow crossings
outside the puzzle frame. (right) A curved nonogram, showing a subset of labels
(some extended to avoid overlap) which still results in a unique puzzle.

Nonograms, also known as Japanese puzzles, paint-by-numbers, or griddlers, are a popular
puzzle type where one is given an empty grid and a set of clues on which grid cells need
to be colored, typically resulting in a picture (see Figure 1 (left)). The difficulty of solving
nonograms has been studied [2, 6], and remains an active topic of discussion [7].

Van de Kerkhof et al. introduced curved nonograms, a variant in which the puzzle is no
longer played on a grid but on any arrangement of lines or even curves [11]. See also [8, 10, 12].
Of special interested are slanted nonograms [10], in which all curves are straight lines, possibly
limited to a fixed number k of orientations (also known as sloped nonograms or, in the case
of k = 4, tangram nonograms). Figure 1 illustrates the different variants.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

71:2 Labeling Nonograms

Van de Kerkhof et al. describe heuristics to generate puzzles, but they leave open the
question of how to attach labels with clues. This is a non-trivial task, as labels could be
placed in several valid locations. Each curve enters and leaves the picture frame (bold
black rectangle in the figures) once, and the information about which incident cells of the
arrangement should be filled is summarized in two clues, one on each side of the curve (we
refer the reader to [11] for a full description of the rules). This gives two logical potential
locations for each clue. Furthermore, it may be possible to extend curves outside the frame
to make room for the clues, and not all clues need to be given for the puzzle to be solvable.

How to best label curved nonograms is an interesting open problem; it is most apparent
in the case of slanted nonograms, since the rigid structure limits the possible label locations.

Problem statement. In the nonogram labeling problem we are given the following input:

(i) a nonogram frame, which is a simple convex polygon B;
(ii) a set L of nonogram lines passing through B, each l ∈ L defining a pair (pl, ql) of ports

at the intersection points of l with B; and
(iii) a pair of non-negative integers (al, bl) for each l ∈ L, where al defines the width of the

label above l and bl defines the width of the label below l.

As output, we ask for a labeling of L, such that for each label ` of nonogram line l ∈ L:

(i) ` is assigned to one of the two ports pl or ql;
(ii) ` is assigned an extension length d (which could be 0);
(iii) we draw a leader of length d from its assigned port pl or ql aligned with the slope of l,

and the label itself as an al × 1 (or bl × 1) rectangle, also aligned with the slope of l, and
anchored at the end of its leader.

A labeling is valid if no two labels overlap each other, no label overlaps an extension
leader of another label, and no label intersects the frame. In addition to being valid, we
identify three further desired properties.

Crossing-free. We disallow intersections between leaders.
Balanced. We require the two labels of a line l ∈ L to be assigned to opposite ports.
Compact. We require all leaders to be of length 0, or the shortest length necessary to
avoid an intersection between the label and the frame.

We would like to find a crossing-free compact balanced labeling, but this may not exist
(see, e.g., Figure 1 (middle)). We study the computational problem of testing the existence of
a solution, or, for some variants, minimizing the total leader length, for several combinations
of properties. In some cases, we also restrict the number k of distinct slopes of lines in L.

Results. First, we observe that a balanced solution which is not crossing-free and not
compact always exists: we simply extend the leaders sufficiently far. Since this does not
give a satisfactory result, we focus on more restricted variants in the remainder.

In Section 2.1, we show that testing whether a compact solution exists is possible in
polynomial time. In Section 2.2, we show that a non-crossing balanced solution of minimal
total leader length can be computed in polynomial time, if the assignment of labels to ports
is given and k = 2. Finally, in Section 3, we show that the problem of testing whether a
crossing-free solution exists is NP-complete, even when k = 2.

M. Löffler and M. Nöllenburg 71:3

Related work. Labeling nonograms is closely related to the boundary labeling problem in
information visualization, where a set of point features in a rectangular frame B is to be
annotated with labels (names or short descriptions) that are placed outside B and connected
to their features with straight or polygonal leaders [4, 5]. Yet nonogram labeling is different
in several respects: Since the curves/lines in nonograms intersect the frame B in two fixed
locations, the possible positions for the clues are very restricted, while in boundary labeling
the label can basically be placed anywhere along B as long as the resulting leader lines are
valid. Labels in boundary labeling are typically axis-aligned, but the clues in nonograms are
aligned with their respective nonogram line or curve. Finally, by extending the nonogram
curves beyond the frame to gain extra space, we obtain a new degree of freedom that has
been rarely used in boundary labeling, with some exceptions of multi-row labeling [3, 9].

2 Algorithms

2.1 Compact labeling
In our first result, we assume that each label ` must be placed as close to the frame B as
possible, i.e., ` must touch B. This leaves only one degree of freedom for each label ` of a
nonogram line l, namely whether it is placed at port pl or ql.

I Theorem 2.1. Given a nonogram labeling instance, we can decide in polynomial time
whether a compact labeling exists. This is true regardless of whether we require it to be balanced.

Proof. We derive a 2-SAT formula ϕ that has a satisfying variable assignment if and only if
a valid labeling without leader extensions exists. For each nonogram line l ∈ L we define two
variables xa

l and xb
l , where xa

l = 1 (xa
l = 0) indicates that the label above l is assigned to the

port pl (ql) of l. Similarly, xb
l = 1 (xb

l = 0) indicates that the label below l is assigned to pl

(ql). It is clear that a variable assignment is in bijection to a port assignment of the labels
and it remains to add some clauses to ϕ to model the valid labelings. For each overlap of a
label of a line l with a label of another line l′ (we call that a conflict), we add a clause that
prevents both labels to be selected simultaneously. As an example consider the case that
the label above l and the label below l′ intersect if both assigned to their ports pl and pl′ .
Then we add the clause ¬xa

l ∨ ¬xb
l′ . Now a satisfying assignment for ϕ corresponds to an

assignment of each label to a port of its nonogram line such that no two labels intersect each
other; otherwise some clause would not be satisfied. To ensure that the labeling is balanced,
we would add the additional clauses xa

l ∨ xb
l and ¬xa

l ∨ ¬xb
l for each l ∈ L.

Solving the 2-SAT instance takes linear time [1] in the size of ϕ, where the number of
clauses of ϕ is linear in the number of nonogram lines and the number of label conflicts. J

We remark that this 2-SAT model is independent of the type of nonogram lines (or curves)
and the shape of B. It depends only on the set of conflicting candidate label positions.

2.2 Fixed side assignment
Our second algorithm allows extensible leaders, but disallows leader intersections and assumes
that a balanced assignment of the labels to the ports of each nonogram line is given. We
further assume that the nonogram lines have slopes ±1 and that the frame B is a rectangle.

I Lemma 2.2. For a nonogram labeling instance with n lines and a balanced fixed side
assignment for each label we can discretize the relevant extension lengths of each label to
O(n2) values such that we can find a labeling of minimum total extension length among this
set of extension lengths (if the instance has a solution at all).

EuroCG’20

71:4 Labeling Nonograms

(a) (b) (c) (d) (e)

` `
`

`
`

Figure 2 Possible cases of extension lengths for label ` in the proof of Lemma 2.2.

Proof. In a minimum-length labeling, every label ` of a nonogram line l should be shifted as
close to B as possible without intersecting another label. Hence it either touches B and the
extension length is 0 or 1 (depending on which side of l is labeled), or it touches another label
`′ blocking it from moving closer to B. This blocking label `′ can belong to a line of different
slope, meaning that the extension length of ` is given by the intersection point of the two
nonogram lines (possibly +1), see Figure 2(a). There are O(n) such intersection points for
`. Or, the lines of ` and `′ are parallel and of distance at most 2. If the chain of blocking
relations comprises only parallel lines and all of them have the labels on the same side
(Figure 2(b)), then we get a single extension length for `. If the parallel lines come in a group
of right-flipped labels followed by a group of left-flipped labels as in Figures 2(d–e) then any
prefix of the sequence of left-flipped labels can add to the extension length of `, which again
yields O(n) possible extension lengths. Finally, ` may be blocked by some chain of parallel
labels, the last of which is blocked by a label of an orthogonal line (Figure 2(c)). Considering
all combinations this last case can give rise to O(n2) different extension lengths. J

I Theorem 2.3. Given a nonogram labeling instance with n lines and a fixed side assignment
for each label, we can decide in O(n9) time, whether an assignment of an extension length to
each label exists such that the resulting labeling is valid. If this is the case we can find one of
minimum total extension length.

Proof. (Sketch) The idea of the algorithm is to use dynamic programming. Consider an
edge e of B and all the lines crossing e. From Lemma 2.2 we know that it is sufficient to
consider at most O(n2) many extension lengths for each label. We define a subinstance of
the labeling problem for edge e by selecting two boundary lines l1 and l2 together with an
extension length for each of the two labels. This defines O(n6) possible subinstances. Any
line with a port between those of l1 and l2 is restricted to stay in the region bounded by
l1, l2, and a horizontal line through the topmost point of the shorter of the two lines l1, l2,
see Figure 3. To solve such an instance recursively, we optimize over all lines l̂ contained
in the instance and all admissible and intersection-free extension lengths for that label and
recurse into the two subinstances defined by l1 and l̂ as well as l̂ and l2 (see the two shaded
subinstances defined by l4 between l3 and l2 in Figure 3). The optimization step takes O(n3)
time for each subinstance. We initialize the recursion with two outward pointing dummy
lines and repeat the process for all sides of B. This yields an overall O(n9) running time. J

3 Hardness

The problem of testing whether a valid labeling exists, in the setting where we disallow
crossing leaders, but are allowed to choose at which port each label is placed and are allowed
to extend the leaders to any desired length, is NP-hard. We will construct an instance with
a rectangular frame which only has lines of slopes 1 and −1. We will reduce from 3-SAT.

M. Löffler and M. Nöllenburg 71:5

l1
l2l3

l4

Figure 3 Illustration of the dynamic programming recursion.

Variables. The bulk of the construction consists of cross gadgets. A cross gadget consists of
two short labels intersecting each other at 90◦ angles.1 Figure 4 shows a single cross gadget.

Figure 4 A variable gadget (cross gadget) and its three possible valid solutions.

Note that for a cross gadget it is not relevant on which side of the lines the labels are, and
that although labels can be extended, doing so does not change the combinatorial choices of
which combinations of sides are possible.

A cross gadget has three possible valid states, and we wish to use them to represent
variables, which have two valid states. Furthermore, we would like to enforce multiple cross
gadgets to represent the same variable. We can achieve both of these properties by connecting
several cross gadgets into a variable loop. Figure 5 illustrates a variable loop.

Figure 5 A single variable loop.

By connecting the cross gadgets into a loop, we ensure that only two valid solutions
remain for each cross gadget. Note that we can increase the number of occurrences of a cross
of the same variable by making the frame wider, and we can increase the distance between
consecutive crosses by making the frame higher. We can embed multiple independent loops
next to each other, as illustrated in Figure 6.

In the construction, we will also need to place some labels which cannot be removed. We
create a special variable loop, for which one of the states is disabled by a crossing between a
positive and a negative label. We achieve this by making them longer (see Figure 7). Note
that forced (black) labels are only forced to be on a particular side of B; they can still be
extended, but we will use them in a way where extending black labels is never useful.

1 Here, we are only using one side of each line l ∈ L, which corresponds to a setting where not all clues
are present in the puzzle. The contruction can easily be adapted to the case where both labels are
present, by placing them at the same side (i.e. not balanced).

EuroCG’20

71:6 Labeling Nonograms

Figure 6 Multiple variable loops.

Figure 7 A variable loop where one state is impossible; solid black labels are forced.

Clauses. Next, a clause gadget essentially consists of a single clause label which is forced
to be at a specific port, but can be extended. Depending on how far it is extended, it will
intersect different variable labels. The clause label is restricted to only three essentially
different positions by two fixed labels. Figure 8 illustrates a clause gadget.

Figure 8 Clause gadget and three possible valid solutions.

For a clause label, it is important on which side of the line the label is placed: it must be
faced towards the variable labels. We need to connect the clause gadget to the correct literals
of the three variables involved in the clause, as well as to the fixed loop on two sides. For this,
we need to make some very long labels. Figure 9 illustrates how a clause gadget is connected,
showing only the relevant labels. Note that the variables may need to be connected to two
different groups of cross gadgets in the variable loops.

The global picture. Globally, we embed the different clauses horizontally next to each
other. Each clause, including its connections, covers a horizontal distance of a constant
number of variable zig-zags. These connections are placed between the variable loops, so
they do not interfere. Figure 10 shows how the first clause and the beginning of the second
clause could look globally, without hiding any labels.

M. Löffler and M. Nöllenburg 71:7

Figure 9 Connecting a clause gadget to the correct literals for clause ¬purple ∨ red ∨ ¬orange.

The total horizontal distance covered will be O(nm). The vertical distance is O(n).

clause 1 clause 2

Figure 10 The global picture.

I Theorem 3.1. Given a nonogram instance without side assignment and extensible leaders,
it is NP-complete to decide whether a valid labeling exists.

4 Future work

Several interesting questions in nonogram labeling remain open. Our hardness reduction
uses long labels whose lengths depend on the size of the 3-SAT instance. In contrast, most
labels in real-world nonograms are 1 × c rectangles for small constant values of c. This
raises the question of investigating the computational complexity of nonogram labeling for
bounded label lengths. A second question follows from Theorem 2.1. If a compact balanced
labeling does not exist, but a non-balanced one does, then a natural optimization problem is
to maximize the number of balanced pairs of labels.

References
1 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for

testing the truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979. doi:10.1016/0020-0190(79)90002-4.

EuroCG’20

71:8 Labeling Nonograms

2 Kees Joost Batenburg and Walter A. Kosters. On the difficulty of nonograms. ICGA
Journal, 35(4):195–205, 2012. doi:10.3233/ICG-2012-35402.

3 Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvonis. Multi-
stack boundary labeling problems. In S. Arun-Kumar and Naveen Garg, editors, Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS’06), volume
4337 of LNCS, pages 81–92. Springer, 2006. doi:10.1007/11944836_10.

4 Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. Boundary
labeling: Models and efficient algorithms for rectangular maps. Computational Geometry
Theory and Applications, 36(3):215–236, 2007. doi:10.1016/j.comgeo.2006.05.003.

5 Michael A. Bekos, Benjamin Niedermann, and Martin Nöllenburg. External labeling
techniques: A taxonomy and survey. Computer Graphics Forum, 38(3):833–860, 2019.
doi:10.1111/cgf.13729.

6 Daniel Berend, Dolev Pomeranz, Ronen Rabani, and Ben Raziel. Nonograms: Com-
binatorial questions and algorithms. Discrete Applied Mathematics, 169:30–42, 2014.
doi:10.1016/j.dam.2014.01.004.

7 Yen-Chi Chen and Shun-Shii Lin. A fast nonogram solver that won the TAAI 2017 and
ICGA 2018 tournaments. ICGA Journal, 41(1):2–14, 2019. doi:10.3233/ICG-190097.

8 Tim K. de Jong. The concept and automatic generation of the curved nonogram puzzle.
Master’s thesis, Utrecht University, 2016. URL: https://dspace.library.uu.nl/handle/
1874/337632.

9 Andreas Gemsa, Jan-Henrik Haunert, and Martin Nöllenburg. Multi-row boundary-labeling
algorithms for panorama images. ACM Trans. Spatial Algorithms and Systems, 1(1):1:1–
1:30, 2015. doi:10.1145/2794299.

10 Raphael J. Parment. Generation of sloped nonograms. Master’s thesis, Utrecht University,
2015. URL: https://dspace.library.uu.nl/handle/1874/323196.

11 Mees van de Kerkhof, Tim de Jong, Raphael Parment, Maarten Löffler, Amir Vaxman,
and Marc J. van Kreveld. Design and automated generation of japanese picture puzzles.
Comput. Graph. Forum, 38(2):343–353, 2019. doi:10.1111/cgf.13642.

12 Mees A. van de Kerkhof. Improved automatic generation of curved nonograms. Master’s
thesis, Utrecht University, 2017. URL: https://dspace.library.uu.nl/handle/1874/
357864.

Certified Approximation Algorithms for
the Fermat Point
Kolja Junginger1, Ioannis Mantas1, Evanthia Papadopoulou1,
Martin Suderland1, and Chee Yap2

1 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
kolja.junginger@usi.ch,ioannis.mantas@usi.ch,
evanthia.papadopoulou@usi.ch,martin.suderland@usi.ch

2 Courant Institute, NYU, New York, NY, USA
yap@cs.nyu.edu

Abstract
Given a set of k points A ⊆ Rd together with a positive weight function w : A → R>0, the
Fermat distance function is ϕ(x) =

∑
a∈A w(a)‖x− a‖. A classic problem in facility location is

finding the Fermat point x∗, the point that minimizes the function ϕ. We present algorithms to
compute an ε-approximation of the Fermat point x∗, that is, a point x̃

∗ satisfying ‖x̃∗−x∗‖ < ε.
Our algorithms are based on the subdivision paradigm, which we combine with Newton methods,
used for speed-ups and certification. Our algorithms are certified in the sense of interval methods.

1 Introduction

A classic problem in Facility Location [14, 29] is the placement of a facility to serve a given
set of demand points or customers so that the total transportation costs are minimized. The
total cost at any point is interpreted as the sum of the distances to the demand points. The
point that minimizes this sum is called the Fermat Point, see Fig. 1.

A weighted foci set is a non-empty finite set of (demand) points A = {a1, . . . , ak} ⊆ Rd

associated with a positive weight function w : A→ R>0. Each a ∈ A is called a focus with
weight w(a). Let W =

∑
a∈A w(a). The Fermat distance function of A is given by

ϕ(x) :=
∑

a∈A

w(a)‖x− a‖,

where ‖x‖ is the Euclidean norm in Rd. The global minimum value of ϕ is called the Fermat
radius of A and denoted r∗; any point x ∈ Rd that achieves this minimum, ϕ(x) = r∗, is
called a Fermat point and denoted x∗ = x∗(A). If A is not collinear then x∗ is unique
[22, 24]. We also consider the closely related problem of computing k-ellipses of A: for any
r > r∗(A), the k-ellipsoid of A of radius r is the level set ϕ−1(r) :=

{
x ∈ Rd : ϕ(x) = r

}
.

When d = 2, they are called k-ellipses motivated by classical ellipses being 2-ellipses. Figure 1
shows some 28-ellipses with different radii computed by our algorithm.

The question of approximating the Fermat point is of great interest as its coordinates are
the solution of a polynomial with exponentially high degree [3, 28]. An ε-approximation x̃∗ to
the Fermat point x∗ can be interpreted in 3 senses: (A) ‖x̃∗ − x∗‖ ≤ ε, (B) ϕ(x̃∗) ≤ ϕ(x∗)+ε,
and (C) ϕ(x̃∗) ≤ (1 + ε)ϕ(x∗). In this paper, we consider approximations in the sense (A)
which are stronger than senses (B) and (C). To the best of our knowledge, only senses (B)
and (C) have been studied so far; they are actually approximations of the Fermat radius.

There is a plethora of results for the Fermat point including, among others, approximations
algorithms [2, 6, 9, 11, 15, 18, 30, 38] and special configurations and other variants [1, 5, 8,
10, 13, 14]. A smaller, but equally old, literature also exists for the k-ellipses [25, 28, 33, 35].
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

72:2 Certified Approximation Algorithms for the Fermat Point

(a) (b)

Figure 1 A set of 28 foci, corresponding to EU capitals, with the Fermat point (x) and three 28-
ellipses of different radius. (a) Unweighted. (b) The weight of a focus is the population of that country.

In this work we introduce certified algorithms for approximating the Fermat point,
combining a subdivision approach with interval methods, cf. [21, 31]. The approach can be
formalized in the framework of “soft predicates” [36]. Our certified algorithms are fairly easy
to implement, and are shown to have good performance experimentally.

Our Contributions can be summarized as follows: (1) We introduce a box subdivi-
sion scheme to compute an ε-approximation of the Fermat point. (2) We augment the
Weiszfeld point sequence [37] with a Newton-operator test, that outputs an ε-approximation
of the Fermat point. (3) We implement and experimentally evaluate our algorithms with
various datasets. In the full paper, we also address the problem of computing k-ellipses.

2 Preliminaries

Let Rd (or simply R when d = 1) denote the set of closed d-dimensional boxes (i.e.
Cartesian products of intervals) in Rd. Our subdivision algorithms start with an initial box
B0 ∈ Rd and recursively split it. We organize the boxes in a hyper-octree data structure [32].
A box is specified by an interval in each dimension B = I1 × ...× Id. We denote: mB the
center of B, rB the radius of B (distance between mB and a corner), ω(B) the width of B

(the maximum length of its defining intervals), and c · B the box with center mB and the
length of each Ii scaled by c. Operation split takes each interval of B and splits it in the
middle. It returns 2d children of B. Operation split2 applies split to all of B’s children
and returns the 22d grandchildren of B. We maintain the subdivision smooth, i.e., the depth
of any two boxes that have overlapping faces differs by a depth of at most 1. Maintaining
smoothness does not increase the asymptotic costs [4].

Let P be a logical predicate on boxes, i.e. P : Rd → {true, false}. A test T looks like
a predicate: T : Rd → {success, failure} and it is always associated to some predicate
P : Call T a test for predicate P if T (B) = success implies P (B) = true. However, we
conclude nothing if T (B) = failure.

I Definition 2.1. Let T be a test for a predicate P . We call T a soft predicate (or soft
version of P) if it is convergent in this sense: if (Bn)n∈N is a monotone sequence of boxes
Bn+1 ⊆ Bn that converges to a point a, then P (a) = T (Bn) for n large enough.

P (B) denotes a soft version of P (B). We construct soft predicates using functions of the
form F : Rd → (R ∪ {−∞,∞}) approximating a scalar function f : D → R with D ⊂ Rd.

K. Junginger, I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 72:3

(a) (b)

Figure 2 The resulting box subdivision for (a) the Fermat point and (b) the k-ellipses of Fig. 1a.

I Definition 2.2. Call F a soft version of f if it is

(i) conservative, i.e. for all B ∈ Rd, F (B) contains f(B) := {f(p) : p ∈ B ∩D}, and
(ii) convergent, i.e. if for monotone sequence (Bn)n∈N that converges to a point a ∈ D,

limn→∞ ω(F (Bn)) = 0 holds.

We denote F by f when F is a soft version of f . There are many ways to achieve f .
E.g. if f has an arithmetic expression E, we can simply evaluate E using interval arithmetic.

3 Approximate Fermat points

We assume that the Fermat point is unique and unequal to a focus. These assumptions
are mild and easy to ensure. A focus a ∈ A is the Fermat point of A if and only if∥∥∇ϕA\a(a)

∥∥ ≤ w(a) [37]. So, a simple O(k2d) preprocessing time suffices to verify this
assumption. In both subdivision algorithms presented below the time can be reduced to
O(kd). The Fermat point problem reduces to computing the critical point of the gradient of
ϕ. We now present three approximation algorithms for the Fermat point x∗.

3.1 Using the Subdivision Paradigm
This paradigm requires an initial box B0. If B0 is not given, it is easy to find a box containing
x∗, as x∗ lies in the convex hull of A [20]. Function Initial-Box(A), in O(k) time, returns
an axis-aligned box with the corners of minimum and maximum x, y coordinates.

I Definition 3.1. Given a box B, the gradient exclusion predicate C∇(B) returns true if
and only if 0 /∈ ∇ϕ(B). If we replace ∇ϕ(B) by its interval form ∇ϕ(B) see Section 4, we
obtain the corresponding interval predicate “ C∇(B)”.

In our algorithms we keep on splitting boxes using different kinds of predicates while we
exclude boxes (red in Fig. 3) that are guaranteed not to contain x∗ and we keep boxes (green
in Fig. 3) that might contain x∗. We test whether we can already approximate x∗ well
enough by putting a bounding box around all (green) boxes, which we have not excluded yet.

I Definition 3.2. Given a set of boxes Q, one of which contains the Fermat point, the
stopping predicate Cε(Q) returns true, if and only if the minimum axis-aligned bounding box
containing all boxes in Q has a radius at most ε.

If Cε returns true, then we can stop. Since the radius of the minimum bounding box is
at most ε, the center of the box is an ε-approximation of the Fermat point.

EuroCG’20

72:4 Certified Approximation Algorithms for the Fermat Point

Figure 3 Illustrations of three different steps during the execution of Algorithm 1.

Algorithm 1: Subdivision for Fermat Point (SUB)
Input : Foci set A, ε > 0. Output: Point p.

1 B0 ← Initial-Box(A); Q← Queue(); Q.push(B0);
2 while not Cε(Q) do
3 B ← Q.pop();
4 if not C∇(B) then Q.push(split(B)) ;
5 return p← Center of the bounding box of Q;

3.2 Enhancing the Subdivision Paradigm
Using a Newton inclusion predicate, we know that our algorithm will eventually converge
quadratically. Other authors have also considered Newton-type algorithms, but usually
independently of other methods, thus lacking global convergence. We integrate subdivision
with the Newton operator (an idea based on Dekker [12]), thus ensuring global convergence.

We want to find the Fermat point, i.e. the root of f = ∇ϕ. The Newton-type predicates
are well-studied in the interval literature, and they have the form N : Rd → Rd. We use
the formula by Moore [23] and Nickel [26]: N(B) = mB − J−1

f (B) · f(mB), where Jf is the
Jacobian matrix of f . Since f = ∇ϕ, the matrix Jf is actually the Hessian of ϕ. There are
better Newton type operators [19, 17, 16] in the sense that they return a smaller box, but
they are computationally more expensive.

This Newton box operator has the following properties, stemming from [7, 27, 34]: (1) If
N(B)⊂B then x∗∈ N(B). (2) If x∗∈ B then x∗∈ N(B). (3) If N(B)∩B = ∅ then x∗ /∈ B.

I Definition 3.3. Given a box B, the Newton inclusion predicate CN (B) returns true if
and only if N(2B) ⊂ 2B, where N(B) = mB − J−1

f (B) · f(mB) see Section 4.

I Theorem 3.4. Algorithms 1 and 2 return an ε-approximation of the Fermat point x∗.

Algorithm 2 initially excludes boxes only based on C∇ and splits the other boxes. This
subdivision phase takes exponential time in d. Once the test CN (B) succeeds, it will also
do so for one of B’s grandchildren. The Newton phase needs O(kd2) time per step and
converges quadratically in ε. The time necessary to transition from the subdivision phase to
the Newton phase does not depend on ε.

We can reduce the O(k2d) preprocessing time (testing if x∗ ∈ A) to O(kd) in both
subdivision algorithms, by doing this test only when all except a constant number of foci got
excluded by C∇. Another speedup comes by preprocessing with a principal component
analysis and then using rectangular boxes. Experimentally, we observe that it drastically
improves the runtime for near-degenerate inputs.

K. Junginger, I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 72:5

Algorithm 2: Enhanced subdivision for Fermat Point (E-SUB)
Input : Foci set A, ε > 0. Output: Point p.

1 B0 ← Initial-Box(A); Q← Queue(); Q.push(B0);
2 while Cε(Q) do
3 B ← Q.pop();
4 if not C∇(B) then
5 if CN (B) then
6 Q← Queue(); Q.push(split2(N(2B));
7 else Q.push(split(B));
8 return p← Center of the bounding box of Q;

3.3 Using a Point Sequence Scheme
Weiszfeld [37] gave an iterative method to compute a sequence of points converging to the
Fermat point, later corrected in [20, 29]. This scheme is defined by the following map:

T (x) =

T̃ (x) if x /∈ A∑
a∈A,a6=x w(a) a

‖x−a‖∑
a∈A,a6=x w(a) 1

‖x−a‖
if x ∈ A

where T̃ (x) =
∑k

i=1 w(a) ai

‖x−ai‖∑k
i=1 w(a) 1

‖x−ai‖
(1)

We augment this by adding a guarantee for the computation, turning it into an ε-
approximation algorithm. To verify the quality of a point pi, we use the Newton inclusion
predicate. We define a small box B with pi as center and map it to the new box N(B). If

N(B) ⊆ B, we know that x∗ lies in N(B). If N(B) 6⊆ B, we move on to point pi+1
and adjust the box size. If there was a focus in box B

10 , then N(B
10) covers the whole plane,

which hinders N(B) ⊆ B to succeed. In that case we shrink the box by a factor of 10. If
B
10 ∩ N(B

10) = ∅, then the box B
10 does not contain the x∗ and we therefore increase the

box size. As a starting point, we take the center of mass p0 of A, i.e., p0 = 1
W

∑
a∈A w(a)a,

as ϕ(p0) itself, is a 2-approximation of the Fermat radius [11].

Algorithm 3: Point sequence algorithm (P-SEQ)
Input : Foci set A, ε > 0. Output: Point p.

1 p← p0; w ← ε;
2 while True do
3 B ← Box B(mB = p, ω(B) = w); N(B)← Interval-Newton(B);
4 if N(B) ⊆ B then return p ;
5 else if N

(
B
10
)
∩ B

10 = ∅ then w ← min{ε, w · 10};
6 else w ← w

10 ;
7 p← T (p)

The point sequence in Eq. (1) converges to the Fermat point and when sufficiently close,
N(B) ⊂ B holds, hence Algorithm 3 returns an ε-approximation of the Fermat point.

4 Details on the box approximations ϕ, ∇ϕ, ∇2ϕ and N

We call L(B) a Lipschitz constant for box B if ∀p, q ∈ B : |ϕ(p)− ϕ(q)| ≤ L(B) · ‖p− q‖.
We will later choose L(B) smaller than the trivial Lipschitz constant W =

∑
a∈A w(a).

EuroCG’20

72:6 Certified Approximation Algorithms for the Fermat Point

I Lemma 4.1. ϕ(B) = [ϕ(mB)− L(B) · rB , ϕ(mB) + L(B) · rB] is a soft version of ϕ.

Proof. The L(B) is a Lipschitz constant of ϕ on box B, i.e. for all p ∈ B it holds
|ϕ(p)− ϕ(mB)| ≤ L(B) · rB , which implies ϕ(p) ∈ [ϕ(mB)− L · rB , ϕ(mB) + L · rB].

Let Bn be a sequence of boxes, which converges to a point. Hence rBn
→ 0. The Lipschitz

constants L(Bn) can be bounded from above by W . Thus, ω(ϕ(Bn)) ≤ 2W · rBn → 0. J

The following formulas are written for d = 2 but clearly generalize to higher dimensions.
For any point p = (px, py)T , let sin(p) := py/‖p‖ and cos(p) := px/‖p‖. Clearly,

∇ϕ(p) =
(∑

a∈A w(a) cos(p− a)∑
a∈A w(a) sin(p− a)

)
. (2)

Let Cor(B) denote the set of four corners of B. Then

sin(B − a) =

[−1, 1] if a ∈ B,

[min(sin(Cor(B)− a)), 1] if ax ∈ Bx ∧ ay < By,

[−1, max(sin(Cor(B)− a))] if ax ∈ Bx ∧ ay > By,

[min(sin(Cor(B)− a)), max(sin(Cor(B)− a))] else.
(3)

In other words, sin(B − a) can be computed from the sinus of at most four angles. Similarly
for cos(B − a).

For any p ∈ R2 \A it holds:

∇2ϕ(p) =

∑
a∈A w(a) (py−ay)2

‖p−a‖3 −∑a∈A w(a) (px−ax)(py−ay)
‖p−a‖3

−∑a∈A w(a) (px−ax)(py−ay)
‖p−a‖3

∑
a∈A w(a) (px−ax)2

‖p−a‖3

 (4)

I Lemma 4.2. Soft versions ∇ϕ(B) and ∇2ϕ(B) are derived by replacing every occur-
rence of p in Eqs. (2) and (4) by B and evaluating with Eq. (3) and interval arithmetic.

A box approximation of the length of the gradient of ϕ can then be achieved by:

‖∇ϕ(B)‖ =
∥∥∥∥
∑

a∈A\B w(a)
(

cos(B − a)
sin(B − a)

)∥∥∥∥+
[
−∑a∈A∩B w(a),

∑
a∈A∩B w(a)

]

where the length of an interval vector I = (Ix, Iy) is computed by ‖I‖ =
√

I2
x + I2

y and the

square root of an interval J by
√

J =
[√

min |J |,
√

max |J |
]
. We use the Lipschitz constant

L(B) = min{W, max ‖∇ϕ(B)‖} of box B to compute ϕ(B).

I Lemma 4.3. The soft gradient test C∇(B) is convergent, i.e., for any monotone sequence
of boxes (Bn)n∈N that converges to a point p, the point p is not the Fermat point iff

C∇(Bn) = success for n large enough.

We compute N(B) = mB − (∇2ϕ(B))−1 · ∇ϕ(mB) and the inverse of an interval

matrix through interval arithmetic:
(

I J

K L

)−1

= 1
IL−JK

(
L −J

−K I

)
.

K. Junginger, I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 72:7

U
n
i
f
-
1

(a) (b)

U
n
i
f
-
2

Figure 4 Experimental results. Points are, in Unif-1, uniformly sampled from a disk and, in
Unif-2, uniformly sampled from two disjoint disks. Finding the Fermat point with times as function
of (a) k, with ε = 10−4 and (b) ε, with k = 100. Axes are in logarithmic scale.

5 Experiments and Conclusion

We have implemented our algorithms in two dimensions using Matlab. We have experimented
with various datasets. An overview of experiments on synthetic datasets is shown in Fig. 4.

The runtime of all algorithms depends linearly on the number of foci. When ε is sufficiently
small, then the enhanced subdivision algorithm outperforms the point sequence algorithm
due to its quadratic convergence near the Fermat point.

References
1 A. Karim Abu-Affash and Matthew J. Katz. Improved bounds on the average distance to

the Fermat-Weber center of a convex object. Information Processing Letters, 109(6):329–
333, 2009.

2 Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proc. Symposium on Theory of Computing, pages 250–257. ACM, 2002.

3 Chanderjit Bajaj. The algebraic degree of geometric optimization problems. Discrete &
Computational Geometry, 3(2):177–191, 1988.

4 Huck Bennett and Chee Yap. Amortized analysis of smooth quadtrees in all dimensions.
Computational Geometry, 63:20–39, 2017.

5 Bhaswar B. Bhattacharya. On the Fermat-Weber point of a polygonal chain and its gen-
eralizations. Fundamenta Informaticae, 107(4):331–343, 2011.

6 Prosenjit Bose, Anil Maheshwari, and Pat Morin. Fast approximations for sums of distances,
clustering and the Fermat-Weber problem. Computational Geometry, 24(3):135–146, 2003.

7 Luitzen Egbertus Jan Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische
Annalen, 71(1):97–115, 1911.

EuroCG’20

72:8 Certified Approximation Algorithms for the Fermat Point

8 Paz Carmi, Sariel Har-Peled, and Matthew J. Katz. On the Fermat-Weber center of a
convex object. Computational Geometry, 32(3):188–195, 2005.

9 Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guarantees
for regression problems. In Proc. Innovations in Theoretical Computer Science, pages 269–
282. ACM, 2013.

10 Ernest J. Cockayne and Zdzislaw A. Melzak. Euclidean constructibility in graph-
minimization problems. Mathematics Magazine, 42(4):206–208, 1969.

11 Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geo-
metric median in nearly linear time. In Proc. Symposium on Theory of Computing, pages
9–21. ACM, 2016.

12 Theodorus Jozef Dekker. Finding a zero by means of successive linear interpolation. In Con-
structive Aspects of the Fundamental Theorem of Algebra, pages 37–48. Wiley Interscience,
1967.

13 Adrian Dumitrescu, Minghui Jiang, and Csaba D. Tóth. New bounds on the average
distance from the Fermat-Weber center of a planar convex body. Discrete Optimization,
8(3):417–427, 2011.

14 Sándor P Fekete, Joseph SB Mitchell, and Karin Beurer. On the continuous Fermat-Weber
problem. Operations Research, 53(1):61–76, 2005.

15 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proc. Symposium on Theory of Computing, pages 569–578. ACM, 2011.

16 Alexandre Goldsztejn. Comparison of the Hansen-Sengupta and the Frommer-Lang-
Schnurr existence tests. Computing, 79(1):53–60, 2007.

17 Eldon R. Hansen and R.I. Greenberg. An interval Newton method. Applied Math. and
Computation, 12:89–98, 1983.

18 Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.
Discrete & Computational Geometry, 37(1):3–19, 2007.

19 Rudolf Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken. Computing, 4(3):187–201, 1969.

20 Harold W. Kuhn. A note on Fermat’s problem. Mathematical programming, 4(1):98–107,
1973.

21 Long Lin and Chee Yap. Adaptive isotopic approximation of nonsingular curves: the
parameterizability and nonlocal isotopy approach. Discrete & Computational Geometry,
45(4):760–795, 2011.

22 Luis Fernando Mello and Lucas Ruiz dos Santos. On the location of the minimum point in
the Euclidean distance sum problem. São Paulo Journal of Mathematical Sciences, 12:108–
120, 2018.

23 Ramon E Moore. Interval Analysis, volume 4. Prentice-Hall Englewood Cliffs, NJ, 1966.
24 Kent E Morrison. The fedex problem. The College Mathematics Journal, 41(3):222–232,

2010.
25 Gyula Sz Nagy. Tschirnhaus’sche Eiflächen und Eikurven. Acta Mathematica Academiae

Scientiarum Hungarica, 1(1):36–45, 1950.
26 Karl Nickel. Triplex-algol and applications. Interner Bericht des Instituts für Informatik

der Universität Karlsruhe, 1969.
27 Karl Nickel. On the Newton method in interval analysis. Technical report, Wisconsin

University-Madison Mathematics Research Center, 1971.
28 Jiawang Nie, Pablo A. Parrilo, and Bernd Sturmfels. Semidefinite representation of the

k-ellipse. In Algorithms in algebraic geometry, pages 117–132. Springer, 2008.
29 Lawrence M Ostresh Jr. Convergence and descent in the Fermat location problem. Trans-

portation Science, 12(2):153–164, 1978.

K. Junginger, I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 72:9

30 Pablo A. Parrilo and Bernd Sturmfels. Minimizing polynomial functions. Algorithmic
and quantitative real algebraic geometry, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 60:83–99, 2003.

31 Helmut Ratschek and Jon Rokne. Computer methods for the range of functions. Horwood,
1984.

32 Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
33 Junpei Sekino. n-ellipses and the minimum distance sum problem. The American mathe-

matical monthly, 106(3):193–202, 1999.
34 Sergey P Shary. Krawczyk operator revised. Novosibirsk, Institute of Computational Tech-

nologies, Rússia, 2004.
35 Rudolf Sturm. Über den Punkt kleinster Entfernungssumme von gegebenen Punkten. Jour-

nal für die reine und angewandte Mathematik, 97:49–61, 1884.
36 Cong Wang, Yi-Jen Chiang, and Chee Yap. On soft predicates in subdivision motion

planning. Computational Geometry: Theory and Applications., 48(8):589–605, September
2015.

37 Endre Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés est
minimum. Tohoku Mathematical Journal, First Series, 43:355–386, 1937.

38 Guoliang Xue and Yinyu Ye. An efficient algorithm for minimizing a sum of Euclidean
norms with applications. SIAM Journal on Optimization, 7(4):1017–1036, 1997.

EuroCG’20

Repulsion Region in a Simple Polygon∗

Arthur van Goethem1, Irina Kostitsyna1, Kevin Verbeek1, and
Jules Wulms1

1 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
{a.i.v.goethem|i.kostitsyna|k.a.b.verbeek|j.j.h.m.wulms}@tue.nl

Abstract
We study a motion planning problem for point objects controlled by an external repulsive force.
Given a point object ζ inside a simple polygon P , a repulsor r (also represented by a point in
P) moves ζ by always pushing it away from r. When ζ hits the boundary of P , then ζ slides
along the boundary continuously increasing the distance to r until this is no longer possible. For
a fixed polygon P and starting position s of ζ inside P , we define the repulsion region as the set
of points in P that can be reached by ζ by placing a repulsor r anywhere inside P (and keeping
the position of r fixed throughout the motion). In this paper we show that, for a specific class
of polygons, the worst case complexity of the repulsion region is Θ(n2) and the repulsion region
can be computed in O(n2 logn) time, where n is the complexity of the polygon.

1 Introduction

Algorithmic path planning and motion control questions are usually studied in the context of
the actuating abilities of (autonomous or externally controlled) mobile objects. The object
is put in motion by the forces produced from within, by its actuators. A very different
approach is to consider a static object (or a set of objects), with no means of producing
any kind of motion itself, controlled by external global forces. There has been a number of
papers exploring motion planning of point objects by external control. Becker et al. [3] study
the question of controlling a swarm of particles in a geometric environment by applying a
sequence of global forces, such as gravity or a homogeneous magnetic field. Aloupis et al. [2]
consider the problem of rolling a ball out of a polygon (or equivalently, draining a polygon
filled with water) by tilting it. Akitaya et al. [1] consider the trash compaction problem,
where a set of trash particles are pushed together with a sweep line to form a compact shape.

One commonality among these papers is that, at any given moment, the force applied
to an object at any possible location has the same direction. In contrast, in the beacon
attraction model [4, 5], a point magnet, called beacon, is placed inside the polygon which
exerts a magnetic pull towards itself on all the points of the polygon. The forces applied
to the objects at different locations are no longer parallel, which leads to rather particular
geometric properties. Specifically, a beacon attraction region, i.e., all the points of the polygon
that eventually reach a given beacon and not get stuck along the way, has very different
properties than an inverse beacon attraction region, i.e., all the beacon locations that a given
point can eventually reach and not get stuck along the way [4, 5, 8, 9].

Inspired by the beacon attraction model, Bose and Shermer [6] introduce the model of
repulsion, where a repulsion actuator exerts a magnetic repulsive force on the points of a

∗ Kevin Verbeek is supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 639.021.541. Jules Wulms is supported by the Netherlands eScience Center (NLeSC) under
project no. 027.015.G02. Research on the topic of this abstract was initiated at the 4th Workshop
on Applied Geometric Algorithms (AGA 2018) in Langbroek, The Netherlands, supported by the
Netherlands Organisation for Scientific Research (NWO) under project no. 639.023.208.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

73:2 Repulsion Region in a Simple Polygon

r

ζ

Figure 1 Repulsor r acts on the particle ζ. If the direction away from the repulsor is interior to
the polygon, ζ moves away from the repulsor along a straight line. Otherwise, if possible, ζ slides
along a boundary segment in the direction of increasing Euclidean distance.

polygon. They consider the question whether it is possible to gather all the points of a
convex polygon in one point with one repulsion actuator. Mozafari and Shermer [10] study
the problem of finding a set of acceptable points for a given target location t, i.e., the set of
points that can be pushed to t with one repulsion actuator.

We continue to explore the repulsion model and study the complementary problem: given
a starting position s, find all the points reachable from s with one repulsion actuator.

Problem statement and contributions. Consider a repulsion activator (or repulsor) r and
a particle ζ inside a polygon P . Under the repulsion of r, the particle ζ moves away from
r along a straight line as long as ζ is interior to P , even if r is not visible to ζ (refer to
Figure 1). When ζ reaches the boundary of P , it slides along it in the direction of increasing
Euclidean distance from r, if such a direction exists. Otherwise, the motion of the particle
terminates.

Given a polygon P with n vertices and a point s in it, we define the repulsion region R(s)
as the set of points p ∈ P for which there exists a repulsor r ∈ P such that a particle placed
at s will eventually reach the point p under the influence of the repulsor r. In this abstract
we restrict the attention to a specific class of polygons, which we define in Section 2, along
with some basic notation and properties. In Section 3 we show that the repulsion region has
worst-case complexity Θ(n2). Finally, we show in Section 4 that the repulsion region can be
computed in O(n2 logn) time. Although we believe these results hold for all simple polygons,
proving so is significantly harder, and therefore left for the full version of this paper.

2 Preliminaries

Consider a particle ζ, currently at position pζ , that is moved by a repulsor r inside a simple
polygon P . By definition, the Euclidean distance between r and ζ is monotonically increasing
throughout the motion. For an edge e of P not containing pζ , consider the line ` perpendicular
to e passing through pζ . If this line intersects e in a point h, then we call h the split point of
e with respect to the current position of ζ (see Fig. 2 (left)). Note that, if r is strictly on one
side of ` and pushes ζ onto e, then ζ will hit e on the opposite side of ` and continue moving
away from h.

Furthermore, consider a reflex vertex v of P with two incident edges e1 and e2. Extend
the edges e1 and e2 beyond v. When ζ lies inside the resulting cone, then a repulsor may
push it towards either of the edges. If the segment pζv splits the interior angle at v into two
obtuse angles, then we call v a split vertex with respect to the current position of ζ.

Now consider a particle ζ sliding along an edge e1 towards a convex vertex v (see Fig. 2
(right)). Let e2 be the other edge incident to v, and let ` be the line perpendicular to e2 going
through v. Let H1 and H2 be the half planes defined by ` containing e1 and e2, respectively.

A. van Goethem et. al. 73:3

ζ h

e
v

e1

e2

` `

v

e1

e2

ζ

Figure 2 Left: point h is the split point of e, and reflex vertex v is a split vertex, with respect to
the current location of particle ζ. Right: ζ is sliding along e1 towards v, ` is perpendicular to e2. If
the repulsor is above `, then ζ will continue sliding along e2, otherwise it will remain in v.

If the repulsor pushing ζ towards v lies in H1 then ζ will continue sliding along e2 after it
passes v. However, if the repulsor is in H2 then the motion of ζ will terminate at v.

In the (degenerate) case that a repulsor is located exactly on the line through ζ and a
split vertex/point with respect to the current position of ζ, the particle moves onto either of
the two incident edges. This choice does not significantly impact the repulsion region.

Finally, we denote a path followed by the particle ζ (starting at s) repulsed by a repulsor
r by πr. Observe that πr must be simple. Let π1 and π2 be two paths generated by repulsors
r1 and r2, respectively. We say that π1 and π2 have a convergence point c, if c ∈ π1 and
c ∈ π2. Note that the starting position s is a convergence point of all paths. If two paths
have a convergence point other than s, then we say that they are converging. Furthermore,
we say that π1 and π2 properly intersect in convergence point c if c is interior to P .

Regular polygons. We call a polygon regular if (1) looking at the split points/vertices with
respect to s, the angle between consecutive split points/vertices around s is at most π, and
(2) there does not exist a repulsor r such that we can identify two points p1, p2 on πr for
which r ∈ p1p2 and p1p2 is completely contained in P ; otherwise the polygon is irregular (see
Fig. 3(a) and (b)). Intuitively, the path πr of a repulsor r cannot spiral around r in regular
polygons. Contrary to regular polygons (see Section 3), paths of repulsors may properly
intersect in irregular polygons, making the analysis significantly harder. Furthermore, we
obtain the following useful property in regular polygons, which again, does not hold generally
for irregular polygons.

(a) (b) (c)

s

s
r s

p2

p1

s

Figure 3 Regular vs irregular polygons: (a) condition (1) is violated and paths cross; (b) condition
(2) is violated and geodesic distance to s decreases; (c) a regular polygon.

EuroCG’20

73:4 Repulsion Region in a Simple Polygon

ζ

v

u

v

`
ζ

q

s

ζ

v
u q

(a) (b) (c)

`

`

Figure 4 Illustration of Lemma 1. In a regular polygon the geodesic distance from ζ to s is
monotonically increasing. Geodesic path is shown in green, path πr in orange.

I Lemma 1. In a regular polygon P , the geodesic distance inside P from a particle ζ to its
starting position s is monotonically increasing.

Proof sketch. Consider the geodesic path γ from s to a point pζ , the current position of ζ.
Let v be the last vertex on γ before pζ . We consider several cases (see Fig. 4). If pζ is interior
to P , then the result follows from the fact that the distance from ζ to r is monotonically
increasing. If pζ is on the boundary of P , then let vpζ split the polygon into two subpolygons
P1 and P2, where P1 contains s. If ζ is pushed into P1, then the geodesic distance between ζ
and s cannot decrease. Otherwise, the geodesic distance between ζ and s may only decrease
if πr spirals around r, but then P is irregular. J

3 Complexity of the repulsion region

To prove an upper bound on the complexity of the repulsion region, we first show that the
paths of two repulsors cannot properly intersect in a regular polygon P .

I Lemma 2. In a regular polygon P no two repulsion paths have a proper intersection.

Proof sketch. Let π1 and π2 be the paths generated by two repulsors r1 and r2, and let `
be the line through r1 and r2. Assume that c and d are two consecutive convergence points
of π1 and π2. We can show that c and d must be on the same side of `, for otherwise there
must exist another convergence point between c and d at `. Additionally, π1 and π2 cannot
cross ` between c and d. Then, due to the relative angles from d to r1 and r2, there cannot
be a proper intersection at d. By repeating this argument, we conclude that π1 and π2 do
not have a proper intersection. J

Now let v be a (reflex) vertex of P and consider two repulsors r1 and r2 for which the
generated paths π1 and π2 contain v. Consider a repulsor r3 that lies on the segment r1r2
(potentially outside P) and its repulsion path π3. Since two repulsion paths cannot properly
intersect, π3 is essentially contained between π1 and π2, and hence must also contain v. We
obtain the following result.

I Corollary 3. The set of repulsors S(v) (possibly outside of the polygon) that push the
particle ζ to a reflex vertex v is convex.

Consequently, the set of repulsors S′(v) inside P that push the particle to a (reflex) vertex v
consists of at most O(n) connected components. To construct part of the repulsion region
starting from v, we can simply combine the at most O(n) cones emanating from v coming

A. van Goethem et. al. 73:5

Figure 5 Polygon with O(n) towers and O(n) cliffs. The repulsion region we get by placing
repulsors in the pink areas at the top, results in blue O(n) cones per reflex vertex at the bottom.

from the O(n) connected components of S′(v). The complete repulsion region is then the
union of all cones over all reflex vertices of P , as the path of the particle either follows the
boundary, or moves internally through P starting from a reflex vertex. Since the cones
cannot intersect, we get the following upper bound. This bound is tight, as shown by the
example in Fig. 5.

I Theorem 4. The repulsion region of a regular polygon P has worst-case complexity Θ(n2),
where n is the number of vertices of P .

4 Computing the repulsion region

To compute the repulsion region, we must explicitly compute the corresponding convex sets
for each (reflex) vertex of the regular polygon P . To compute the convex sets in the right
order, we heavily rely on Lemma 1. Specifically, we construct the shortest path map (SPM)
in P with source s (following the approach of [8]). This SPM is a subdivision of P which
captures all possible shortest paths starting from s. For every region Ri of the SPM, there is
a reflex vertex vi (or s) that is the last vertex on the shortest path from s to a point p ∈ Ri.
We call vi the base of Ri. We now add the following vertices to P . For every reflex vertex
vi, we extend the last segment of the shortest path from s to vi until it hits the boundary
of P at wi. The segment viwi is called the window of Ri and lies on the boundary of Ri.
We add the window vertex wi to P . Furthermore, for every edge e in Ri, we add the split
point of e with respect to vi to P , if it exists. Finally, we construct the directed repulsion
graph G = (V,E), where V consists of all vertices, window vertices, and split points of P .
The edges of G include all edges of the shortest path tree in P with source s, and the edges
on the boundary of P directed towards larger geodesic distance from s (which is well defined,
since we split P at split points). See Figure 6 for an example.

We can argue the following properties for any path πr of a repulsor r: (1) πr can enter a
region Ri only via its base vi or its window vertex wi , and (2) if πr reaches the base vi of
a region Ri, then it must proceed in Ri.As a result, the repulsion graph G represents the
combinatorial structures of all possible paths πr from s through P . Now, to construct the
convex set for a particular vertex v of P , we can simply consider the incoming edges in G.

EuroCG’20

73:6 Repulsion Region in a Simple Polygon

Figure 6 Repulsion graph G consisting of black edges along the boundary of P , and blue shortest
path tree edges.

Typically, sliding along some incident edge of P towards v induces an additional half-plane
constraint, as described in Section 2. Finally, we may need to combine the resulting convex
sets from various incoming edges. However, since the union of these convex sets must again
be convex, this simply means that some half-plane constraints can be eliminated, which is
easy to compute.We can then obtain the following result.

I Theorem 5. The repulsion region R(s) of a regular polygon P can be computed in
O(n2 logn) time, where n is the number of vertices of P .

Proof sketch. We first compute the SPM with source s in O(n) time [7]. From the SPM we
can easily compute the repulsion graph G in O(n) time. Note that G has O(n) complexity.

We then compute the convex set of repulsors for each vertex v of G, in order of increasing
geodesic distance from s. For each incoming edge of v in G, we add the corresponding
half-plane constraint to the convex set of repulsors reaching that edge and ending in v. Next,
we combine the resulting convex sets for all incoming edges, thus constructing the convex
set for v. Since each convex set may have O(n) complexity, computing the convex set for v
takes O(ndv) time, where dv is the in-degree of v in G. Thus, we can compute the convex
sets for all vertices in

∑
v O(ndv) = O(n2) time.

Finally, we intersect the convex set of each vertex v with P in O(n logn) time using
the algorithm in [11]. We can then easily compute the repulsion region R(s) by extending
the corresponding cones from each reflex vertex v. Thus, the repulsion region R(s) can be
computed in O(n2 logn) time. J

References

1 Hugo Akitaya, Greg Aloupis, Maarten Löffler, and Anika Rounds. Trash compaction. In
Proc. 32nd European Workshop on Computational Geometry, 2016.

2 Greg Aloupis, Jean Cardinal, Sébastien Collette, Ferran Hurtado, Stefan Langerman, and
Joseph O’Rourke. Draining a polygon—or—rolling a ball out of a polygon. Computational
Geometry, 47(2):316–328, 2014.

3 Aaron Becker, Erik Demaine, Sándor Fekete, Jarrett Lonsford, and Rose Morris-Wright.
Particle computation: complexity, algorithms, and logic. Natural Computing, 18(1):181–
201, 2019.

4 Michael Biro. Beacon-based routing and guarding. PhD thesis, Stony Brook University,
2013.

A. van Goethem et. al. 73:7

5 Michael Biro, Justin Iwerks, Irina Kostitsyna, and Joseph Mitchell. Beacon-based algo-
rithms for geometric routing. In Proc. 13th Algorithms and Data Structures Symposium
(WADS), 2013.

6 Prosenjit Bose and Thomas Shermer. Gathering by repulsion. In Proc. 16th Scandinavian
Symposium and Workshops on Algorithm Theory (SWAT), pages 13:1–13:12, 2018.

7 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Endre Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2:209–233, 1987.

8 Irina Kostitsyna, Bahram Kouhestani, Stefan Langerman, and David Rappaport. An opti-
mal algorithm to compute the inverse beacon attraction region. In Proc. 34th International
Symposium on Computational Geometry (SoCG), pages 55:1–55:14, 2018.

9 Bahram Kouhestani, David Rappaport, and Kai Salomaa. On the inverse beacon attraction
region of a point. In Proc. 27th Canadian Conference on Computational Geometry (CCCG),
2015.

10 Amirhossein Mozafari and Thomas Shermer. Transmitting particles in a polygonal domain
by repulsion. In Proc. 12th International Conference Combinatorial Optimization and
Applications (COCOA), pages 495–508, 2018.

11 Ari Rappoport. An efficient algorithm for line and polygon clipping. The Visual Computer,
7(1):19–28, 1991.

EuroCG’20

The angular blowing-a-kiss problem
Kevin Buchin, Irina Kostitsyna, Roel Lambers, and Martijn Struijs

Department of Mathematics and Computing Science, TU Eindhoven, The
Netherlands
k.a.buchin@tue.nl, i.kostitsyna@tue.nl, r.lambers@tue.nl, m.a.c.struijs@tue.nl

Abstract
Given a set of agents that have fixed locations but can rotate at unit speed, we aim to find an
efficient schedule such that every pair of agents has looked at each other. We present schedules
and lower bounds for different geometric settings.

1 Introduction

Given n people in a rectangular room, the kissing problem asks for the most efficient way for
each pair of people to kiss each other goodbye [1]. We consider the variant of the problem in
which the people blow kisses instead. Rather than changing locations, people now only need
to turn to face each other.

Our motivation to study this problem comes from the research performed at NASA ARC
on probing the magnetosphere of the Earth by a swarm of satellites with the use of directional
antennas [2]. To perform probing, two satellites need to orient the antennas towards each
other to be able to send and receive data. In this context we are interested in the most
efficient schedule that allows every pair of satellites to perform probing. Independently,
Fekete et al. [4] have studied this setting, focusing on the case in which only a subset of the
satellite pairs need to communicate.

Problem Statement. In this paper, an agent has a fixed location in the plane and a heading
direction that it can change over time at unit speed. We will refer to an agent by its location.

The input is a set of n agent locations p1, . . . , pn in the plane. Note that we allow agents
to choose their initial direction. A pair of agents pi, pj can scan each other at time t if pj is
in the direction of pi, and vice versa. We also say, the pair of agents is scanned. The goal is
to define valid schedules for the agents as to minimize the time to scan all pairs of agents.

We define a schedule for all agents by defining a schedule per agent. A schedule for agent
pi is an ordering of the other agents Πi = 〈πi1, . . . , πin−1〉 with a time tij associated with each
of the agents in the order. A schedule for the agents is valid if
1. tij ≤ tij+1, for all i and for 0 ≤ j < n,
2.]πij , pi, πij+1 ≤ tij+1 − tij , for all i and for 0 ≤ j < n, where]BAC denotes the smaller

angle between B and C at A,
3. if pj = πik and pi = πj` , then tik = tj` .
The objective of the blowing-a-kiss problem is to find a valid schedule S that minimizes
t(S) = max1≤i≤n tin−1, i.e., the time until all pairs of agents have looked at each other.

We distinguish two models. In the asynchronous model, looking at each other can happen
at any time. In the synchronous model scans need to be synchronized with bn/2c disjoint
pairs being scanned at the same time. More specifically, the schedule has rounds r1, . . . , rN ,
where N = n if n is odd, and N = n− 1 if n is even. In each round an agent can scan one
other agent. If n is odd, in every round one agent does not scan, we say this agent has a bye
or is a bye agent. Each round ri has a timestamp ti associated with it with ti ≤ ti+1. We
define the distance between two rounds as d(ri, rj) = |tj − ti|.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

74:2 The angular blowing-a-kiss problem

S2

S4 S3

S6

p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2

S3 S′
3

Figure 1 S6 is constructed via S2, S4, S3. In S6 the byes from S3 scan those from S′
3 (dashed)

Results. For the case that all agents are on a line, we present a schedule in both models
that takes π(dlogne − 1) time, which we prove is optimal. For agents regularly spaced on a
circle we present a schedule in the asynchronous model that takes π(dlogne − 1) + o(1) time,
which we prove is near optimal. In the synchronous model and for n being a power of 2, we
present a schedule that takes at most 2π logn time. For the general two-dimensional case we
present a schedule in the asynchronous model that takes 3π

2 dlogne − π
2 time.

Related work. For the general two-dimensional case, Fekete et al. [4] independently obtained
a schedule with the same cost, and additionally prove a lower bound for this case. A related
geometric problem is the angular freeze-tag problem [3].

2 Schedules

2.1 Line
In this case the agents p1, . . . , pn are on one line, given from left to right. When facing other
agents, an agent has an orientation, and it is either oriented to the left or to the right. The
time it takes to change the orientation is π.

In the following we construct a schedule S in the synchronous model with t(S) =
π(dlog2 ne − 1).The strategy relies on the following lemmata.

I Lemma 2.1. Given a schedule Sn for some even n with t(Sn) = π(dlogne − 1), we can
construct a schedule Sn−1 for n− 1 agents with time t(Sn−1) = π(dlog(n− 1)e − 1) where all
bye agents are oriented to the right.

Proof. Given Sn, remove agent pn and give a bye to an agent when they would have scanned
pn. This is a valid schedule for n− 1 agents with time π(dlogne − 1) = π(dlog(n− 1)e − 1)
(since n is even). Since pn is rightmost, all by agents are oriented to the right. J

I Lemma 2.2. Given a schedule Sn with t(Sn) = π(dlogne − 1) with all bye agents oriented
to the right, we can construct a schedule S2n for 2n agents with t(S2n) = π(dlog 2ne − 1).

K. Buchin, I. Kostitsyna, R. Lambers, M. Struijs 74:3

Proof. Let S′n be the mirrored schedule of Sn, i.e. the orientation and scans of pi are swapped
with pn−i, and all left orientations change to right and vice versa. First, agents p1, . . . , pn
follow the schedule Sn, and agents pn+1, . . . , p2n follow schedule S′n simultaneously. If an
agent pi has a bye in Sn, agent p2n−i has a bye in S′n, and those agents are directed towards
each other, and therefore can (and do) scan each other. This removes any byes from the first
n rounds, and all unscanned pairs that remain are pairs with one agent in the left half and
the other in the right half of p1, . . . , p2n.

For the remaining rounds, orient the agents in the left half to the right, and in the right
half to the left. Consider the graph G = (P,E) on the set P of agents with an edge between
any pair of agents that still needs to scan each other. For all (p, p′) ∈ E the agents p and p′
are directed towards each other. If n is even, G is a regular bipartite graph of degree n. If n
is odd, then each agent had a bye exactly once in Sn, so G is a regular bipartite graph of
degree n− 1. Since a regular bipartite graph has a 1-factorisation, the final rounds can be
scheduled. The first rounds take the same time as Sn, and the final rounds need a single
rotation of π, resulting in the claimed time. J

Strategy 1. For n = 2, the two agents directly scan each other. This is S2. For n > 2,
construct Sn recursively from Sn/2 for even n and from Sn+1 for odd n. See Fig. 1.

I Theorem 2.3. For n agents on a line Strategy 1 constructs a schedule Sn with t(Sn) =
π(dlog2 ne − 1) in the synchronous (and asynchronous) model.

Proof. If n = 2, t(Sn) = 0 = π(dlogne − 1) time. If n > 2, t(Sn) = π(dlogne − 1) follows
inductively by Lemmas 2.1 and 2.2. Sn is also a valid schedule in the asynchronous model,
since any schedule in the synchronous model is valid in the asynchronous model. J

2.2 Regularly-spaced on circle
In the following the agents p1, . . . , pn are regularly spaced on a circle, given in counter-
clockwise order. Consequently, for any pi, the angular distance between two other consecutive
agents is identical (i.e. π

n). We call this time interval a step.

2.2.1 Regularly-spaced, synchronous model with n = 2k.
Strategy 2. Define for every agent pj the value bij as the value of the i-th bit of j, where
j has binary representation bkj · · · b1

j (not including bk+1
j). The strategy works in phases

1, . . . , k, where in phase ` agent pj scans all agents pj′ with b`j 6= b`j′ that it has not scanned
in an earlier phase in time less than 2π.

Phase ` has 2k−` rounds. In the first round of the phase, every agent pj is oriented
towards and scans agent pj′ , with

j′ =
{
j − 2`−1 mod n if b`j = 1
j + 2`−1 mod n if b`j = 0

.

For the next rounds i = 1, . . . , 2k−` − 1, the agents with b`j = 1 rotate clockwise and the
agents with b`j = 0 rotate counter-clockwise to scan pj′ , with

j′ =
{
j − 2`−1(2i+ 1) mod n if b`j = 1
j + 2`−1(2i+ 1) mod n if b`j = 0

.

EuroCG’20

74:4 The angular blowing-a-kiss problem

p1
p2
p3

p4 p5
p6

p7

p8

` = 1 ` = 2 ` = 3

Figure 2 Synchronous schedule for n = 8. Agents are blue if the `-th bit is 0, and black otherwise.
For ` = 1, p1 rotates 2 steps clockwise (since b1

1 = 1) in each round. For ` = 2, it rotates 4 steps
counter-clockwise (since b2

1 = 0)

Since j − j′ mod n is a multiple of 2`−1 and not a multiple of 2`, we have b`j 6= b`j′ and so
pj′ is oriented towards pj when pj is oriented towards pj′ . The angular movement between
every two consecutive rounds is equal to 2` πn , with total movement equal to (n−2)π

n .
Note that in phase `, every agent pj scans all other agents pj′ where the `-th bit is the

smallest bit such that b`j 6= b`j′ . So, after k phases, every agent has scanned all other agents.

I Theorem 2.4. For n = 2k agents regularly spaced on a circle Strategy 2 constructs a
schedule S with t(S) ≤ 2π logn in the synchronous model.

Proof. For every phase `, the angular movement to complete it is upper bounded by π. The
angular movement needed to go from the end state of a step, to the initial state of the next
step, is bounded by π as well. Since there are k phases, t(S) ≤ 2πk = 2π logn. J

2.2.2 Regularly-spaced, asynchronous model
Strategy 3. The strategy in the asynchronous model works in phases. In each phase, each
subset of agents {pi, pi+1 . . . , pi+s} of P that hasn’t scanned each other yet is split evenly
into a left half {pi, . . . , pi+b(s−1)/2c} and a right half {pi+b(s+1)/2c, . . . , pi+s}. We will scan
all pairs between the halves in parallel as follows. See Fig. 3 for an example of a phase.

First, split the left and right halves evenly again into a top and bottom part. W.l.o.g.,
we assume the subset starts at p1 and that s is a multiple of 4. Initially, each agent pj is
directed towards ps+1−j . First, scan all pairs between the top left and top right, as follows:
for any agent pj on the top left, rotate towards ps if pj and ps still need to scan each
other. Otherwise, rotate towards p3s/4+1 until pj points at p3s/4+1. The top right rotates
symmetrically. Note that for any 0 ≤ j ≤ k ≤ s/4, pj+1 points to ps−k after j + k steps and
ps−k points to pj+1 after k + j steps. So, after s/2− 1 steps, all pairs in the top part have
been scanned, all agents in the top left point to p3s/4+1, and all agents in the top right point
to ps/4. Symmetrically and in parallel, we can scan all agents in the bottom part after s/2
steps, such that all agents in the bottom left point to p3s/4, and all agents in the bottom
right point to ps/4+1.

Next, we rotate each agent in the top left to p3s/4 and each agent in the top right to
ps/4+1, the other agents rotate symmetrically. Then, each agent pj in the top left waits
until it has scanned p3s/4, and then rotates towards ps/2−j . Note that when pj and ps/2+1
scan each other, pj is finished for the phase. Additionally, pj points to ps/2−j , the initial
orientation for the next phase, after s/2 steps. The agents in the bottom half reach the initial
orientation for the next phase after s/2 + n− s steps. Now we take each half separately as
input for the next phase. After dlogne phases, all pairs of agents have been scanned.

I Theorem 2.5. For n agents regularly spaced on a circle, Strategy 3 constructs a schedule
S with t(S) ≤ π n+2

n (dlogne − 1) in the asynchronous model.

K. Buchin, I. Kostitsyna, R. Lambers, M. Struijs 74:5

Proof. Each phase of Strategy 3, except the last, takes 2(2d s4e − 1) + n− s ≤ n+ 2 steps,
and the last 0 steps, so Strategy 3 uses (n+ 2)(dlogne − 1) steps, taking π/n time each. J

2.3 General agents in the plane, asynchronous model
Analogously to kd-tree, the strategy subdivides the set of agents iteratively by vertical and
horizontal lines passing through median x- and y-coordinates. In each iteration all agents on
one side of the line scan all agents on the other side of the line, resulting in dlogne iterations.

Strategy 4. We describe one iteration i in which we split the agents along a vertical line,
that is when i is odd (refer to Figure 4). The case of even i is analogous. Let P ′ be the
subset that is split, and let A and B be the resulting subsets of P ′ to the left and right,
respectively. Each iteration consists of two stages. In the first stage, all the agents in A

rotate by π/2 to point downwards (direction 3π/2), and all agents in B rotate by π/2 to
point upwards (direction π/2). In the second, main stage, the points in A and B rotate
counter-clockwise to the directions π/2 and 3π/2 respectively. During this phase all pairs of
agents (p, q) with p ∈ A and q ∈ B scan each other.

I Theorem 2.6. For n agents in the plane, Strategy 4 constructs a schedule S with t(S) =
3π
2 dlogne − π

2 .

3 Lower bounds

If a subset of size n′ of the agents is nearly collinear, the 1D-analysis gives us that at least
logn′ orientation changes taking close to π time must occur, for all agents to see each other.
We formalise this idea in the following lemma. It makes use of the fact that at least dlogn′e
bipartite graphs are needed to cover the complete graph on n′ vertices [5].

I Lemma 3.1. Let r ∈ R, and Q = {q1, . . . , qn′} be a set of agents in the plane. Suppose Q
is ordered such that for all i ∈ [n′] and all 1 ≤ j < i < k ≤ n′,]qj , qi, qk ≥ r. Then, any
schedule that scans all pairs of agents in Q takes at least r · (dlogn′e − 1) time.

Proof. Suppose some schedule scans all pairs of agents in Q within time T . Partition the
time interval [0, T] into the intervals [(i− 1)r, ir) for i = 1, . . . , bTr c and the interval [rbTr c, T].
Given an interval, consider the graph G = (Q,E) with agents as vertices and an edge between
the pairs of agents scanned in the interval. We will show that this graph is bipartite.

Given an interval, call an agent qi positive (resp. negative) in that interval if there is an qj
with j > i (resp. j < i) with (qi, qj) ∈ E. Since the length of each interval is strictly smaller
than r, an agent cannot be both positive and negative in the same interval. Additionally, if
(qi, qj) ∈ E, exactly one of those agents is positive and the other is negative. So, each edge
has an end in the set of positive agents and another end in the set of negative agents. These
sets are disjoint, so the graph G is bipartite.

Since all pairs of agents in Q need to be scanned, the union of the bipartite graphs scanned
in each interval must be equal to the complete graph. At least dlogn′e bipartite graphs are
needed to cover the complete graph on n′ vertices, so there must be at least dlogn′e intervals.
Since we partitioned [0, T] in bTr c+ 1 intervals, we have T

r ≥ bTr c ≥ dlogn′e − 1. J

I Theorem 3.2. Any schedule for the angular blowing-a-kiss problem on a line takes at least
π(dlogne − 1) time. The schedule constructed by Strategy 1 is optimal.

Proof. Q = P and r = π satisfy the conditions of Lemma 3.1. J

EuroCG’20

74:6 The angular blowing-a-kiss problem

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 9Step 8

Step 10 Step 11

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

p1

p2

p3

p4

p5

p6

p12

p11

p10

p9

p8

p7

Figure 3 The first phase of Strategy 3 for n = 12 has a component of size 12 that is scanned
in 10 steps. In step 11, the agents have the correct heading for the next phase. For each step, the
edges scanned in that step are colored red, and the edges scanned in an earlier step are dashed.

K. Buchin, I. Kostitsyna, R. Lambers, M. Struijs 74:7

Figure 4 Left: the starting orientation of the agents in iteration i. Middle: the orientation of the
agents before the main phase. Right: a snapshot during the main phase when two agents scan each
other.

I Theorem 3.3. Any schedule for the angular blowing-a-kiss problem with agents regularly-
spaced on a circle takes at least π(1− 1

logn)(logn−log logn−1) time. The schedule constructed
by Strategy 3 is asymptotically optimal, i.e. the approximation ratio goes to 1 as n → ∞.
The approximation ratio of the schedule constructed by Strategy 2 goes to 2 as n→∞.

Proof. In this configuration, we can take Q = {p1, . . . , pk} and r = (n − k + 1)πn to
satisfy Lemma 3.1, and get a lower bound of (n − k + 1)πn (dlog ke − 1) for any k ∈ [n].
Setting k = dn/ logne, we get a lower bound of πn (n− dn/ logne+ 1)(dlogdn/ lognee − 1) ≥
π
n (n− n/ logn)(log(n/ logn)− 1) = π(1− 1

logn)(logn− log logn− 1) ∼ π logn. Strategy 3
takes at most π n+2

n (dlogne − 1) time, so the ratio goes to 1 as n→∞. The approximation
ratio for Strategy 2 is derived analogously. J

Acknowledgements. We thank Daniel Cellucci for proposing the problem to us. We also
thank Sándor Fekete and Joe Mitchell for fruitful discussions, and Sándor Fekete, Linda
Kleist and Dominik Krupke for sharing their paper [4] with us and helpful comments.

References
1 Michael A Bender, Ritwik Bose, Rezaul Chowdhury, and Samuel McCauley. The kissing

problem: how to end a gathering when everyone kisses everyone else goodbye. Theory of
Computing Systems, 54(4):715–730, 2014.

2 Daniel Cellucci. Personal communication, 2018. Distributed Spacecraft Autonomy Project,
NASA Ames Research Center, USA.

3 Sándor Fekete and Dominik Krupke. Beam it up, Scotty: Angular freeze-tag with di-
rectional antennas. In Extended Abstracts of 34th European Workshop on Computational
Geometry, 2018.

4 Sándor P. Fekete, Linda Kleist, and Dominik Krupke. Minimum scan cover with angu-
lar transition costs. In Proc. 36th International Symposium on Computational Geometry
(SoCG 2020), 2020. To appear.

5 Peter C Fishburn and Peter L Hammer. Bipartite dimensions and bipartite degrees of
graphs. Discrete Mathematics, 160(1-3):127–148, 1996.

EuroCG’20

On Generating Polygons:
Introducing the Salzburg Database∗

Günther Eder1, Martin Held1, Steinþór Jasonarson1, Philipp
Mayer1, and Peter Palfrader1

1 Universität Salzburg, FB Computerwissenschaften, Salzburg, Austria,
{geder,held,sjas,pmayer,palfrader}@cs.sbg.ac.at

Abstract
The Salzburg Database is a repository of polygonal areas of various classes and sizes, with and
without holes. Positive weights are assigned to all edges of all polygons. We introduce this
collection and briefly describe the generators that produced its polygons. The source codes for
all generators as well as the polygons generated are publicly available.

1 Introduction

An important part of software development is testing the correctness and evaluating the
performance of an algorithm implementation. Ideally, one would run the code on data of
practical relevance. However, it often is next to impossible to obtain enough practically
relevant inputs. Then the second-best choice is to run an algorithm for a reasonably large
number of “random” inputs. Subjecting the code to inputs of different characteristics is
important since this may help to trigger different execution paths. Similarly, a large range
of input sizes is needed to obtain insights in the actual runtime and memory consumption.
This allows for comparing different implementations in a meaningful way.

Our goal with the Salzburg Database is to provide a repository of data for such testing
purposes. The initial content of the Salzburg Database is purely polygonal, containing
simply-connected and multiply-connected polygonal areas in two dimensions.

Every polygon has positive weights assigned to its edges. These weights can be used
to test codes that operate on weighted polygonal input, such as for computing weighted
straight skeletons. The file format is extensible, so we can also add vertex-weights and other
information such as edge or vertex colorings in the future.

We note that this is work in progress. In particular, we are still evaluating the generators
and the characteristics of the polygons generated by them. Hence, we expect to see some
fine tuning of the generators in the near future. In the sequel we describe the database and
its generators.

2 Generators

Generating simple polygons is not a new problem. For convex and x-monotone polygons, Zhu
et al. [9] propose a solution to generate them uniformly at random. Tomás and Bajuelos [7]
introduce a quadratic-time algorithm to generate random polygons on a grid. Dailey and
Whitfield [3] describe a heuristic that takes O(n log n) time to compute a simple polygon.
They start from a randomly chosen triangle followed by repetitive edge subdivision. Sedhu
et al. [5] introduce a different heuristic, which constructs a random polygon starting from
the convex hull of a given point set. They randomly select a vertex inside the hull and add

∗ Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

75:2 On Generating Polygons — Salzburg Database

it to the polygon while maintaining the simplicity using visibility checks. Later, Sedhu et
al. [6] introduce a different approach that uses the convex layers of a given point set and
constructs a simple polygon in O(n log n) time.

As this brief overview of the literature demonstrates, clearly some research has been
devoted to this topic. Here, we present our generators and their actual implementations,
some of which, like Rpg (Section 2.4) or Fpg (Section 2.1), implement algorithms from, or
inspired by, literature.

2.1 Triangulation Perturbation
Our implementation Fpg is motivated by an approach originally proposed by O’Rourke
and Virmani [4]: They start with a regular polygon P and then translate its vertices while
maintaining the polygon’s simplicity. A direction and speed are chosen at random and
assigned to each vertex of P. Then, the vertices of P are processed consecutively. A single
vertex is moved one “time unit” as long as P remains simple, otherwise that move is omitted
and a new random velocity is chosen for the next round. O’Rourke and Virmani [4] suggest
to use several hundred translations per vertex.

As vertices can also move in an outward direction, a domain is defined which has to
contain P. We use a large rectangle to limit the outward movement of the vertices.

(a)

v

v′#–
t

el
e′l

er

e′r

(b)

v
el

er

(c)

Figure 1 (a) Triangulation of the start polygon and its domain; (b) Translation of vertex v by
the vector #–

t ; (c) The polygon after the translation.

Maintaining the simplicity of P during the vertex translations can be an expensive task if
carried out naively. We utilize a triangulation of the interior and the exterior of P to simplify
intersection tests while moving a polygon vertex; cf. Figure 1a. Let v denote a boundary
vertex of P that we want to translate and let el and er denote its two incident edges. In
practice, a randomly chosen translation vector #–

t tends to violate the simplicity of P, with
high probability, which leads to a bad performance. Therefore, we choose a random direction
for #–

t first. Then, the length of #–
t is generated from a normal distribution using parameters

suitable to the local environment around v, in the chosen direction. Experiments show that
such an approach for choosing translation vectors produces only few invalid translations.

After translating v by #–
t , we obtain v′ and the edges e′

l and e′
r, respectively. Our

intersection test involves checking all triangles pierced by e′
l or e′

r. In case all triangle
edges intersected by e′

l and e′
r are interior or exterior diagonals, we change v into v′ in P.

Additionally, we may have to modify the triangulation by checking the triangles intersected
by the modified edges as well as the triangles incident at v. If we cross a polygon edge,

G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader 75:3

we reject #–
t as translation vector and restart the process. See an example of this process

illustrated in Figures 1b and 1c.
Fpg starts from a regular polygon where a triangulation, in- and outside, is trivially

obtained. To speed up the generation of large polygons, instead of starting with a large reg-
ular polygon, Fpg can start with a smaller one, and then “grow” this polygon by repeatedly
splitting random edges. The additional vertex introduced by the split is then translated to
avoid collinearities.

Figure 2 Polygon exhibiting cluster-
ing due to the selection of edges uniformly
at random in the subdivision step.

If we pick edges uniformly at random, we see
clusters of many short edges and a few very long
edges. This presumably is due to the fact that areas
with short edges are more likely to get extra vertices
than areas of the same size which contain (fewer)
long edges; cf. Figure 2. To avoid this clustering,
we instead pick edges randomly weighted by their
length.

Furthermore, Fpg is capable of generating poly-
gons with holes. Since P is regular at the beginning,
we can trivially place regular holes inside P as well.
The described process works also for this setting,
as the intersection tests hinge on the triangulation.
In Figure 3 we illustrate the evolution of a poly-
gon computed by Fpg, the polygon has 10 vertices,
with a triangular hole formed by three additional
vertices. The first two images in Figure 4 are the
result of Fpg using edge-subdivision; the second
image depicts a polygon with holes.

Figure 3 Polygon generated by Fpg after 1, 8, 50, and 500 iterations without edge-subdivision.

2.2 Combining Line Sweep and 2-Opt Moves
Our generator Spg constructs a simple polygon P on a given point set S in the plane. (Such a
point set can be generated randomly or specified by a user.) Initially, Spg creates a polygon
by choosing a random permutation of the input vertices. This start-polygon contains, with
high probability, self-intersections. Therefore, a line sweep is applied to identify intersecting
pairs of edges, followed by local modifications which remove these intersections.

To identify pairs of edges that intersect we use the classic Bentley-Ottmann algorithm [2].
We sweep from left to right, thereby maintaining a sorted set of edges that intersect the
sweep-line. The input vertices comprise the event points of the line sweep. During the sweep,
at vertex vi, we have to modify the sweep-line status by removing and/or adding the edges

EuroCG’20

75:4 On Generating Polygons — Salzburg Database

Figure 4 Left-to-right: A polygon and a polygon with holes computed by Fpg, and a polygon
generated by Spg.

incident at vi. Additionally, at every event point, we have to verify that any newly added
edge is not intersecting its neighbors in the status. In case a pair of edges does intersect, we
have to resolve that intersection before we carry on with the sweep.

We resolve intersections by applying so-called 2-opt moves. A 2-opt move replaces the
edges e1 = v1v2 and e2 = v3v4 by the edges e′

1 = v1v3, e′
2 = v2v4. (Note that the polygon

boundary becomes disconnected if the 2-opt move connects the wrong vertex pairs.) As
we apply 2-opt moves during the line sweep to resolve intersections, we may introduce new
intersections. However, a key property of the 2-opt move is that it decreases the length of
the polygon (if not all points are collinear). This guarantees that we will eventually arrive
at a polygon that is simple if we apply 2-opt moves repeatedly to resolve intersections. A
result by van Leeuwen and Schoone [8] tells us that we need at most O(n3) 2-opt moves.

We implemented and tested three variants of the line sweep. They differ mainly in how
they proceed after finding and resolving an intersection: (a) After a 2-opt move is carried
out, we simply continue with the line sweep. After arriving at the right-most vertex we
restart the line sweep at the left-most vertex. The sweep is repeated until all intersections
are resolved. (b) After a 2-opt move, we test and resolve all intersections at the current
sweep-line position, before carrying on. Again, at the right-most vertex we restart until all
intersections are resolved. (c) After a 2-opt move, we reverse the sweep direction to deal
with possibly new edge intersections. We resume our rightwards sweep at the left-most
vertex affected by the 2-opt move. The last image in Figure 4 was generated by Spg on a
point set of 40 vertices using sweep-variant (a).

Note that collinear edges need special care because a 2-opt move will not always result
in a shortening of the perimeter of the polygon. If intersecting collinear edges are detected,
then we remove these edges and sort the respective collinear vertices. Then, we connect the
vertices by edges in consecutive order, i.e., form a chain of non-overlapping collinear edges.
This guarantees that the perimeter of the polygon decreases also in the case of collinear
vertices.

2.3 SRPG
Srpg generates simply-connected and multiply-connected polygonal areas by means of a
regular grid that consists of square cells. Given two integer values, a and b, Srpg generates
a grid of size a times b. By default Srpg then generates orthogonal polygons on this grid.
An additional parameter p, between zero and one, leads to a smaller or larger number of
vertices in the produced polygon. Srpg is able to produce octagonal polygons by cutting off

G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader 75:5

corners with ±45° diagonals during the construction. Cutting corners repeatedly, without
the diagonal restriction, yields an approximation of a smooth free-form curve. Additionally,
Srpg can apply perturbations in order to generate polygons with axes-parallel edges whose
vertices do not lie on a grid, or to generate polygons whose edges (in general) are not parallel
to the coordinate axes. See Figure 5 for some sample polygons.

Figure 5 Samples of a random, an orthogonal, an octagonal, and a smoothed polygon generated
by Srpg, as well as a random and a grid-aligned orthogonal polygon with holes.

2.4 RPG
Auer and Held [1] first described Rpg more than twenty years ago. Rpg supports various
heuristics to generate “random” polygons for a given set of vertices. In particular, it is
able to produce star-shaped polygons uniformly at random. Furthermore, it generates x-
monotone polygons uniformly at random, based on the algorithm by Zhu et al. [9]. We have
resurrected this code and updated it to compile on modern platforms, thus meeting requests
voiced by several colleagues. A recent extension of Rpg also supports the generation of
polygons with holes. See Figure 6 for examples of some polygons generated by Rpg.

EuroCG’20

75:6 On Generating Polygons — Salzburg Database

Figure 6 In left-to-right order, an x-monotone, a star-shaped, and a simple polygon computed
by Rpg on 30 vertices.

2.5 Additional Generators
Our repository also contains codes to produce well-known polygons such as the Koch snowflake
(also in a nested variant), the Sierpinski curve, and closed variants of the Hilbert and
Lebesgue curves; see Figure 7.

3 Salzburg Database

The Salzburg Database is available at https://sbgdb.cs.sbg.ac.at/. Since this is work-
in-progress, we expect to add additional data-sets and generators in the near future. The
database can be used freely and is provided via direct download or git.

Currently, all our generators are written in C++ or plain C. However, we are not averse
to adding code written in other languages such as Python. All source code available on
GitHub (https://github.com/cgalab) and can be used freely under the GPL(v3) license.

We conclude this survey of the Salzburg Database with a call for participation. If you
have “interesting” polygons or data-sets you like to have included then, please, send them
to us. You are also welcome to to contact us if you have an interest in a specific class of
polygons that is missing.

References

1 T. Auer and M. Held. Heuristics for the Generation of Random Polygons. In Proceedings
of the 8th Canadian Conference on Computational Geometry (CCCG), pages 38–44, 1996.

2 J. L. Bentley and T. A. Ottmann. Algorithms for Reporting and Counting Geometric
Intersections. IEEE Transactions on Computers, 28(9):643–647, 1979.

3 D. Dailey and D. Whitfield. Constructing Random Polygons. In Proceedings of the 9th
ACM SIG-Information Technology Education Conference (SIGITE), pages 119–124, 2008.

4 J. O’Rourke and M. Virmani. Generating random polygons. Technical report, Smith
College, Northampton, MA 01063, USA, 1991.

5 S. Sadhu, S. Hazarika, K. Jain, S. Basu, and T. De. GRP_CH Heuristic for Generat-
ing Random Simple Polygon. In International Workshop on Combinatorial Algorithms
(IWOCA), 2012.

6 S. Sadhu, N. Kumar, and B. Kumar. Random Polygon Generation through Convex Layers.
Procedia Technology, 10:356–364, 2013.

G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader 75:7

Figure 7 The curves of Koch, Sierpinski, Hilbert, and Lebesgue, in reading order. Each figure
is partitioned into four quadrants which portions of the curve at different orders.

7 A. Tomás and A. Bajuelos. Quadratic-Time Linear-Space Algorithms for Generating Or-
thogonal Polygons with a given Number of Vertices. In Computational Science and Its
Applications (ICCSA), pages 117–126, 2004.

8 J. van Leeuwen and A. A. Schoone. Untangling a Travelling Salesman Tour in the Plane. In
J. Mühlbacher, editor, Proc. 7th Conference Graph-theoretic Concepts in Computer Science
(WG’81), pages 87–98, 1982.

9 C. Zhu, G. Sundaram, J. Snoeyink, and J. Mitchell. Generating Random Polygons with
Given Vertices. Computational Geometry: Theory and Applications, 6(5):277–290, 1996.

EuroCG’20

Local Routing in a Tree Metric 1-Spanner
Milutin Brankovic1, Joachim Gudmundsson2, and André van
Renssen3

1 University of Sydney, Australia
milutin.brankovic3@gmail.com

2 University of Sydney, Australia
joachim.gudmundsson@sydney.edu.au

3 University of Sydney, Australia
andre.vanrenssen@sydney.edu.au

Abstract
Solomon and Elkin [5] constructed a shortcutting scheme for weighted trees which results in

a 1-spanner for the tree metric induced by the input tree. The spanner has logarithmic lightness,
logarithmic diameter, a linear number of edges and bounded degree (provided the input tree
has bounded degree). This spanner has been applied in a series of papers devoted to designing
bounded degree, low-diameter, low-weight (1 + ε)-spanners in Euclidean and doubling metrics.
In this paper, we present a simple local routing algorithm for this tree metric spanner. The
algorithm has a routing ratio of 1, is guaranteed to terminate after O(logn) hops and requires
O(∆ logn) bits of storage per vertex where ∆ is the maximum degree of the tree on which the
spanner is constructed.

1 Introduction

Let T be a weighted tree. The tree metric induced by T , denotedMT , is the complete graph
on the vertices of T where the weight of each edge (u, v) is the weight of the path connecting
u and v in T . For t ≥ 1, a t-spanner for a set of points V with a distance function d is
a subgraph H of the complete graph on V such that every pair of distinct points u, v ∈ V
is connected by a path in H of total weight at most t · d(u, v). We refer to such paths as
t-spanner paths. A t-spanner has diameter Λ if every pair of points is connected by a t-
spanner path consisting of at most Λ edges. Typically, t-spanners are designed to be sparse,
often with a linear number of edges. The lightness of a graph is the ratio of its weight
to the weight of its minimum spanning tree. Solomon and Elkin [5] define a 1-spanner for
tree metrics. Given an n vertex weighted tree of maximum degree ∆, the 1-spanner has
O(n) edges, O(logn) diameter, O(logn) lightness and maximum degree bounded by ∆ + k

(k is an adjustable parameter considered to be a constant for our purposes). While being
an interesting construction in its own right, this tree metric 1-spanner has been used in a
series of papers as a tool for reducing the diameter of various Euclidean and doubling metric
spanner constructions [1, 2, 4, 5].

A local routing algorithm for a weighted graph G is a method by which a message can be
sent from any vertex in G to a given destination vertex. The successor to each vertex u on
the path traversed by the routing algorithm must be determined using only knowledge of the
destination vertex, the neighbourhood of u and possibly some extra information stored at
u. In some settings, the routing algorithm may modify the message header to provide extra
information for future routing decisions. However, the routing algorithm presented in this
paper does not require a modifiable header. Given two vertices u, v, we define droute(u, v)
to be the length of the routing path traversed when routing from u to v. The routing ratio
of the routing algorithm is defined to be maxu,v∈V (G)

droute(u,v)
dG(u,v) where dG(u, v) denotes the

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

76:2 Local Routing in a Tree Metric 1-Spanner

length of the shortest path from u to v in G. We define the diameter of a local routing
algorithm to be an upper bound on the number of edges traversed when routing between
any two vertices. In this paper, we present a simple local routing algorithm for the tree
metric spanner from [5] with routing ratio 1 and diameter O(logn).

2 Shortcutting Scheme

In this section we describe the tree metric 1-spanner for which our routing algorithm is
defined. The spanner is due to Solomon and Elkin [5]. For brevity, we only give a high level
overview of the construction. Full details can be found in [5] and will also appear in the full
version of this paper.

Given a rooted weighted tree T on n vertices, an integer k, k ≥ 1, is chosen. While the
construction is defined for any k in the range 1 ≤ k ≤ n− 2, we choose k = O(1). Next, at
most k + 1 vertices are selected from V (T). Let us denote this set by CT . The method by
which these vertices are selected is deterministic. Denote by T \CT the forest resulting from
the removal of the vertices CT (and their incident edges) from T . Next, the procedure adds
the edges of the complete graph on CT to the spanner. If the forest T \ CT is non-empty,
the procedure is recursively applied to each tree in T \ CT . We define canonical subtrees to
be the trees on which the recursive procedure is called during the course of the construction
of the spanner. For a canonical subtree T ′, we say CT ′ is a set of cut vertices. Note that
for every vertex v, there is a canonical subtree T v for which v ∈ CT v . We say T v is the
canonical subtree of v.

We note that the spanner defined by Solomon and Elkin [5] actually differs slightly from
what is presented here in that rather than including the edges of the complete graph on
sets of cut vertices, a certain spanner with O(k) edges and O(α(k)) diameter (α denotes the
inverse Ackermann function) is used instead. However, the spanner resulting from the use
of the complete graph has higher weight and degree only by a factor of k while being far
easier to work with for the purpose of routing.

Let G denote the graph resulting from the construction described above. The following
is established by Solomon and Elkin [5] for the version of the spanner defined in the original
paper. It is easy to see the properties also hold for the version of the spanner described here.

I Theorem 1. The graph G satisfies the following:

1. G is a O(logn) diameter 1-spanner for MT .
2. wt(G) = O(logn) · wt(T).
3. For any canonical subtree T ′, each tree in T ′ \ CT ′ has at most 2 · |T ′|/k vertices.
4. The maximum degree of G is at most O(1) + ∆ where ∆ is the maximum degree of T .

Note that property 3 implies that the recursion depth of the spanner construction
algorithm is O(logn).

3 Routing Algorithm

In this section, we describe a local routing algorithm for the spanner described above. The
routing algorithm presented in this section requires that the vertices of the spanner store
certain information which we specify below. We make use of the labelling scheme of Santoro
and Khatib [3].

Milutin Brankovic, Joachim Gudmundsson, and André van Renssen 76:3

Let rank(v) denote the rank of v in a post-order traversal of T . We define

L(v) := min{rank(w) : w is a descendant of v}.

Let Nv be the set of neighbours of v in G. Each vertex v of G stores the following
information:

1. rank(v) and L(v).
2. The depth of v, i.e, the hop distance of v from the root of T .
3. rank(w) and L(w) for each w ∈ Nv.
4. The depth of w for each w ∈ Nv.

I Lemma 2. In the labelling scheme outlined above, each vertex of G stores O((∆+k) logn)
bits of information.

We note that this labelling scheme enables us to determine if a given vertex is an ancestor
or descendant of another. Indeed, a vertex u is an ancestor of a vertex v if and only if L(u) ≤
rank(v) ≤ rank(u) and u is a descendant of v if and only if L(v) ≤ rank(u) ≤ rank(v).

This test is also used in the tree routing algorithm of Santoro and Khatib [3]. In our
routing algorithm, we use this test to determine the neighbours of the current vertex in the
tree spanner which are actually on the original path to the destination. We must limit our
routing steps to these vertices to ensure a routing ratio of 1. When then use additional
criteria to make the best choice from the feasible routing steps to ensure the diameter of the
routing algorithm is O(logn).

Given a current vertex u and a destination vertex v, the algorithm executes the routing
steps of one of the cases defined below. We assume that at each stage of the algorithm, the
integers rank(v) and L(v) are known.

For convenience of analysis, in each case we specify two routing steps. For ease of
exposition, we consider a vertex u to be both a descendant and ancestor of itself.

Case 0: u and v are joined by an edge. Route to v.

Case 1: u is an ancestor of v in T . Let X be the set of vertices in CT u which are
ancestors of v. Let x be the deepest element of X. Route first to x and then to the child of
x which is an ancestor of v.

Case 2: u is a descendant of v in T . Let X be the set of vertices in CT u which are
descendants of v and ancestors of u. Let x be the highest vertex in X. Route first to x and
then to its parent.

Case 3: u is not an ancestor or descendant of v. Let X be the set of vertices in CT u

which are ancestors of v and not ancestors of u. If X 6= ∅, we define x to be the deepest
vertex in X and define x′ to be the child of x which is an ancestor of v. Let Y be the set
of vertices in CT u which are ancestors of u but not ancestors of v. We define y to be the
highest vertex in Y .

Case 3 a): X is empty. Route first to y and then to the parent of y.

Case 3 b): X is non-empty. Route first to x and then to x′.

EuroCG’20

76:4 Local Routing in a Tree Metric 1-Spanner

I Theorem 3. Let u and v be vertices of G. Let δT (u, v) denote the length of the path from
u to v in T . The routing algorithm described above is guaranteed to terminate after a finite
number of steps and the length of the path traversed is exactly δT (u, v).

Next we show that routing paths consist of O(logn) edges. In order to do this, we must
define canonical sequences. First, we assign an integer sequence ST ′ to each canonical subtree
T ′. These sequences are defined inductively as follows. The original tree T is assigned the
empty sequence. Let T ′ be a canonical subtree and suppose T ′ has already been assigned the
sequence ST ′ . Each canonical subtree Tj ∈ T ′ \ CT ′ = {T1, ..., Tp} is assigned the sequence
obtained by appending j to ST ′ . Given a vertex v of G, we define its canonical sequence to
be Sv = ST v . Note that if for two vertices u and v, Su is a prefix of Sv, then Tu contains
T v. Note also that Su = Sv if and only if Tu = T v and so u and v are joined by an edge if
Su = Sv, by definition of the spanner.

I Lemma 4. Let u and v be vertices of T such that u is either an ancestor or a descendant
of v. Let u′ be the vertex reached after executing the routing steps of either Case 1 or Case
2 when routing from u to v. Then the following statements hold:

1. If Su is a prefix of Sv, then |Su′ | > |Su|. Moreover, either Su′ = Sv or S′
u is a prefix of

Sv.
2. If Sv is a prefix of Su, then |Su′ | < |Su|. Moreover, either Su′ = Sv or Sv is a prefix of

Su′ .
3. Suppose Su and Sv share a common prefix S of length m < min{|Su|, |Sv|}. Then
|Su′ | < |Su|. Moreover, either Su′ = S or S is a prefix of Su′

Since the spanner construction algorithm has logarithmic depth, we see that the length
of a canonical sequence is at most O(logn). Using this observation and Lemma 4, it is not
difficult to show the following.

I Lemma 5. Suppose u and v in G are such that u is an ancestor or descendant of v in T .
Then, when routing from u to v, the routing algorithm reaches v after traversing O(logn)
edges.

Consider the case where u is neither an ancestor nor a descendant of v. The following
lemma shows that in this case, the algorithm either routes to a vertex on the path from
lca(u, v) to v, where lca(u, v) is the lowest common ancestor of u and v, or it executes the
routing steps that would be executed if the algorithm were routing from u to lca(u, v).

I Lemma 6. Let u and v be vertices of G such that lca(u, v) /∈ {u, v}. Suppose that the set
X as defined in Case 3 is empty so that the algorithm executes the routing steps of Case 3
a) when routing from u to v. Then the algorithm performs the routing steps which would be
performed if the destination was lca(u, v) rather than v.

Lemmas 5 and 6 imply the following:

I Theorem 7. Let u and v be vertices in G. The routing algorithm reaches v when routing
from u after traversing at most O(logn) edges.

4 Concluding Remarks

We have demonstrated that a slightly modified version of the tree metric 1-spanner of
Solomon and Elkin [5] supports a O(logn) diameter local routing algorithm with routing

Milutin Brankovic, Joachim Gudmundsson, and André van Renssen 76:5

ratio 1. The tree metric spanner has been used in the literature as a tool to reduce the
diameter of various spanner constructions while either preserving or incurring minimal
penalties in other desirable properties of the spanner such as number of edges, degree,
diameter and weight. We leave it as future work to use this local routing algorithm as a
basis for local routing algorithms on some of the aforementioned Euclidean and doubling
metric spanners.

References
1 S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: Short, thin,

and lanky. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing,
STOC ’95, pages 489–498, 1995.

2 T. Chan, M. Li, L. Ning, and S. Solomon. New doubling spanners: Better and simpler.
SIAM Journal on Computing, 44(1):37–53, 2015.

3 N. Santoro and R. Khatib. Labelling and implicit routing in networks. The Computer
Journal, 28(1):5–8, 1985.

4 S. Solomon. From hierarchical partitions to hierarchical covers: Optimal fault-tolerant
spanners for doubling metrics. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, STOC ’14, page 363–372, 2014.

5 S. Solomon and M. Elkin. Balancing degree, diameter, and weight in Euclidean spanners.
SIAM Journal on Discrete Mathematics, 28(3):1173–1198, 2014.

EuroCG’20

A better approximation for longest noncrossing
spanning trees∗

Sergio Cabello1, Aruni Choudhary†2, Michael Hoffmann‡3,
Katharina Klost2, Meghana M. Reddy‡3, Wolfgang Mulzer2, Felix
Schröder4, and Josef Tkadlec5

1 University of Ljubljana, Slovenia
sergio.cabello@fmf.uni-lj.si

2 Institut für Informatik, Freie Universität Berlin, Germany
{arunich,kathklost,mulzer}@inf.fu-berlin.de

3 Department of Computer Science, ETH Zürich, Switzerland
{hoffmann,meghana.mreddy}@inf.ethz.ch

4 Technische Universität Berlin, Germany
fschroed@math.tu-berlin.de

5 Institute of Science and Technology, Austria
jtkadlec@ist.ac.at

Abstract
Let P be a finite set of points in the plane. For any spanning tree T on P , we denote by |T | the
Euclidean length of T . Let TOPT be a noncrossing spanning tree of maximum length for P . We
show how to construct a noncrossing spanning tree TALG with |TALG| ≥ δ · |TOPT| with δ = 0.512.
We also show how to improve this bound when the points lie in a thin rectangle.

1 Introduction

In this paper we address the problem of finding a longest noncrossing spanning tree. The
closely related problems of finding both a shortest (noncrossing) and a longest (possibly
crossing) spanning tree are computationally easy. The minimization version is simply the
classical minimum spanning tree problem, and the noncrossing property follows from the
triangle inequality. Similarly, the longest spanning tree can be computed in a greedy fashion.
In contrast, finding the longest noncrossing spanning tree is conjectured to be NP-hard [1].

As obtaining an efficient exact algorithm seems to be difficult, we focus on polynomial-
time approximation algorithms for the longest noncrossing spanning tree. One of the first
results is due to Alon et al. [1] who gave an 0.5-approximation. Dumitrescu and Tóth [3]
refined this algorithm and achieved an approximation factor of 0.502. In their analysis, they
compare the output of their algorithm to a longest, possibly crossing, spanning tree. With a
modification of this algorithm, Biniaz et al. improved this factor slightly to 0.503 [2]. They
also compare their result to the longest crossing spanning tree. While such a tree provides
a safe upper bound, it is not a valid solution for the problem and may be up to π/2 > 1.5
times longer than a longest noncrossing spanning tree [1].

∗ This research was started at the 3rd DACH Workshop on Arrangements and Drawings, August 19–23,
2019, in Wergenstein (GR), Switzerland, and continued at the 16th European Research Week on
Geometric Graphs, November 18–22, 2019, in Strobl, Austria. We thank all the participants of the
workshop for valuable discussions and for creating a conducive research atmosphere.

† Supported in part by ERC StG 757609.
‡ Supported by the Swiss National Science Foundation within the collaborative DACH project Arrange-

ments and Drawings as SNSF Project 200021E-171681.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

77:2 Maximum noncrossing spanning trees

In this paper, we aim to design a better approximation algorithm by making use of the
noncrossing property. In this way, we obtain a significant improvement on the approximation
factor to 0.512. Our algorithm uses similar ideas and constructions as the previous algorithms.

Moreover, we can show an even better approximation for “thin” point sets. In particular,
we show that when the point set lies in a thin rectangular strip, then there is always a
noncrossing spanning tree of length at least 2/3 the length of the longest (possibly crossing)
spanning tree, and that this bound is tight.

2 Preliminaries

Let P ⊂ R2 be the given point set. Without loss of generality we assume that diam(P) = 1.
Similar to the existing algorithms [1, 2, 3], we make extensive use of stars. The star Sp
rooted at some point p ∈ P is the tree that connects p to all other points of P (see Figure 1).

p

Figure 1 A star Sp.

The following slight generalization of Lemma 3 in Dumitrescu and Tóth [3] will be very
useful throughout the paper.

I Lemma 2.1. Let p, q ∈ P . Then max{|Sp|, |Sq|} ≥ n
2 ‖pq‖.

Proof. First we note that max{|Sp|, |Sq|} ≥ 1
2 (|Sp|+ |Sq|). The triangle inequality yields:

|Sp|+ |Sq| =
∑

r∈P
‖pr‖+ ‖rq‖ ≥

∑

r∈P
‖pq‖ = n · ‖pq‖. J

I Observation 2.2. Let ab be a longest edge of TOPT. As ‖ab‖ ≤ 1 by assumption, we have

|TOPT| ≤ ‖ab‖(n− 1) < ‖ab‖n ≤ n.

3 The 0.512-approximation

We show how to compute a spanning tree TALG with |TALG| ≥ δ · |TOPT| = 0.512 · |TOPT|. Our
approach is the following: we guess a longest edge ab of TOPT. If ‖ab‖ < d := 1

2δ then it is
straightforward to give a good approximation, as shown below in Lemma 3.1. Otherwise, we
describe six different noncrossing spanning trees for the set P and show that at least one of
them gives an approximation ratio of at least δ.

We use the noncrossing property of the optimal tree TOPT in Lemma 3.2, which also is
the bottleneck case in our construction.

From now on, we assume that ab is a longest edge in TOPT and that p, q is a pair of
vertices that realizes the diameter, that is, ‖pq‖ = 1 ≥ ‖ab‖.

I Lemma 3.1. Let TDIAM the longer of Sp and Sq. If ‖ab‖ < d, then |TDIAM| ≥ δ · |TOPT|.

S. Cabello et al. 77:3

Proof. From Lemma 2.1 it follows that max{|Sp|, |Sq|} ≥ n
2 . As we observed above, we have

|TOPT| ≤ ‖ab‖n < dn. Thus, we get an approximation ratio of

|TDIAM|
|TOPT|

≥ n/2
dn

= 1
2d = δ. J

Now we only consider the case where ‖ab‖ ≥ d. Additionally for ease of presentation, we
will assume that a = (0, 0) and b = (‖ab‖, 0) without loss of generality.

First, we define F = D(a, 1) ∩D(b, 1) to be the region with distance at most 1 from a

and b. Since the diameter of the point set is 1, we can be sure that P ⊂ F . Let α̂ be a
constant to be determined later. Set γ = 2·δ−1+α̂

α̂ and let E = {x ∈ R2 | ‖ax‖+ ‖xb‖ ≤ γ}.
Lastly, we subdivide E ∩ F into three vertical strips. We fix a parameter ω = 0.1. Let

`1, `2 be the vertical lines at ω‖ab‖ and (1−ω)‖ab‖, respectively. Let L be the part of E ∩F
to the left of `1, let M be the part between `1 and `2, and let R be the part to the right of
`2. See Figure 2 for a schematic.

E

DaDb
`1 `2

L M R
a b

Figure 2 Subdivision of the plane into regions with respect to a longest edge ab of TOPT.

We denote by α the fraction of points in F \ E, and by βL, βM and βR the fraction of
points in L,M and R respectively. Note that α+ βL + βM + βR = 1. Now we are equipped
to consider the next two cases:

I Lemma 3.2. Assume

βM ≥ β̂ = δ − 0.5
δ ·
(

1−
√

1− d2(ω − ω2)
)

and recall that TDIAM is the larger of the stars at the diameter. Then |TDIAM| ≥ δ · |TOPT|.
Proof. The main insight in this case is that we can find a tighter bound on TOPT by exploiting
that ab is an edge of TOPT and so no other edge of TOPT can cross ab. Let M be the region of

EuroCG’20

77:4 Maximum noncrossing spanning trees

F between `1 and `2 and above ab. Refer to Figure 3 for illustration. We will argue that
every edge with an endpoint in M has length at most diam(M).

Let c1 = `1∩∂(E)∩M and c2 = `1∩ab. Disregarding symmetry, it follows from convexity
that the longest possible edge starting inM has either c1 or c2 as an endpoint. If the endpoint
is c1, then the edge may reach below the line through ab. A maximum length edge starting
from c1 ends at the intersection z of the line through c1 and b with the boundary of F . If
the endpoint is c2, the length of this edge is diam(M). Both cases are shown in Figure 3.

∂Eba

c1

c2 z
M

||c1z||

diam(M)

M

Figure 3 The starting points c1 and c2 of longest edges in TOPT.

Now we consider how these lengths change for d ≤ ‖ab‖ ≤ 1. By basic trigonometry, we
can give expressions for diam(M) and ‖c1z‖ that only depend on ‖ab‖:

diam(M) =
√

1− ‖ab‖2(ω − ω2)

‖c1b‖ =

√√√√((1− ω)‖ab‖)2 +
(√

γ2 − ‖ab‖2 ·
√

(γ/2)2 − (‖ab‖/2− ω‖ab‖)2

γ

)2

‖c1z‖ ≤ ‖c1b‖+ ‖c1b‖(1− ‖ab‖)
(1− ω)‖ab‖

The last bound is tight for ‖ab‖ = 1.
When considering diam(M) and ‖c1z‖ as functions of ‖ab‖, by considering the plots

(Figure 4) it follows that
√

1− d2(ω − ω2) = diam(M)d ≥ diam(M) ≥ diam(M)1 and (1)
‖c1z‖d ≥ ‖c1z‖ ≥ ‖c1z‖1 ,

where the subscripted versions denote the values at ‖ab‖ = d and ‖ab‖ = 1, respectively.
With the chosen constants we get diam(M)1 ≥ ‖c1z‖d (again refer to Figure 4). Thus,

diam(M) is a valid upper bound for the length of the edge starting in M .
Using (1) and the definition of β̂ we can bound the size of TOPT and the approximation

ratio:

|TOPT| ≤ n · (βM · diam(M) + (1− βM)) ≤ n · (βM · diam(M)d + (1− βM))
= n · (1− βM · (1− diam(M)d))

S. Cabello et al. 77:5

0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.80

0.85

0.90

0.95

1.00

1.05

1.10

diam(M)

||c1z||

Figure 4 Plot of diam(M) and ‖c1z‖ over the length of ab. The vertical lines are at d and 1.

|TDIAM|
|TOPT|

≥ 0.5n
(1− βM · (1− diam(M)d))n

≥ 0.5
1− β̂ · (1− diam(M)d)

= δ. J

In the next case, we assume that α ≥ α̂ and also show that there is a good star.

I Lemma 3.3. If

α ≥ α̂ = 1− 2δ + β̂(1− ω)
2− 3ω ,

then max{|Sa|, |Sb|} ≥ δ · |TOPT|.

Proof. As before we bound max{|Sa|, |Sb|} ≥ 1
2 (|Sa|+ |Sb|). This time we get:

|Sa|+ |Sb| ≥ n(α · γ + (1− α)‖ab‖)
= n(‖ab‖+ α(γ − ‖ab‖))
≥ n · (‖ab‖+ α(γ − 1)).

With Observation 2.2 (|TOPT| ≤ ‖ab‖n) we get

max{|Sa|, |Sb|}
|TOPT|

≥ n(‖ab‖+ α(γ − 1))
2‖ab‖n ≥ 1

2 + α

2 (γ − 1) ≥ 1
2 + α̂

2 (γ − 1) = δ. J

Last but not least we consider the case where α and βM are both small. Intuitively, this
means that almost all points are located left or right in E.

I Lemma 3.4. If α < α̂ and βM < β̂, then there is a tree which gives a δ-approximation.

Proof. In this case we do not use a star but trees Bab, Bba of diameter at most five. We will
describe the structure Bab with regard to a. The structure Bba with regard to b is symmetric.
See Figure 5 for an example of the construction.

We start by connecting all points in R to a (blue edges). This gives a star with length at
least βR(1− ω)‖ab‖. The edges of this star subdivide L into wedges. We define the upper

EuroCG’20

77:6 Maximum noncrossing spanning trees

wedge to be the region above both the highest edge and the x-axis. The lowest wedge is
defined accordingly. For each such wedge W (except the last) we take the lower point of R
defining W and connect it to all points in L∩W . The lowest point in R also connects to the
points in the lowest wedge of L (green edges). Each of these new edges has weight at least
(1− 2ω)‖ab‖.

Now we connect the points in M . The edges of the tree so far subdivide M into
quadrilateral regions, which are defined by two edges of the tree. We again want to connect
the vertices in such a subregion in a star like fashion. From the interior of such a subregion
at least one boundary edge between a point from L and a point from R is fully visible.
For every subregion we pick the better of the two stars centered at the two endpoints of
such an edge (red edges). By Lemma 2.1 this yields a total additional weight of at least
0.5 · βM (1− 2ω)‖ab‖.

Recall that α+ βL + βM + βR = 1. By bounding the maximum by the average, we get

max{|Bab|, |Bba|} ≥
n‖ab‖

2 ((βL + βR)(2− 3ω) + βM (1− 2ω))

= n‖ab‖
2 ((1− α)(2− 3ω)− βM (1− ω))

≥ n‖ab‖
2 ((1− α̂)(2− 3ω)− β̂(1− ω)).

max{|Bab|, |Bba|}
|TOPT|

≥
n‖ab‖

2 ((1− α̂)(2− 3ω)− β̂(1− ω))
‖ab‖n = δ. J

I Theorem 3.5. A δ = 0.512-approximation for the longest noncrossing Euclidean spanning
tree can be computed in polynomial time.

Proof. We compute Sp for each p ∈ P . Additionally, for each pair a, b with ‖ab‖ > d = 1/(2δ),
we compute Bab and Bba. Let TALG be the largest of these structures.

By the exhaustive case distinction in Lemmas 3.1 to 3.4, for the pair a, b which leads to
the longest edge in TOPT this leads to a δ = 0.512-approximation. J

Eb

≥ βL(1− 2ω)||ab||

a

ω||ab|| (1− 2ω)||ab||

(1− ω)||ab||

L
M

R

≥ 0.5βM (1− 2ω)||ab||

≥ βR(1− ω)||ab||

Figure 5 Structure Bab. The edges of each stage of the construction have a different color.

S. Cabello et al. 77:7

4 Improved approximation factor for thin point sets

In this section we present stronger bounds for thin point sets. Given σ > 0, we say that P is
(at most) σ-thick if there exists a diameter of P such that all points in P have distance at
most σ from this diameter. Moreover, let TCR be the longest (possibly crossing) tree on P .

I Theorem 4.1. There is a polynomial-time algorithm that, given a σ-thick point set P with
σ ≤ 1

3 , constructs a planar spanning tree TALG with

|TALG| ≥ f(σ) · |TCR| ≥ f(σ) · |TOPT|,

where f(σ) is given by

f(σ) = 2
3 ·
√

1 + 4σ2

5− 4
√

1− σ2 + 4σ2
.

Inspecting the function f(σ), we get, e.g., f(0.3) ≥ 0.516 and f(0.1) ≥ 0.636. Also, in the
limit d→ 0 we get f(σ)→ 2/3. The constant 2/3 here is tight: There exist perturbations of
point sets lying on a segment for which the longest planar trees have length arbitrarily close
to 2/3 of the length of the longest (possibly crossing) tree (see Figure 6).

TOPT Tcr

Figure 6 A thin convex set consisting of n+1 points with equally spaced x-coordinates 0, 1, . . . , n.
For large n, the length of any longest planar tree is 1 + 2 + · · ·+ n ≈ 1

2n
2, whereas the length of the

longest (possibly crossing) tree is roughly 2 · (n/2 + · · ·+ n) ≈ 3
4n

2. Thus, as n → ∞, we obtain
|TOPT|/|TCR| → 2

3 .

Proof. [of Theorem 4.1] Fix P and σ ≤ 1
3 . Denote the relevant diameter of P by pq, and

without loss of generality place it as p = (0, 0), q = (1, 0). Divide P \ {p, q} by a vertical line
` into a set Pp of points closer to p and a set Pq of points closer to q (see Figure 7(a)).

p q

2σ

p q

2σ

x

c

x′
x?

` (b)(a)

Figure 7 (a) We star the points in the right half from p (blue) and then either star the points in
the left half from p too (yielding Sp, blue and green) or connect them to points in the right half
(yielding Tpq, blue and red). (b) With the shown notation we have f(σ) = 2‖x?q‖/(3‖x?c‖).

We construct a tree Tpq as follows: Connect p to all points in Pq ∪ {q}. This splits Pp
into wedges with apex p. For each wedge, connect all its points in Pp to the endpoint of its
upper side in Pq (use the lower side for the uppermost wedge). Note that Tpq is planar. We
construct Tqp in a symmetric fashion and set TALG to be the longest of Tpq, Tqp, Sp, Sq.

Next we argue that TALG satisfies |TALG| ≥ f(σ) · |TCR|. It suffices to show

|Sp|+ 2|Tpq|+ 2|Tqp|+ |Sq|
6 ≥ f(σ) · |TCR|.

EuroCG’20

77:8 Maximum noncrossing spanning trees

Note that all four trees on the left-hand side include edge pq and since pq is a diameter, we
can without loss of generality assume that TCR contains it too. Direct all other edges of those
five trees towards pq. Fix a point x ∈ P \ {p, q} and let xCR, xpq, xqp be the other endpoints
of the edges pointing from x in TCR, Tpq, Tqp, respectively. (Note that in Sp all edges point
towards p, similarly for Sq and q.) It suffices to prove that

‖xp‖+ 2‖xxpq‖+ 2‖xxqp‖+ ‖xq‖
6 · ‖xxCR‖

≥ f(σ)

Without loss of generality, suppose that x belongs to Pp and lies above pq. Let x′ be the
reflection of x about ` and c the furthest point from x within the intersection of unit disks
centered at p and q. Using the triangle inequality in 4pxx′, the left-hand side is at least

‖xp‖+ ‖xx′‖+ 2‖xq‖+ ‖xq‖
6‖xc‖ ≥ ‖px

′‖+ 3‖xq‖
6‖xc‖ = 2

3 ·
‖xq‖
‖xc‖ .

Since σ ≤ 1
3 , the ratio ‖xq‖/‖xc‖ is minimized when x = x? lies on ` with distance σ from

pq (see Figure 7(b)). Since ‖pc‖ = 1, using the Pythagorean theorem, we easily compute

‖x?c‖ =
√(√

1− σ2 − 1/2
)2

+ (2σ)2 and ‖x?q‖ =
√

(1/2)2 + σ2,

which matches the desired expression f(σ). J

5 Conclusion

We showed that it is possible to significantly increase the approximation factor from 0.503 to
0.512 in the general case and even towards 2/3, when the point set is σ-thick for σ → 0.

The improvement in the approximation factor relies in one case on the planarity of the
optimum tree. Without further analysis this does not yield a better approximation factor
with regard to the longest crossing tree.

In future work, we aim to further reduce the running time and the approximation factor.
For the latter we plan to build on the fact that TOPT is noncrossing, which can lead to further
advances. The last open problem would be to settle the question of NP-hardness.

References
1 Noga Alon, Sridhar Rajagopalan, and Subhash Suri. Long non-crossing configurations in

the plane. Fundam. Inform., 22(4):385–394, 1995. doi:10.3233/FI-1995-2245.
2 Ahmad Biniaz, Prosenjit Bose, Kimberly Crosbie, Jean-Lou De Carufel, David Eppstein,

Anil Maheshwari, and Michiel Smid. Maximum Plane Trees in Multipartite Geometric
Graphs. Algorithmica, 81(4):1512–1534, 2019. URL: http://link.springer.com/10.
1007/s00453-018-0482-x, doi:10.1007/s00453-018-0482-x.

3 Adrian Dumitrescu and Csaba D. Tóth. Long non-crossing configurations in the plane.
Discrete Comput. Geom., 44(4):727–752, 2010. doi:10.1007/s00454-010-9277-9.

The Tree Stabbing Number is not Monotone
Wolfgang Mulzer1 and Johannes Obenaus∗2

1 Freie Universität Berlin
mulzer@inf.fu-berlin.de

2 Freie Universität Berlin
johannes.obenaus@fu-berlin.de

Abstract
Let P ⊆ R2 be a set of points and T be a spanning tree of P . The stabbing number of T is the
maximum number of intersections any line in the plane determines with the edges of T . The tree
stabbing number of P is the minimum stabbing number of any spanning tree of P . We prove that
the tree stabbing number is not a monotone parameter, i.e., there exist point sets P (P ′ such
that tree-stab(P) > tree-stab(P ′), answering a question by Eppstein [4, Open Problem 17.5].

1 Introduction

Let P ⊆ R2 be a set of points in general position, i.e., no three points lie on a common line.
A geometric graph G = (P, E) is a graph equipped with a drawing where edges are realized
as straight-line segments. The stabbing number of G is the maximum number of proper
intersections that any line in the plane determines with the edges of G. Let G be a graph
class (e.g., trees, paths, triangulations, perfect matchings etc.). The G-stabbing number of P

is the minimum stabbing number of any geometric graph G = (P, E) belonging to G (as a
function of P).

Stabbing numbers are a classic topic in computational geometry and received a lot of
attention both from an algorithmic as well as from a combinatorial perspective. We mainly
focus on the stabbing number of spanning trees (see, e.g., [11] for more information), which
has numerous applications. For instance, Welzl [10] used spanning trees with low stabbing
number to efficiently answer triangle range searching queries, Agarwal [1] used them in the
context of ray shooting (also see [2,3] for more examples). Furthermore, Fekete, Lübbecke
and Meijer [5] proved NP-hardness of stabbing numbers for several graph classes, namely for
spanning trees, triangulations and matchings, though for paths this question remains open.

It is natural to ask whether stabbing numbers are monotone, i.e., does it hold for any
pointset P ⊆ R2 that the G-stabbing number of P is not smaller than the G-stabbing number
of any proper subset P ′ (P . Recently, Eppstein [4] gave a detailed analysis of several
parameters that are monotone and depend only on the point set’s order type. Clearly,
stabbing numbers depend only on the order type. Eppstein observed that the path stabbing
number is monotone [4, Observation 17.4] and asked whether this is also the case for the tree
stabbing number [4, Open Problem 17.5]. We prove that neither the tree stabbing number
(Corollary 3.4) nor the triangulation stabbing number (Corollary 4.2) nor the matching
stabbing number (Corollary 5.2) are monotone. A more detailed analysis can also be found
in the second author’s Master thesis [9]. Each of the following sections is dedicated to one
graph class.

∗ Partially supported by ERC StG 757609

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

78:2 The Tree Stabbing Number is not Monotone

2 Path Stabbing Number

For completeness we repeat the main argument that the path stabbing number, denoted by
path-stab(·), is monotone, which can be found in [4, Observation 17.4] for example.

I Lemma 2.1. Let G be a geometric graph. The following two operations do not increase
the stabbing number of G:

1. Removing a vertex of degree 1.
2. Replacing a vertex v of degree 2 with the segment connecting its two neighbours w1, w2.

Proof. Clearly, the first operation cannot increase the stabbing number, since it does not
add any new segments.

For the second part, let G′ be the geometric graph obtained from G by performing
operation 2 and let ` be an arbitrary line. If ` has strictly less than Stabbing-Number(G)
intersections in G, it has at most Stabbing-Number(G) intersections in G′, since we added
only one segment. Otherwise, if ` has Stabbing-Number(G) intersections in G, it clearly
does not pass through any vertex of G and if ` intersects the newly inserted segment w1w2 it
must have also intersected either w1v or vw2. J

I Corollary 2.2. path-stab(·) is monotone.

3 Tree Stabbing Number

We construct point sets P1 (P2 of size n and n + 1 such that tree-stab(P1) > tree-
stab(P2). The point p ∈ P2 \ P1 we want to remove, must, of course, have degree at least 3
in any spanning tree of minimum stabbing of P2, since otherwise the arguments of Lemma 2.1
apply.

Our construction, which is depicted in Figure 1 (a), is as follows. Start with a unit
circle around the origin O and place 3 evenly distributed points x1, x2, x3 on this circle (in
counterclockwise order). Next, add an “arm” consisting of 2 points yi, zi (i = 1, 2, 3) at
each of the xi (outside the circle) such that the points O, xi, yi, zi form a convex chain for
i = 1, 2, 3 (which are all three oriented the same way). These arms need to be flat enough, i.e.,
the line supporting the segment xiyi must intersect the interior of the segment Oxi+2 (indices
are taken modulo 3), but also curved enough, i.e., the line supporting the segment yizi must
have the remaining 8 points on the same side. In particular, there are lines intersecting the
segments xiyi, yizi and also Oxi+2 on the one hand and yi+2zi+2 on the other hand (the
red lines in Figure 1 (a)). If there is no danger of confusion, we might omit that indices are
taken modulo 3 (as in the previous sentence).

Define the two point sets P1, P2 (which are both in general position) to be

P1 = {x1, y1, z1, x2, y2, z2, x3, y3, z3}, P2 = P1 ∪ {O}.

I Lemma 3.1. It holds that tree-stab(P1) = 4 and tree-stab(P2) ≤ 3.

Proof. This result was obtained by a computer-aided brute-force search (the source code
is available on github [8]). In order to compute the stabbing number of a given geometric
graph spanning some point set, it is enough to consider a representative set HP of lines. For
any line ` that partitions the point set into two non-empty subsets, there is a line in the
representative set inducing the same partitioning. For an n-point set in general position,
the size of a representative set is

(
n
2
)
(see the full version of this paper [7]). Hence, we

W. Mulzer and J. Obenaus 78:3

x1

x3

x2

O

y1

z1

y3

z3

y2

z2

O

x1

x2

x3

y1

y2

y3

z1

z2

z3

z3

y1

pk

p1

(a) (b)

Figure 1 Illustration of a set of (a) 9 points and (b) n points such that removing the point O

increases the tree stabbing number.

have |HP1 | = 36 and |HP2 | = 45. The sets HP1 and HP2 were also obtained by computer
assistance. Any pair of points induces four distinct representative lines, computing these and
removing duplicates yields HP1 and HP2 (as in [6] for example).

Now, it is enough to compute – for all 97 = 4782969 possible spanning trees on P1 – their
intersections with the lines in HP1 , yielding tree-stab(P1) = 4.

On the other hand, for P2 the spanning tree depicted in Figure 1 has stabbing number 3
(again by computing all intersections with lines in HP2) implying tree-stab(P2)≤ 3. J

Next, we generalize this construction to arbitrarily large point sets. We simply replace
one of the zi (say z1) by a convex chain C consisting of k points p1, . . . , pk (see Figure 1 (b)).
Denote the convex chains x1y1C, x2y2z2 and x3y3z3 by C1, C2 and C3.

Our goal will be to remove all but two points of C ∪ {y1} to get back to our 9-point
setting. Of course, it is crucial to keep the relative position of the points as it is in the 9-point
set. Thus, place the points p1, . . . , pk such that:

1. O, x1, y1, p1, . . . , pk forms a convex chain.
2. close enough to y1, so that the order type of the resulting point set is the same no matter

which k − 1 of the points in C ∪ {y1} we remove. In particular, no line through any two
points not belonging to y1, p1, . . . , pk may separate these points.

3. for any two segments formed by any triple of points in C1 (consecutively along the convex
chain) there is a line intersecting these two segments and also y3z3. To achieve this, C

needs to be sufficiently flat and z3 needs to be pushed further away.

Note that Lemma 3.1 has been verified to still hold after the modification of pushing z3
further out. Before proving that this construction fulfills the desired properties, we need one
more preliminary lemma (see Figure 2).

EuroCG’20

78:4 The Tree Stabbing Number is not Monotone

or or or

Figure 2 Illustration of Lemma 3.2. Special vertices are depicted as squares. Other vertices of
degree 1 or 2 are successively removed.

O

x1

x2

x3

y1

y2

y3

p1

z2

z3

pk

C1

C2

C3
O

x1

x2

x3

y1

y2

y3

p1

z2

z3

pk

C1

C2

C3

Figure 3 There is no line that intersects more than 3 segments in this spanning tree.

I Lemma 3.2. Let G = (V, E) be a forest with c connected components and |V | ≥ 4. Mark
three of the vertices as special (call them v1, v2, v3) and iteratively remove/replace vertices
of degree 1 and 2 (as in Lemma 2.1) until no non-special vertex of degree ≤ 2 remains.
Then the resulting graph is a forest and consists of the three special vertices and at most one
non-special vertex.

The proof is straightforward and can be found in the full version of this paper [7]. Now,
we are prepared to prove our main lemma.

I Lemma 3.3. For any integer n ≥ 9, there exist (planar) point sets P ′
1 (P ′

2 of size |P ′
1| = n

and |P ′
2| = n + 1 such that tree-stab(P ′

1) > tree-stab(P ′
2).

Proof. Let k = n−8 and define P ′
1 and P ′

2 as above (Figure 1 (b)), replacing z1 by p1, . . . , pk:

P ′
1 = {x1, y1, p1, . . . , pk, x2, y2, z2, x3, y3, z3}, P ′

2 = P ′
1 ∪ {O}.

On the one hand, it is straightforward to see that the spanning tree depicted in Figure 1 (b)
has stabbing number 3 (see Figure 3 for an illustration) and hence tree-stab(P ′

2) ≤ 3.
On the other hand, we show tree-stab(P ′

1)≥ 4 next. Assume for the sake of contradiction
that there is a spanning tree T of P ′

1 with stabbing number at most 3. Our goal will be to
carefully remove points from P1 such that the stabbing number of T cannot increase until
there are only 9 points left in exactly the same relative position as in Lemma 3.1. Clearly,
this would be a contradiction.

Consider the set of edges of T with at least one endpoint among the points in C1. There
are at most 3 edges having only one endpoint in C1 (we call them bridges). If there would
be more than 3 bridges, there is a line that intersects at least 4 line segments, namely a line
that separates C1 from the rest. Because of the same reason, not all three bridges can go to
the same other component (C2 or C3).

W. Mulzer and J. Obenaus 78:5

z3

x2

x3
y3

x1 = v1

v

v3

v2

v1v3

v2

v

Induced subforest on C1 before
removal process

after removal
process

`

Figure 4 Illustration of Case 2. If a non-special vertex v survives the removal process, the red
line has too many intersections.

There are at most 3 points in C1 that are incident to a bridge and if they are distinct,
one of them needs to be x1, otherwise the line separating x1 from the rest of C1 has 4
intersections. Pick three vertices v1, v2, v3 in C1 such that x1 and any point incident to a
bridge is among them and mark them as special.

Next, we apply Lemma 3.2 to the subforest induced by C1:

Case 1: No non-special vertex in C1 survives the removal process.
Then 9 points with the same order type as in Lemma 3.1 and a spanning tree with

stabbing number 3 remain, which is a contradiction to Lemma 3.1.

Case 2: One non-special vertex v in C1 survives the removal process.
Then v is incident to all special vertices v1, v2, v3. If v is the last vertex along C1, there

is obviously a line having more than three intersections. Otherwise, by construction, there is
a line ` that separates v from v1, v2, v3 and at the same time z3 from the rest of the point
set (see Figure 4). In particular, ` has only z3 and v on one side and all other points on the
other. z3 cannot be adjacent to v, since v is not incident to a bridge and therefore contributes
another intersection to `. This is a contradiction to the assumption that T was a spanning
tree of stabbing number 3. J

I Corollary 3.4. tree-stab(·) is not monotone.

4 Triangulation Stabbing Number

We denote the triangulation stabbing number by tri-stab(·). Proving non-monotonicity
of tri-stab(·) is much simpler, only exploiting the additional structure enforced by trian-
gulations. Consider two symmetric convex chains C1 = {p1, . . . , pn} and C2 = {p′

1, . . . , p′
n}

(sufficiently flat) each consisting of n points and facing each other as depicted in Figure 5 (a).
These points constitute the point set P . P ′ consists of the same 2n points and two more
(slightly perturbed) points added on the line segment connecting the two middle points of C1
and C2 (as in Figure 5 (b)). Then the following holds:

I Lemma 4.1. tri-stab(P) ≥ 2n− 1 and tri-stab(P’) ≤ n + 4 log n + 3.

EuroCG’20

78:6 The Tree Stabbing Number is not Monotone

2n− 1 intersections

n+ 2 log n+ 2 intersections

n + 4 log n + 3
intersections

C1 C2

C1 C2

(a)

(b)

Figure 5 Two symmetric chains in (a) might have a larger triangulation stabbing number
compared to the same point set with additional points inbetween (b).

The proof of Lemma 4.1 is straightforward and can be found in the full version of this
paper [7].

I Corollary 4.2. tri-stab(·) is not monotone.

5 Matching Stabbing Number

First note that the point sets in the case of matchings have to be of even size and all
matchings are perfect. Again, we only illustrate the construction, which simply exploits the
structure of matchings (again, the proof can be found in the full version [7]).

Take k points p1, . . . , pk in convex position and one point x inside such that any segment
xpi is intersected by some pjpk. Next, double all points within a small enough ε-radius
(preserving general position) and for a point p name the partner point p′ (see Figure 6).

Define the point sets P1 and P2 to be:

P2 = {x, x′, p1, . . . , pk, p′
1, . . . , p′

k, }, P1 = P2 \ {x′, p′
1}.

I Lemma 5.1. It holds that mat-stab(P1) ≥ 3 and mat-stab(P2) ≤ 2.

I Corollary 5.2. The matching stabbing number, mat-stab(·), is not monotone.

6 Conclusion

Our proof of Lemma 3.1 relies on computer assistance and of course it would be interesting
to turn this into a pen-and-paper proof.

Furthermore, it is easy to generalize stabbing numbers to the context of range spaces
(X,R), where X is a set and R a set of subsets of X, called ranges. A spanning path then

W. Mulzer and J. Obenaus 78:7

p5

p4

p3

p2x

p′5

p′4
p′3

p′2

p1 p′1

x′

p5

p4

p3

p2

p′5

p′4
p′3

p′2

p5

p4

p3

p2

p′5

p′4
p′3

p′2

(a) (b) (c)

p′1

x′ x′

p′1
p1

x

p1

x

Figure 6 A point set with matching stabbing number 2 in (a) and removing p1 and x′ results in
a point set with larger matching stabbing number, illustrated in (b) and (c).

corresponds to a permutation of X and a set A ⊆ X is stabbed by a range r ∈ R if there
are x, y ∈ A such that x ∈ r and y /∈ r. It is straightforward to prove Corollary 2.2 in this
context, but we don’t know how to apply this for other graph classes.

References
1 Pankaj K. Agarwal. Ray shooting and other applications of spanning trees with low stab-

bing number. SIAM J. Comput., 21(3):540–570, June 1992. URL: http://dx.doi.org/
10.1137/0221035, doi:10.1137/0221035.

2 P.K. Agarwal, M. Vankreveld, and M. Overmars. Intersection queries in curved ob-
jects. Journal of Algorithms, 15(2):229 – 266, 1993. URL: http://www.sciencedirect.
com/science/article/pii/S0196677483710400, doi:https://doi.org/10.1006/jagm.
1993.1040.

3 Herbert Edelsbrunner, Leonidas Guibas, John Hershberger, Raimund Seidel, Micha Sharir,
Jack Snoeyink, and Emo Welzl. Implicitly representing arrangements of lines or segments.
Discrete & Computational Geometry, 4(5):433–466, Oct 1989. URL: https://doi.org/10.
1007/BF02187742, doi:10.1007/BF02187742.

4 David Eppstein. Forbidden Configurations in Discrete Geometry. Cambridge University
Press, 2018. doi:10.1017/9781108539180.

5 Sándor P. Fekete, Marco E. Lübbecke, and Henk Meijer. Minimizing the stabbing
number of matchings, trees, and triangulations. Discrete & Computational Geome-
try, 40(4):595, Oct 2008. URL: https://doi.org/10.1007/s00454-008-9114-6, doi:
10.1007/s00454-008-9114-6.

6 Panos Giannopoulos, Maximilian Konzack, and Wolfgang Mulzer. Low-crossing spanning
trees: an alternative proof and experiments. 2014.

7 Wolfgang Mulzer and Johannes Obenaus. The tree stabbing number is not monotone, 2020.
full version. arXiv:2002.08198.

8 Johannes Obenaus. source code. 2019. URL: https://github.com/jogo23/stabbing_
number_thesis.

9 Johannes Obenaus. Spanning trees with low (shallow) stabbing number. Master’s thesis,
ETH Zurich, 9 2019. URL: https://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/
master_finished/obenaus_johannes/index.html.

10 Emo Welzl. Partition trees for triangle counting and other range searching problems. In
Symposium on Computational Geometry, 1988.

EuroCG’20

78:8 The Tree Stabbing Number is not Monotone

11 Emo Welzl. On spanning trees with low crossing numbers, pages 233–249. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1992. URL: https://doi.org/10.1007/3-540-55488-2_
30, doi:10.1007/3-540-55488-2_30.

On the maximum number of crossings in
star-simple drawings of Kn with no empty lens∗

Stefan Felsner1, Michael Hoffmann2, Kristin Knorr3, and Irene
Parada4

1 Institute of Mathematics, Technische Universität Berlin, Germany.
felsner@math.tu-berlin.de

2 Department of Computer Science, ETH Zürich, Switzerland.
hoffmann@inf.ethz.ch

3 Department of Computer Science, Freie Universität Berlin, Germany.
knorrkri@inf.fu-berlin.de

4 Institute of Software Technology, Graz University of Technology, Austria.
iparada@ist.tugraz.at

Abstract
A star-simple drawing of a graph is a drawing in which adjacent edges do not cross and edges
are not self-intersecting. In contrast, there is no restriction on the number of crossings between
two independent edges. When allowing empty lenses (a face in the arrangement induced by two
edges that is bounded by a 2-cycle), two independent edges may cross arbitrarily many times in a
star-simple drawing. We consider star-simple drawings of Kn without empty lens. In this setting
we prove an upper bound of 3((n− 4)!) on the maximum number of crossings between any pair
of edges. It follows that the total number of crossings is finite and upper bounded by n!.

1 Introduction

A topological drawing of a graph G is a drawing in the plane where vertices are represented
by pairwise distinct points, and edges are represented by Jordan arcs with their vertices as
endpoints. Additionally, edges do not contain any other vertices, every common point of two
edges is either a proper crossing or a common endpoint, and no three edges cross at a single
point. A simple drawing is a topological drawing in which adjacent edges do not cross, and
independent edges cross at most once.

(a) simple (b) star-simple but not simple (c) not star-simple

Figure 1 Examples for topological drawings of K6 and a (nonempty) lens (shaded in (b)).

∗ This research started at the 3rd Workshop within the collaborative DACH project Arrangements and
Drawings, August 19–23, 2019, in Wergenstein (GR), Switzerland, supported by the German Research
Foundation (DFG), the Austrian Science Fund (FWF), and the Swiss National Science Foundation
(SNSF). We thank the participants for stimulating discussions. S.F. is supported by DFG Project
FE 340/12-1. M.H. is supported by SNSF Project 200021E-171681. K.K. is supported by DFG Project
MU 3501/3-1 and within the Research Training Group GRK 2434 Facets of Complexity. I.P. is partially
supported by FWF project I 3340-N35.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

79:2 Crossings in star-simple drawings of Kn with no empty lens

(a) twisting (b) spiraling

Figure 2 Constructions to achieve an unbounded number of crossings.

We study the broader class of star-simple drawings, where adjacent edges do not cross,
but independent edges may cross any number of times; see Figure 1 for illustration. In such
a drawing, for every vertex v the induced substar centered at v is simple, that is, the drawing
restricted to the edges incident to v forms a plane drawing. In the literature (e.g., [1, 2])
these drawings also appear under the name semi-simple, but we prefer star-simple because
the name is more descriptive.

Star-simple drawings can have regions (not necessarily faces) whose boundary consists
of two continuous pieces of (two) edges, we call such a region a lens; see Figure 1b. More
precisely, a lens is a face in the arrangement induced by two edges and it is bounded by a
2-cycle. A lens is empty if it has no vertex in its interior. If empty lenses are allowed, the
number of crossings in star-simple drawings of graphs with at least two edges is unbounded
(twisting), see Figure 2a. We restrict our attention to star-simple drawings with no empty lens.
This restriction is—in general—not sufficient to guarantee a bounded number of crossings
(spiraling), as illustrated in Figure 2b. However, we will show that star-simple drawings of
the complete graph Kn with no empty lens have a bounded number of crossings.

Empty lenses also play a role in the context of the crossing lemma for multigraphs [4].
This is because a group of arbitrarily many parallel edges can be drawn without a single
crossing. Hence, for general multigraphs there is no hope to get a lower bound on the number
of crossings as a function of the number of edges. However, parallel edges create empty
lenses, and disallowing these is enough to make a difference [4].

Kynčl [3, Section 5 Picture hanging without crossings] proposed a construction of two
edges in a graph on n vertices with an exponential number (2n−4) of crossings and no empty
lens; see Figure 3. This configuration can be completed to a star-simple drawing of Kn,

Figure 3 The doubling construction yields an exponential number of crossings.

S. Felsner, M. Hoffmann, K. Knorr, and I. Parada 79:3

(a) 2 edges, 5 crossings. (b) A star-simple completion of (a). (c) The stars of the drawing.

Figure 4 Two edges with 2n−4 + 2n−6 crossings in a star-simple drawing of Kn, for n = 6.

cf. [5]. For n = 6 it is possible to have one more crossing while maintaining the property
that the drawing can be completed to a star-simple drawing of K6; see Figure 4. Repeated
application of the doubling construction of Figure 3 leads to two edges with 2n−4 + 2n−6

crossings in a graph on n vertices. This configuration can be completed to a star-simple
drawing of Kn. We suspect that this is the maximum number of crossings of two edges in a
star-simple drawing of Kn.

2 Crossing patterns

In this section we study the induced drawing D(e, e′) of two independent edges e and e′ in a
star-simple drawing D of the complete graph.

I Lemma 2.1. The four vertices incident to e and e′ belong to the same region of D(e, e′).

Proof. Assuming that the two edges cross at least two times, the drawing D(e, e′) has at
least two regions. Otherwise, the statement is trivial. If the four vertices do not belong to
the same region of D(e, e′), then there is a vertex u of e and a vertex v of e′ which belong
to different regions. Now consider the edge uv in the drawing D of the complete graph.
This edge has ends in different regions of D(e, e′), whence it has a crossing with at least
one of e and e′. This, however, makes a crossing in the star of u or v. This contradicts the
assumption that D is a star-simple drawing. J

(a) deadlocks (b) spiral

e

e′

e

e′

x

u

e

e′

Figure 5 Forbidden patterns.

EuroCG’20

79:4 Crossings in star-simple drawings of Kn with no empty lens

Lemma 2.1 implies that the deadlock configurations as shown in Figure 5(a) do not occur
in star-simple drawings of complete graphs. Formally, a deadlock is a pair e, e′ of edges such
that not all incident vertices lie in the same region of the drawing D(e, e′).

Now suppose that D is a star-simple drawing of a complete graph with no empty lens.
In this case we can argue that e and e′ do not form a spiral as the black edge e and the
red edge e′ in Figure 5(b). Indeed, a spiral has an interior lens L and by assumption this
lens is non-empty, i.e., L contains a vertex x. Let e and e′ be the black and the red edge
in Figure 5(b), respectively, and let u be a vertex of e. The edge xu (the green edge in
the figure) has no crossing with e, hence, it has to follow the spiral. This yields a deadlock
configuration of the edges xu and e′. Note that if in Figure 5(b) instead of drawing the green
edge xu we connect x with an edge f to one of the vertices of the red edge e′ such that f
and the red edge have no crossing, then f and the black edge e form a deadlock.

We use this intuition to formally define a spiral. Two edges e, e′ form a spiral if they
form a lens L such that if we place a vertex x in L and draw a curve γ connecting x to a
vertex u of e so that γ does not cross e, then γ and e′ form a deadlock.

3 Crossings of pairs of edges

In this section we derive an upper bound for the number of crossings of two edges in a
star-simple drawing of Kn with no empty lens. Actually, we show the following.

I Theorem 3.1. Consider a star-simple drawing of Kn with no empty lens. If C(k) is the
maximum number of crossings of a pair of edges that (a) form no deadlock and no spiral and
such that (b) all lenses formed by the two edges can be hit by k points, then C(k) ≤ e · k!.

Proof. Due to Lemma 2.1 we can assume that all four vertices of e and e′ are on the outer face
of the drawing D(e, e′). We think of e′ as being drawn red and horizontally and of e as being
a black meander edge. Let p1, . . . , pk be points hitting all the lenses of the drawing D(e, e′).
Let u be one of the endpoints of e. For each i = 1, . . . , k we draw an edge ei connecting pi

to u such that ei has no crossing with e and, subject to this, the number of crossings with e′
is minimized. Figure 6 shows an example.

e

pi

ei

u

e′

Figure 6 The drawing D(e, e′) and an edge ei connecting pi to u.

S. Felsner, M. Hoffmann, K. Knorr, and I. Parada 79:5

We claim the following three properties:

(P1) The edges ei and e′ form no deadlock and no spiral.
(P2) All the lenses of ei and e′ are hit by the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk.
(P3) Between any two crossings of e and e′ from left to right, i.e., in the order along e′, there

is at least one crossing of e′ with one of the edges ei.

Before proving the properties we show that they imply the statement of the theorem.
From (P1) and (P2) we see that the number Xi of crossings of ei and e′ is upper bounded
by C(k − 1). From (P3) we obtain that C(k) ≤ 1 +

∑
i Xi. Combining these we get

C(k) ≤ k · C(k − 1) + 1 ≤ k! ·
k∑

s=0

1
s! ≤ k! · e. J

For the proof of the three claims we need some notation. Let ξ1, ξ2, . . . , ξN be the crossings
of e and e′ indexed according to the left to right order along the horizontal edge e′. Let gi

and hi be the pieces of e′ and e, respectively, between crossings ξi and ξi+1. The bounded
region enclosed by gi ∪ hi is the bag Bi and gi is the gap of the bag. The minimal lenses
formed by e and e′ are exactly the bags Bi where hi is a crossing free piece of e. From now
on when referring to a lens we always mean such a minimal lens. The following is crucial:

I Observation 3.2. For two bags Bi and Bj the open interiors are either disjoint or one is
contained in the other.

The observation implies that the containment order on the bags is a downwards branching
forest. The minimal elements in the containment order are the lenses. Consider a lens L and
the point pi inside L. Since the vertex u of e is in the outer face of D(e, e′) the edge ei has
to leave each bag which contains L and by definition it has to leave a bag B containing L
through the gap g of B.

We now reformulate and prove the third claim.

(P3’) For each pair ξi, ξi+1 of consecutive crossings on e′ there is a lens L and a point pj ∈ L
such that ej crosses e′ between ξi and ξi+1.

Proof of (P3’). The pair ξi, ξi+1 is associated with the bag Bi. In the containment order of
bags a minimal bag below Bi is a lens, let L be any of the minimal elements below Bi. By
assumption, L contains a point pj . Since L ∈ Bi, we have that also pj ∈ Bi. Thus, it follows
that ej has a crossing with the gap gi, i.e., ej has a crossing with e′ between ξi and ξi+1. J

Proof of (P1). We have to show that ei and e′ form no deadlock and no spiral. The
minimality condition in the definition of ei implies that if L = Bi1 ⊂ Bi2 ⊂ . . . ⊂ Bit

is the
maximal chain of bags with minimal element L then ei is crossing the gaps of these bags
in the given order and has no further crossings with e′. If γ is a curve from L to u which
avoids e then in the ordered sequence of gaps crossed by γ we find a subsequence which is
identical to the ordered sequence of gaps crossed by ei. Since e and e′ form no spiral there is
such a curve γ which forms no deadlock with e′ but then ei forms no deadlock with e′.

Now assume that ei and e′ form a spiral. Let B be the largest bag containing pi. Think
of B as a drawing of ei with a broad pen which may also have some extra branches which
have no correspondence in ei, see Figure 7. The formalization of this picture is that for every
bag β formed by ei with e′ there is a bag B(β) formed by e and e′ with B(β) ⊂ β. Now, if
there is a lens λ formed by ei with e′ such that every ei-avoiding curve to u is a deadlock

EuroCG’20

79:6 Crossings in star-simple drawings of Kn with no empty lens

with e′, then there is a lens L(λ) formed by e and e′ with L(λ) ⊂ λ and every e-avoiding
curve to u is also B-avoiding and hence ei-avoiding. This show that every such curve has a
deadlock with e′, whence e and e′ form a spiral, contradiction. J

e

pi

ei

pj

u
e′

Figure 7 An edge ei(green) forming a spiral with e′. The bag B in gray and the lens L(λ) marked
with the vertex pj(blue).

Proof of (P2). We already know that ei and e′ form no deadlock. Therefore, by Lemma 2.1,
the vertices of ei and e′ belong to the same region of D(ei, e

′). All crossings of ei with e′
correspond to bags of e and e′, therefore the vertices of e and e′ are in the outer face ofD(ei, e

′).
Together this shows that pi is also in the outer face of D(ei, e

′). Since every lens of D(ei, e
′)

contains a lens of D(e, e′), it also contains one of the points hitting all lenses of D(e, e′).
Hence, all lenses of D(ei, e

′) are hit by the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk. J

4 Crossings in complete drawings

Accounting for the four endpoints of the two crossing edges we have k ≤ n−4 in Theorem 3.1.
Therefore, we obtain that the number of crossings of a pair of edges in a star-simple drawing
of Kn without empty lens is upper bounded by e(n − 4)!. This directly implies that the
drawing of Kn has at most n! crossings. We know drawings of Kn in this drawing mode with
an exponential number of crossings. It would be interesting to reduce the huge gap between
upper and lower bound.

References
1 Oswin Aichholzer, Florian Ebenführer, Irene Parada, Alexander Pilz, and Birgit Vogten-

huber. On semi-simple drawings of the complete graph. In Abstracts of the XVII Spanish
Meeting on Computational Geometry (EGC’17), pages 25–28, 2017.

2 Martin Balko, Radoslav Fulek, and Jan Kynčl. Crossing numbers and combinatorial char-
acterization of monotone drawings of Kn. Discrete & Computational Geometry, 53(1):107–
143, 2015. doi:10.1007/s00454-014-9644-z.

3 Jan Kynčl. Simple realizability of complete abstract topological graphs simplified, 2016.
arxiv.org/abs/1608.05867v1.

S. Felsner, M. Hoffmann, K. Knorr, and I. Parada 79:7

4 János Pach and Géza Tóth. A crossing lemma for multigraphs. In Proc. SoCG 2018,
volume 99 of LIPIcs, pages 65:1–65:13, 2018. doi:10.4230/LIPIcs.SoCG.2018.65.

5 Irene Parada. On straight-line and topological drawings of graphs in the plane. PhD thesis,
Graz University of Technology, 2019.

EuroCG’20

Simple Topological Drawings of k-Planar Graphs∗

Chih-Hung Liu1, Meghana M. Reddy†1, and Csaba D. Tóth2,3

1 Department of Computer Science, ETHZ, Zürich, Switzerland
chih-hung.liu@inf.ethz.ch, meghana.mreddy@inf.ethz.ch

2 Department of Mathematics, Cal State Northridge, Los Angeles, CA, USA
csaba.toth@csun.edu

3 Department of Computer Science, Tufts University, Medford, MA, USA

Abstract
Every graph that admits a topological drawing also admits a simple topological drawing. It is

easy to observe that every 1-planar graph admits a 1-plane simple topological drawing. It has been
shown that 2-planar graphs and 3-planar graphs also admit 2-plane and 3-plane simple topological
drawings respectively. However, nothing has been proved for simple topological drawings of k-
planar graphs for k ≥ 4. In fact, it has been shown that there exist 4-planar graphs which do not
admit a 4-plane simple topological drawing, and the idea can be extended to k-planar graphs for
k > 4. We prove that there exists a function f : N→ N such that every k-planar graph admits an
f(k)-plane simple topological drawing for all k ∈ N. This answers a question posed by Schaefer.

1 Introduction

1.1 Problem Statement
A topological drawing of a graph G in the plane is a representation of G in which the vertices
are mapped to distinct points in the plane and edges are mapped to Jordan arcs that do
not pass through (the images of) vertices and no three Jordan arcs pass through the same
point in the plane. A graph is k-planar if it admits a topological drawing in the plane where
every edge is crossed by other edges at most k times, and such a drawing is called a k-plane
drawing. A simple topological drawing of a graph refers to a topological drawing where no two
edges cross more than once and no two adjacent edges cross. We study simple topological
drawings of k-planar graphs.

It is well known that drawings of a graph G that attain the minimum number of crossings
(i.e., the crossing number cr(G) of G) are simple topological drawings. However, a drawing
that minimizes the total number of crossings need not minimize the maximum number of
crossings per edges; and a drawing that minimizes the maximum number of crossings per
edge need not be simple. A k-plane simple topological drawing is a simple topological drawing
where every edge is crossed at most k times. We study the simple topological drawings of
k-planar graphs and prove that there exists a function f : N→ N such that every k-planar
graph admits an f(k)-plane simple topological drawing by designing an algorithm to obtain
the plane simple topological drawing from a k-plane drawing of a k-planar graph.

In a k-plane drawing of a graph, every edge is crossed at most k times. However, adjacent
edges may cross, and a pair of edges may cross multiple times. To obtain a simple topological
drawing, we need to eliminate crossings between adjacent edges and ensure that no two edges
cross more than once, without introducing self-intersections of edges during the process.

∗ This work was initiated during the 17th Gremo Workshop on Open Problems 2019. The authors thank
the organizers of the workshop for inviting us and providing a productive working atmosphere.

† Supported by the Swiss National Science Foundation within the collaborative DACH project Arrange-
ments and Drawings as SNSF Project 200021E-171681.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

80:2 Simple Topological Drawings of k-Planar Graphs

1.2 Related Previous Results
It is easy to see that every 1-planar graph admits a 1-plane simple topological drawing [3].
Pach et al. [2, Lemma 1.1] proved that every k-planar graph for k ≤ 3 admits a k-plane
drawing such that any pair of edges have at most one point in common including endpoints.
However, these results do not extends to k-planar graphs for k > 3. In fact, Schaefer [4,
p. 57] constructed k-planar graphs that do not admit a k-plane simple topological drawing
for k = 4. The construction idea can be extended to all k > 4. The local crossing number of
a graph G, lcr(G), is the minimum integer k such that G admits a drawing where every edge
has at most k crossings. The simple local crossing number, lcr∗(G) minimizes k over simple
topological drawings of G. Schaefer [4, p. 59] asked whether the lcr∗(G) can be bounded by
a function of lcr(G). We answer this question in the affirmative and show that there exists a
function f : N→ N such that lcr∗(G) ≤ f(lcr(G)).

1.3 Basic Definitions
Given a k-plane drawing D of a graph G, we denote by N the planarization of D, i.e., we
introduce a vertex of degree four at every crossing in D. We call this graph a network. Since
every edge in D has at most k crossings, each edge of G corresponds to a path of length at
most k + 1 in N . Our algorithm successively modifies the drawing D, and ultimately returns
a simple topological drawing D of G. We formulate invariants for our algorithm in terms of
the planarization N of the initial drawing. In other words, N remains fixed (in particular, N

will not be the planarization of the modified drawings). Specifically, our algorithm maintains
the following invariants:

(i) every edge in D′ closely follows a path of length at most k + 1 in the network N ,
(ii) every pair of edges in D′ cross only in a small neighborhood of a node of N , and
(iii) any two edges cross at most once in each such neighborhood.

Lenses in a topological drawings. We start with definitions needed to describe the key
operations in our algorithm. In a topological drawing, we define a structure called lens.
Consider two edges, a and b, that cross more than once. Consider two crossings of the edges
a and b, denoted by c1 and c2. Let a12 denote the portion of the edge a between c1 and c2,
and b12 is defined analogously. The arcs a12 and b12 together are called a lens if the arcs
do not intersect except at c1 and c2. Similarly a lens could also be formed by two adjacent
edges cross each other. Let p be the common vertex of two adjacent edges a and b, and let c

be a crossing between a and b. The portions of the edges a and b between p and c form a
lens if the arcs formed by the portions of the edges between p and c do not cross each other.

I Lemma 1.1. If two nonadjacent edges a and b cross more than once, then there exist two
crossings c1 and c2 of the two edges such that a12 and b12 form a lens, where a12 and b12 are
the portions of the edges a and b between c1 and c2.

Proof. If the edges a and b cross exactly twice, the arcs between the two crossings form
a lens. Now, for the edges a and b that cross more than twice, assume there were no two
crossings which form a lens. Then the arcs between any two crossings cross each other.
Consider two crossings c1 and c2 for which the arcs a12 and b12 have the minimum number
of crossings. Let c′ be one of these crossings. Then the portions of the arcs a12 and b12
between c1 and c′ have at least one fewer crossings, contradicting the minimality assumption
in the choice of c1 and c2. J

Liu et al. 80:3

I Lemma 1.2. If two adjacent edges a and b cross each other once, then there exist two
crossings c1 and c2 of the two edges such that the arcs a12 and b12 form a lens, where one of
the crossings from c1 and c2 can be the common endpoint of the two edges, and a12 and b12
are the portions of the edges a and b between c1 and c2.

Proof. If the edges a and b crossed exactly once, the arcs between the common endpoint
and the point of intersection form a lens. If the edges cross more than once, the proof follows
from Lemma 1.1. J

Figure 1 Lenses that can be formed by two edges crossing more than once.

Figure 2 Lenses that can be formed by two adjacent edges crossing each other.

Elimination operation. We further define two operations for our algorithm, each of which
modifies one edge in a (current) drawing of G. An elimination operation is defined as the
redrawing of an edge such that a lens is eliminated.

Let D′ be a drawing of G satisfying invariants (i)–(iii). Let a = (u, v) and b = (x, w) be
two edges that cross twice, at c1 and c2, and let a12 and b12 be the portions of the edges a

and b between c1 and c2. Note that other edges may cross the arcs a121 and b12. By (ii) and
(iii), the intersection points c1 and c2 lie in some small neighborhoods of two distinct nodes
of N . By (i), the arcs a12 and b12 each closely follow some path in N .

We compare a12 and b12 using two measures: First, the length of a12 and b12, respectively,
is the (graph-theoretic) length of the path in the network N that they follow. Second, we
count the number of crossings of a12 (resp., b12) with other edges in the current drawing D′.
We define a12 to be the efficient arc (and b12 the inefficient arc) if a12 has smaller length
that b12, or if the two arcs have the same length but a12 has fewer crossings in D′ and b12.
If the two arcs have the same length and the same number of crossings, either of the arcs
can be considered as the efficient arc. The elimination operation reroutes the inefficient arc
to follow the efficient arc to eliminate the lens.

Without loss of generality, assume a12 is the efficient arc, b = xw, and the points
(x, c1, c2, w) appear in this order along the drawing of b in D′. To eliminate the lens, we
redraw b such that it follows its current arc from x to c1, and then, without crossing a at c1,
it closely follows the arc a12 until c2, and further follows its current arc from c2 to w. In
this process, the crossing c1 is eliminated. Figure 3 illustrates this operation where both the
crossings are eliminated. Figure 4 illustrates the operation where only one of the crossing is
eliminated.

The elimination operation for a lens formed by adjacent edges between the common
endpoint and the first crossing is defined similarly. Let a = (u, v) and b = (u, w) be two
adjacent edges that cross at c and the arcs a12 and b12 form a lens. Let a12 be the efficient

EuroCG’20

80:4 Simple Topological Drawings of k-Planar Graphs

(a) Lens formed by two edges
crossing more than once.

(b) Inefficient curve rerouted
and depicted in blue.

Figure 3 Rerouting of edge and eliminating both the crossings.

(a) Lens formed by two edges
crossing more than once.

(b) Inefficient curve rerouted
and depicted in blue.

Figure 4 Rerouting of edge and eliminating crossing c1.

arc. We redraw the edge b such that it starts at u and follows arc a12 until c and then follows
its current arc from c until w by avoiding the crossing c. The redrawing of edge b in this
method eliminates the crossing c. Figures 5 and 6 illustrate this operation. If the efficient
arc a12 crosses the arcs b \ b122, then we have introduced self-crossing in the modified edge b.
We eliminate self-crossings by removing any loops from the modified arc of b. Note that the
elimination operation does not increase the length of any arc or any edge.

(a) Lens formed by two adjacent
edges.

(b) Inefficient curve rerouted
and depicted in blue.

Figure 5 Rerouting of edge to eliminate the lens.

As a result, at least one of the crossings c1 and c2 (or crossing c in the case of adjacent
edges) is eliminated. However, the elimination of lens may create a new lens if one of the
edges crossing the efficient arc crossed the edge corresponding to the inefficient arc as well.
This is demonstrated in Figure 7.

In addition, the redrawing of the arcs is done in such a way that the modified arc closely
follows an existing path of the network N since the inefficient arc follows closely to the
efficient arc. Furthermore, the elimination process can introduce new crossings between
the modified inefficient arc and edges crossing the efficient arc. Assume an edge e′ crossed
the efficient arc at c′. The elimination operation introduces a crossing between e′ and the
inefficient arc, however, this crossing is very close to the crossing c′ and hence is in a small
neighborhood of a node of N . Since the new crossing is in a small neighborhood of a node of
N , the lengths of the edge e′ and the inefficient arc do not increase.

Liu et al. 80:5

(a) Lens formed by two adjacent
edges.

(b) Inefficient curve rerouted
and depicted in blue.

Figure 6 Rerouting of edge to eliminate the lens.

Figure 7 New lens created between red and blue edges after elimination of existing lens.

2 The Algorithm

Given a k-plane topological drawing D of a k-planar graph G, we describe an algorithm
using the elimination operations to produce a simple topological drawing D′ of graph G from
D. Initially, let D′ := D. While there exists a lens in the drawing D′, consider one such lens
and eliminate it by modifying the drawing D′. Return the resulting drawing D′.

I Theorem 2.1. The algorithm terminates and transforms a k-plane drawing of a k-planar
graph into a simple topological drawing.

Proof. Note that the redrawing of the arcs in the elimination operation was defined with
respect to two measures: the length of the arc and number of crossings of the arcs. Let the
sum of lengths of all edges in the drawing be defined as the total length of the drawing, where
the length of an edge is the length of the path in N that the edge closely follows. After each
elimination operation, since we reroute the inefficient arc towards the efficient arc, the total
length of the drawing monotonically decreases; and if the total length remains the same,
then the total number of crossings strictly decreases. Thus, the algorithm terminates, the
drawing D′ returned by the algorithm does not contain lenses. By Lemmata 1.1 and 1.2, any
two edges in the resulting drawing D′ cross at most once and adjacent edges do not cross.
Additionally, the operations do not introduce any self-crossings. Consequently, the algorithm
returns a simple topological drawing. J

I Theorem 2.2. There exists a function f(k) such that every k-planar graph admits an
f(k)-plane simple topological drawing, and the f(k)-plane simple topological drawing can be
obtained from a k-plane drawing of the graph using the above algorithm.

Proof. Consider the drawing D′ returned by our algorithm, and a node v of network N .
We analyse the subgraph Gv of G formed by the edges of G that pass through a small
neighborhood of v. Let nv and mv be the number of vertices and edges of Gv, respectively.
Since N is created from a k-plane drawing, and every node corresponding to a crossing
has degree 4, there are at most 4 · 3k−1 vertices of G at distance at most k from v. Hence,
nv ≤ 4 · 3k−1.

EuroCG’20

80:6 Simple Topological Drawings of k-Planar Graphs

I Lemma 2.3 (Crossing Lemma [1, Theorem 6]). Let G be a graph with n vertices and m

edges and D be a topological drawing of G. Let cr(D) be defined as the total number of
crossings in D, and cr(G) be defined as the minimum of cr(D) over all drawings D of G. If
m ≥ 6.95n, then cr(G) ≥ 1

29
m3

n2 .

We apply Lemma 2.3 to the graph Gv, and obtain two cases:

Case 1: mv < 6.95n.
Case 2: mv ≥ 6.95n, and thus cr(Gv) ≥ 1

29
m3

v

n2
v
. Since Gv has mv edges and each edge

has at most k crossings in the drawing D′, we obtain 1
29

m3
v

n2
v
≤ mvk

2 , which implies

mv ≤
√

29k
2 nv.

Combining the two cases to obtain an upper bound on mv, we get mv ≤ max{6.95nv,
√

29k
2 nv}.

Further, for k ≥ 4, mv ≤
√

29k
2 nv.

Since mv edges pass through a small neighborhood of v, any edge passing through that
neighborhood crosses at most mv − 1 edges. Additionally, every edge in G passes through
(the neighborhood of) at most k nodes of N . An edge passing through nodes v1, . . . vk, crosses
at most

∑k
i=1(mvi

− 1) edges in D′. Combining the upper bounds on mv and nv, we obtain
that every edge in the output drawing D′ is crossed at most

√
29k

2 ·4k ·3k−1 = 2
3
√

58 ·k3/2 ·3k

times for k ≥ 4. J

3 Conclusion

We have proved that every k-planar graph admits a simple topological drawing where every
edge is crossed at most f(k) = 2

3
√

58 · k3/2 · 3k times. Consequently, lcr∗ ≤ O(lcr3/2 · 3lcr).
However, we hope that the bound on f(k) can be improved to a polynomial in k by a more
careful analysis for the number of crossings per edge created by our algorithm.

References
1 Eyal Ackerman. On topological graphs with at most four crossings per edge. Computational

Geometry, 85:101574, 2019.
2 János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth. Improving the crossing lemma

by finding more crossings in sparse graphs. Discrete Comput. Geom., 36(4):527–552, 2006.
doi:10.1007/s00454-006-1264-9.

3 Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathema-
tischen Seminar der Universität Hamburg, 29:107–117, 1965. doi:10.1007/BF02996313.

4 Marcus Schaefer. The graph crossing number and its variants: A survey. The Electronic
Journal of Combinatorics, 20, 2013. Version 4 (February 14, 2020). doi:10.37236/2713.

Enumerating tilings of triply-periodic minimal
surfaces with rotational symmetries
Benedikt Kolbe1 and Myfanwy Evans2

1 Universitè de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
benedikt.kolbe@inria.fr

2 Department of Mathematics, Technical University of Berlin, Berlin

Abstract
We present a technique for the enumeration of all isotopically distinct ways of tiling, with disks, a
hyperbolic surface of finite genus, possibly nonorientable and with punctures and boundary. This
provides a generalization of the enumeration of Delaney-Dress combinatorial tiling theory on the
basis of isotopic tiling theory. To accomplish this, we derive representations of the mapping class
group of the orbifold associated to the symmetry group of the tiling under consideration as a set of
algebraic operations on certain generators of the symmetry group. We derive explicit descriptions
of certain subgroups of mapping class groups and of tilings as embedded graphs on orbifolds. We
further use this explicit description to present an algorithm that we illustrate by producing an
array of examples of isotopically distinct tilings of the hyperbolic plane with symmetries generated
by rotations that are commensurate with the prominent Primitive, Diamond and Gyroid triply-
periodic minimal surfaces, outlining how the approach yields an unambiguous enumeration. We
also present the corresponding 3-periodic graphs on these surfaces.

1 Introduction

Tesselations from repeating motifs have a long and involved history in mathematics, en-
gineering, art and sciences. Most of the literature has focussed on patterns in Euclidean
spaces. However, the role of hyperbolic geometry in Euclidean tilings and more generally
for the natural sciences is increasingly recognized. More recently, it has been recognized
that assemblies of atoms or molecules in crystalline arrangements that are energetically
favourable involve (intrinsic) curvature [15]. Many real Zeolite frameworks and metal-organic
frameworks were found to reticulate triply-periodic minimal surfaces (TPMS) [13, 14, 15, 4].
TPMS are minimal surfaces, which locally minimize the surface area relative to a boundary
curve of a simply connected neighbourhood around any point, which are furthermore invariant
under 3 independent translations. These are covered by the hyperbolic plane H2 [25] in such
a way that the symmetries of the surface correspond to hyperbolic symmetries [19].

The above observations and ideas have led to a novel investigation of 3-dimensional
Euclidean networks, where TPMS are used as a convenient route to the enumeration of
crystallographic nets and polyhedra in R3 [32, 26, 31, 16, 30, 3]. The aim of the EPINET
project [1] is to produce and analyse chemical structures by investigating how graphs
embed on TPMS. Most hyperbolic in-surface symmetries of prominent TPMS manifest as
ambient Euclidean symmetries of R3 [29], so that symmetric tilings of TPMS give rise to
symmetric graph embeddings in R3. Not only does knowing the symmetry of a structure
in R3 facilitate further investigations into structural properties, symmetric structures are
prominent because they are candidates for structures found in nature as well as for synthesis,
and because they favor self-essembly. Structures such as hyperbolic tilings with disks with
kaleidoscopic symmetries generated by reflections [20, 30], some simple hyperbolic tilings with
slightly more complicated symmetries [28, 27], simple unbounded tiles with a network-like
structure [17, 12, 19, 21, 18, 8, 7], and unbounded tiles with totally geodesic boundaries [9]
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

81:2 Enumerating isotopy classes of tilings of triply-periodic minimal surfaces

(a) Tesselation of H2 by do-
decagons corresponding to the
genus 3 Riemann surface that
gives rise to the D-surface.

(b) The symmetries of the D-
surface within a unit cell in H2.
Each line represents a mirror
symmetry.

(c) A section of the D-surface
in R3, together with its smallest
asymmetric triangle patches.

(d) A tiling of the hyperbolic
plane with symmetry group
22222, represented by the green
and red edges, with a tiling
by triangles with ?246 symme-
try shown in blue in the back-
ground.

(e) The decoration from (d) and
a fundamental domain shown
as a decoration of the Diamond
triply-periodic minimal surface.
The triangles illustrate the sym-
metries of the surface.

(f) The resulting net in R3 when
the tile boundaries are taken
as trajectories in Euclidean 3-
space.

Figure 1 (a)-(c) shows symmetries of the D-surface in R3 and its uniformization in H2. (d)-(f)
shows the progression from a tiling of the hyperbolic plane to a 3-dimensional net via a decoration
of the Diamond triply-periodic minimal surface.

have been explored, and resulting structures have been used in analysis in real physical
systems [22].

The situation can be summarized as in Figure 1, which shows a hyperbolic tiling that
respects the translational symmetries, indicated in (a) and (b), of the covering map of the
hyperbolic plane onto a prominent TPMS, the diamond D surface, partly shown in (c).
When the tile boundaries are considered as trajectories in 3-dimensional Euclidean space
rather than curves on the surface, we obtain a symmetric net in R3. In (b) and (c), the
symmetries of the D surface are illustrated by the tiling by triangles, with each triangle
boundary corresponding to a reflection in the surface. This symmetry group can be denoted
by ?246, using Conway’s notation[5] for 2D orbifold symmetry groups.

1.1 Summary of the problem and results
We summarize the problem as detailed above. The EPINET project produces and analyses
chemical structures by investigating how graphs embed symmetrically on triply periodic
minimal surfaces (TPMS). The aim of this paper is to introduce techniques to systematically

B. Kolbe and M. Evans 81:3

enumerate symmetric embeddings of graphs on the gyroid, primitive, and diamond TPMSs,
the most prominent and well understood examples of TPMS in nature. We will concentrate
on symmetry groups generated by rotations and graphs which admit a 2-cell embedding into
the surface in its smallest translational unit in R3.

Up until now, this problem has been investigated only for certain classes of simple graphs
and attempts to further EPINET have involved ad-hoc ideas with limited applications. To
organize the ensuing structures, the problem of a complexity ordering in the enumeration
takes up an important role in our investigation and we base our ideas on an intuitive ordering.
We seek a systematic approach to investigating graph embeddings on surfaces with a given
symmetry group, in an attempt to develop a general framework to tackle similar problems in
the future. To achieve these goals, we investigate tilings in H2 with a given symmetry group
will be the focus of our interest.

Our results show that, in theory, the enumeration works. However, some of the algorithms
used, for example those of computational group theory cannot easily handle the group
presentations we work with.

2 Preliminaries and our approach

I Definition 2.1. A tiling T of H2 is a locally finite collection of closed disks in H2 whose
interiors are pairwise disjoint. Let T be a tiling of H2 and let Γ be a discrete group of
isometries. If T = γT := {γT | T ∈ T } for all γ ∈ Γ then we call the pair (T ,Γ) an
equivariant tiling. Two tiles T1, T2 ∈ T are equivalent or symmetry-related if there exists
γ ∈ Γ such that γT1 = T2. The orbit of a tile is the subset of T given by images of T :
Γ.T = {γT for γ ∈ Γ}. Given a particular tile T ∈ T , the stabilizer subgroup ΓT is the
subgroup of Γ that fixes T , i.e. ΓT = {γ ∈ Γ | γT = T}. A tile is called fundamental if ΓT is
trivial and we call the whole tiling fundamental if this is true for all tiles. An equivariant
tiling is called tile-k-transitive, when k is the number of equivalence classes (i.e. distinct
orbits) of tile under the action of Γ. Two equivariant tilings {(Ti,Γi)}2

i=1 are equivariantly
equivalent if there exists a homeomorphism ϕ such that ϕ(T1) = T2 and ϕΓ1ϕ

−1 = Γ2.

To simplify the discussion and avoid technical details, we shall assume in this paper that
the edge orbits of a tiling are coloured and therefore distinguishable, in the sense that any
nontrivial graph isomorphism of the tiling’s 1-skeleton changes it. There is a complete
invariant for equivariant equivalence classes of tilings, the D-symbol, a weighted graph,
whose isomorphism class uniquely determines an equivariant equivalence class of tilings with
closed disks in H2 [11]. There is likewise an algorithm that enumerates all (of the infinitely)
possible equivariant equivalence classes of tilings starting from fundamental tile-1-transitive
tilings. For a given TPMS, there is a symmetry group S that contains the largest group of
translational symmetries T of the TPMS as a subgroup, i.e. T ⊂ S. We call a subgroup H
of S satisfying T ⊂ H ⊂ S commensurate with the symmetries of the TPMS.

I Definition 2.2. A (hyperbolic) orbifold, for our purposes, is the space H2/Γ, where Γ is a
discrete group of isometries of H2. The orbifold structure is more than the quotient space
H2/Γ with quotient topology in that it keeps track of the data associated to the quotient
map π : H2 → H2/Γ, so that one can retains the information of how "copies" of H2/Γ fit
together to form H2. We denote orbifolds by their Conway orbifold symbol [5], a symbol
that keeps track of the generators of the symmetry group Γ.

Two main observations lead us to a novel approach to tackle the problem.

EuroCG’20

81:4 Enumerating isotopy classes of tilings of triply-periodic minimal surfaces

(a) A transitive, fundamental
equivariant tiling of H2 with

symmetry group 2224.

(b) Another transitive,
fundamental equivariant tiling
of H2 with symmetry group

2224.

(c) A different placement of
generators, producing a sheared
version of the fundamental

tiling.

Figure 2 Fundamental tilings with symmetry group 2224.

1. For a given commensurate symmetry group H of a TPMS, two equivariant tilings are
equivalent iff they are related by a homeomorphism of H2 that induces an automorphism
of H.

2. Given special sets of geometric generators forH, it is possible to describe graph embeddings
in H2 that give rise to equivariant tilings with symmetry group H as combinatorial
descriptions in terms of the generators, see Figure 2. The set of geometric generators we
use directly corresponds to a set as given by the orbifold symbol of the symmetry group.

In Figure 2a, consider the rotations corresponding to the generators r1, ..., r4, with centers
c1, ..., c4 ∈ H2, marked by 1 to 4. It is straightforward to see that the points with rotational
symmetry on the polygon’s boundary correspond clockwise, starting at c1, to the points
c1, c2, c3, c4, r4(c3), r1(c2) and we find similar expressions for other stellate orbifolds, i.e. those
with only rotations for generators.

Given any generators r1, ..., r4 for the discrete group of isometries 2224, this description
of edges defines a fundamental tiling, in this case with geodesic edges, regardless of the
generators placement in H2. For example, for the fundamental tiling of Figure 2b, the edges
are given by hyperbolic lines connecting the points marked 1 to 6 in cyclic order, which
correspond to the points c1, c2, r2(c1), r−1

3 (c4), c3, c4, respectively. Figure 2c illustrates that
this relation for the edges still holds in a sheared version of the fundamental tiling with
symmetry group. Here, the sheared fundamental domain exhibits less symmetries of the
other two tilings. Note that the symmetry group of all tilings in Figure 2 is identical, namely
2224.

It turns out that the generators of the symmetry group H that give rise to isotopically
distinct tilings, in the sense that there is no deformation of one tiling that leads to the other
while preserving the symmetries of H at every step, are in one-to-one correspondence with
special automorphisms of H. These, on the other hand, are in one-to-one correspondence
with the orbifold mapping class group MCG. For our purposes we can briefly define the MCG
as follows. Consider the set of homeomorphisms {ϕ} of H2 that satisfy ϕ−1Hϕ = H, endow
this set with the compact-open topology, and identify those that can be connected through
a path of such homeomorphisms. It turns out that the MCG of an orbifold is exactly in
one-to-one correspondence to the automorphisms that lead to isotopically distinct tilings.
For stellate orbifolds, this is proven in [23]. For more general orbifolds, the statement can
also be made precise and generalized, but this lies outside the scope of the this paper.

All in all, by the above, we transfer a problem in graph enumeration to the problem of

B. Kolbe and M. Evans 81:5

S2 S1. . .Sn

(a) Curves representing group elements
and the half-twist, indicated in red.

S1 S2. . .Sn

(b) The resulting curves after twisting.

Figure 3 Half-twists

enumerating elements of the MCG. An enumeration of tilings with a given symmetry group
follows the following steps. First, we find a commensurate symmetry group of a TPMS of
interest. Then, we use the complexity ordering of D-symbols [6] to construct a representative
of each equivariant tiling class. Subsequently, using a presentation of the MCG and an action
on the generators of the symmetry group, we obtain a list of generators that give rise to
an enumeration of distinct isotopy classes of these tilings with the same symmetry group.
Using the Weierstrass parametrization for minimal surface along with Schwarz-Christoffel
maps to deform hyperbolic polygonal domains into spherical ones one can, with analytic
continuation, construct a direct map from H2 to the TPMS of interest. We briefly explain
the MCG approach in the next sections.

3 The mapping class group and its action on sets of generators

To investigate the action of mapping class group elements on sets of generators, we use
the following idea. Similarly to the classical setting for surfaces, it is possible to interpret
group elements of symmetry groups as special curves in the underlying topological space of
the orbifold. Given a representative homeomorphism of an element of the MCG, we apply
it to the curves representing the generators of the symmetry group and read off the new
curves, which in turn designate new group elements. We focus on the action of well-known
generators for the MCG with geometric interpretations.

We consider an example. Figure 3 shows the derivation of the representation of a half-twist
around two marked points, corresponding to two rotational center for rotations of the same
order, in the orbifold’s underlying topological space, with Figure 3b giving the result of the
twist indicated in Figure 3a. In formulas, Figure 3 translates to the half twists around S1
and S2 taking the form

{
S1 7→ S1S2S

−1
1 ,

S2 7→ S1.
(1)

It is straightforward to check that the transformation (1) leaves the global group relation
S1S2 · · ·Sn invariant.

One can draw similar pictures for more complicated symmetry groups, their MCGs
and their generators. Using presentations of the mixed braid group [24] and exploiting the
relationship between braid groups and MCGs [2, 10], one can derive a (lengthy) presentation
of MCGs for stellate orbifolds. Using GAP(Groups, Algorithms, Programming) and the
package KBMag, one can use this presentation to enumerate elements of the MCG, which
together with the action on generators of the symmetry group and the description of the
tilings in terms of these generators yields an enumeration of isotopy classes of (coloured)
tilings of H2 with the given symmetry group.

EuroCG’20

81:6 Enumerating isotopy classes of tilings of triply-periodic minimal surfaces

4 Conclusion and open problems

By using MCGs of orbifolds, we were able to significantly generalize known results on the
enumeration of hyperbolic tilings that fit onto hyperbolic surfaces. While we only showed
how to proceed in case the orbifold is stellate, our methods remain valid in much more
general settings. This work provides the basis for a major extension of the EPINET project
and associated databases. The methods of this paper open up the possibility for automated
searches for 3-periodic graphs in R3 with given topological properties that embed on TPMS.

Main difficulties in generalizing our approach lie within the fact that (semi-)algorithms
like KBMag are not guaranteed to find an enumeration of MCG elements, and they are very
sensitive to parameters. Furthermore, for general TPMS, for our methods to work, one first
has to investigate commensurate symmetry groups, find a parametrization of the TPMS and
lifts of in-surface symmetries and find the description of edges in terms of generators.

Acknowledgements. We would like to thank Stephen Hyde, Vanessa Robins, and Olaf
Delgado-Friedrichs from the Australian National University for hosting the first author on a
research stay, where some of this work was done.

References
1 Epinet. Accessed: 08-01-2020. URL: http://epinet.anu.edu.au.
2 Joan S. Birman. Mapping class groups and their relationship to braid groups. Communica-

tions on Pure and Applied Mathematics, 22(2):213–238, 1969. URL: http://dx.doi.org/
10.1002/cpa.3160220206, doi:10.1002/cpa.3160220206.

3 Toen Castle, Myfanwy E. Evans, Stephen T. Hyde, Stuart Ramsden, and Vanessa Robins.
Trading spaces: building three-dimensional nets from two-dimensional tilings. Interface
Focus, 2(January):555–66, 2012. doi:10.1098/rsfs.2011.0115.

4 B. Chen, M. Eddaoudi, S.T. Hyde, M. O’Keeffe, and O. M. Yaghi. Interwoven metal-organic
framework on a periodic minimal surface with extra-large pores. Science, 291:1021 – 994,
2001.

5 John H. Conway and Daniel H. Huson. The orbifold notation for two-dimensional groups.
Structural Chemistry, 13(3-4):247–257, 2002. doi:10.1023/A:1015851621002.

6 Olaf Delgado-Friedrichs. Data structures and algorithms for tilings I. Theoretical Computer
Science, 303(2-3):431–445, 2003. doi:10.1016/S0304-3975(02)00500-5.

7 Myfanwy E. Evans and Stephen T. Hyde. Periodic entanglement III: tangled degree-3 finite
and layer net intergrowths from rare forests. Acta Crystallographica Section A, 71(6):599–
611, Nov 2015. doi:10.1107/S2053273315014710.

8 Myfanwy E. Evans, Vanessa Robins, and Stephen T. Hyde. Periodic entanglement i:
networks from hyperbolic reticulations. Acta Crystallographica Section A, 69(3):241–
261, 2013. URL: http://dx.doi.org/10.1107/S0108767313001670, doi:10.1107/
S0108767313001670.

9 Myfanwy E. Evans, Vanessa Robins, and Stephen T. Hyde. Periodic entanglement ii:
weavings from hyperbolic line patterns. Acta Crystallographica Section A, 69(3):262–
275, 2013. URL: http://dx.doi.org/10.1107/S0108767313001682, doi:10.1107/
S0108767313001682.

10 Benson Farb and Dan Margalit. A Primer on Mapping Class Groups (PMS-49). Princeton
University Press, 2012. URL: http://www.jstor.org/stable/j.ctt7rkjw.

11 Daniel H. Huson. The generation and classification of tile-k-transitive tilings of the eu-
clidean plane, the sphere and the hyperbolic plane. Geometriae Dedicata, 47(3):269–296,
Sep 1993. doi:10.1007/BF01263661.

B. Kolbe and M. Evans 81:7

12 S. Hyde and S. Ramsden. Chemical frameworks and hyperbolic tilings. In P. Hansen,
P. Fowler, and M. Zheng, editors, Discrete Mathematical Chemistry, pages 203–224. Amer-
ican Mathematical Society, 2000. doi:10.1090/dimacs/051/15.

13 S. T. Hyde. Hyperbolic surfaces in the solid-state and the structure of ZSM–5 zeolites.
Acta Chem Scand, 45:860 – 863, 1991.

14 S. T. Hyde. Crystalline frameworks as hyperbolic films. In J.N. Boland and J. D. FitzGer-
ald, editors, Defects and processes in the solid state: Geoscience applications. Elsevier,
Amsterdam, 1993.

15 S. T. Hyde and S. Andersson. A systematic net description of saddle polyhedra and periodic
minimal surfaces. Z Kristallogr, 168:221 – 254, 1984.

16 S. T. Hyde, O. Delgado Friedrichs, S. J. Ramsden, and V. Robins. Towards enumeration
of crystalline frameworks: the 2D hyperbolic approach. Solid State Sci, 8:740 – 752, 2006.

17 S. T. Hyde and C. Oguey. From 2D hyperbolic forests to 3D Euclidean entangled thickets.
European Physical Journal B, 16(4):613–630, 2000. doi:10.1007/PL00011063.

18 S. T. Hyde and S. Ramsden. Polycontinuous morphologies and interwoven helical networks.
EPL (Europhysics Letters), 50(2):135, 2000. URL: http://stacks.iop.org/0295-5075/
50/i=2/a=135.

19 S. T. Hyde, S. Ramsden, T. Di Matteo, and J. J. Longdell. Ab-initio construction of
some crystalline 3D Euclidean networks. Solid State Sciences, 5(1):35–45, 2003. doi:
10.1016/S1293-2558(02)00079-1.

20 S. T. Hyde and S. J. Ramsden. Some novel three-dimensional euclidean crystalline networks
derived from two-dimensional hyperbolic tilings. Eur Phys J B, 31:273 – 284, 2003.

21 Stephen T. Hyde, Ann Kristin Larsson, Tiziana Di Matteo, Stuart Ramsden, and Vanessa
Robins. Meditation on an Engraving of Fricke and Klein (The Modular Group and Geo-
metrical Chemistry). In Australian Journal of Chemistry, 2003. doi:10.1071/CH03191.

22 Jacob J K Kirkensgaard, Myfanwy E Evans, Liliana de Campo, and Stephen T Hyde.
Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale net-
works. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 111(4):1271–6, 2014. URL: http://www.pnas.org/cgi/content/long/111/4/1271,
doi:10.1073/pnas.1316348111.

23 C. Maclachlan and W. J. Harvey. On Mapping-Class Groups and Teichmuller Spaces. Pro-
ceedings of the London Mathematical Society, s3-30(4):496–512, 1975. URL: http://plms.
oxfordjournals.org/cgi/doi/10.1112/plms/s3-30.4.496, doi:10.1112/plms/s3-30.
4.496.

24 Sandro Manfredini. Some Subgroups of Artin’s Braid Group. Topology and its Applications,
78:123–142, 1997.

25 William H. Meeks III. The Theory of Triply Periodic Minimal Surfaces. PhD thesis,
University of California, Berkeley, 1975.

26 Reinhard Nesper and Stefano Leoni. On tilings and patterns on hyperbolic surfaces and
their relation to structural chemistry. ChemPhysChem, 2(7):413–422, 2001. doi:10.1002/
1439-7641(20010716)2:7<413::AID-CPHC413>3.0.CO;2-V.

27 Martin Cramer Pedersen, Olaf Delgado-friedrichs, and Stephen T Hyde. Surface embed-
dings of the Klein and the Mobius – Kantor graphs. Acta Crystallographica Section A,
74:223–232, 2018. doi:10.1107/S2053273318002036.

28 Martin Cramer Pedersen and Stephen T. Hyde. Polyhedra and packings from hyperbolic
honeycombs. Proceedings of the National Academy of Sciences, 2018. URL: http://
www.pnas.org/content/early/2018/06/19/1720307115, arXiv:http://www.pnas.org/
content/early/2018/06/19/1720307115.full.pdf, doi:10.1073/pnas.1720307115.

EuroCG’20

81:8 Enumerating isotopy classes of tilings of triply-periodic minimal surfaces

29 Joaquín Pérez and Antonio Ros. Properly embedded minimal surfaces with finite total
curvature, pages 15–66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. doi:10.
1007/978-3-540-45609-4_2.

30 S. J. Ramsden, V. Robins, and S. T. Hyde. Three-dimensional Euclidean nets from two-
dimensional hyperbolic tilings: kaleidoscopic examples. Acta Crystallographica Section A,
65(2):81–108, Mar 2009. doi:10.1107/S0108767308040592.

31 V. Robins, S. J. Ramsden, and S. T. Hyde. A note on the two symmetry-preserving
covering maps of the gyroid minimal surface. European Physical Journal B, 48(1):107–111,
2005. doi:10.1140/epjb/e2005-00377-x.

32 J. -F Sadoc and J. Charvolin. Infinite periodic minimal surfaces and their crystallography
in the hyperbolic plane. Acta Crystallographica Section A, 45(1):10–20, 1989. doi:10.
1107/S0108767388008438.

Computing the cut distance of two curves∗

Maike Buchin1, Leonie Ryvkin2, and Jérôme Urhausen3

1 Faculty of Mathematics, Ruhr University Bochum
maike.buchin@rub.de

2 Faculty of Mathematics, Ruhr University Bochum
leonie.ryvkin@rub.de

3 Department of Information and Computing Sciences, Utrecht University
J.E.Urhausen@uu.nl

Abstract
The recently introduced k-Fréchet distance extends the well-known Fréchet distance to objects
of rearranged pieces. We focus on a variant of this, namely the cut distance, where the input
curves are cut into subcurves, which are then matched regarding their similarity with respect to
the weak Fréchet distance. It is NP-hard to decide the cut distance of two curves, however, we
hereby present a polynomial-time algorithm in case the curves are only cut into two subcurves.

1 Introduction

Comparing geometric shapes is a topic of great interest as it comes up in many applica-
tions [4]. Two measures that have proven useful in many applications are the Hausdorff and
the Fréchet distance. While the Hausdorff distance can be computed more efficiently, the
Fréchet distance gives more information by taking into account how the curves are traversed.

The k-Fréchet distance bridges between Hausdorff and (weak) Fréchet distance. It comes
in two variants: the cut and the cover variant. Here we consider the cut distance, which
allows to cut a curve into a number of subcurves where the subcurves resemble each other
in terms of the (weak) Fréchet distance. Thus it allows to find similarities between objects
of rearranged pieces such as chemical structures or handwritten characters.

Characterizing these distance measures in the free space (defined below) shows that the
k-Fréchet distance bridges between the (weak) Fréchet distance and Hausdorff distance (see
below for details): the weak Fréchet distance can be characterized by one component in the
free space projecting surjectively onto both parameter spaces, whereas the Hausdorff distance
can be characterized by the free space projecting surjectively onto both parameters. For the
cut distance, we need to find a subdivision of the free space in a (possibly non-uniform) grid
with k × k cells such that we can choose exactly one cell per row and column that contains
a component that surjectively projects onto the boundaries of this cell. The cells may but
need not share a common corner.

Related work. Efficient algorithms for computing the Fréchet distance and the weak
Fréchet distance were presented by Alt and Godau in 1995. They first introduced the
concept of the free space diagram, which is key to computing this distance measure and its
variants [3]. Following their work, numerous variants and extensions have been considered.
Here we mention only those most related to our work. Alt, Knauer and Wenk [5] compared
Hausdorff to Fréchet distance and showed that for convex closed curves Hausdorff distance
equals Fréchet distance. For curves in one dimension Buchin et al. [6] proved equality of
Hausdorff and weak Fréchet distance using the well-known Mountain climbing theorem [8].

∗ Jérôme Urhausen is supported by the Netherlands Organisation for Scientific Research under project
612.001.651

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

82:2 Computing the cut distance of two curves

The k-Fréchet distance was first studied by Buchin and Ryvkin [7]. They showed that
deciding the cut distance is NP-hard, and optimizing is even APX-hard. Later Akitaya et
al. [2, 1] considered a second variant of the k-Fréchet distance, called cover distance. For
this, the input curves are also divided into subcurves, which are to resemble each other in
terms of the weak Fréchet distance. But in contrast to the cut distance, those subcurves are
allowed to overlap. Deciding the cover distance is also NP-hard, but it can be approximated
efficiently [1]. Algorithmically the cut distance is even more challenging than the cover
distance: whereas the latter “only” asks for k components in free space that completely
project onto both parameter spaces, the former additionally requires this without overlap.

Overview. First, in Section 2, we recall some necessary definitions and formally define
the cut distance. In Section 3 we present a polynomial-time algorithm for the cut distance
for k = 2, i.e., cutting both input curves into two pieces.

2 Definitions

The Fréchet distance [3], a well-known measure for curves, is defined as follows: For curves
P,Q : [0, 1]→ R2, the Fréchet distance is given by

δF(P,Q) = inf
σ,τ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖,

where the reparametrisations σ, τ : [0, 1] → [0, 1] range over all non-decreasing surjections.
A variant is the weak Fréchet distance δwF(P,Q), where both curves are re- parameterised
by σ and τ , respectively, which range over all continuous surjections. All computation needs
discrete input data, so we assume that curves are polygonal chains in the following.

A well-known characterisation, which is key to efficient algorithms for computing the
(weak) Fréchet distance [3], uses the free space diagram. First we define the free space Fε:

Fε(P,Q) = {(t1, t2) ∈ [0, 1]2 : ‖P (t1)−Q(t2)‖ 6 ε}.

The free space diagram puts this information into an (n × m)-grid, where n,m are the
numbers of segments in P and Q, respectively. Bottom and left boundary of the diagram
correspond to the parameter spaces of the curves P and Q.

The Fréchet distance of two curves is at most a given value ε if there exists a monotone
path through the free space connecting the bottom left to the top right corner of the diagram.
For the weak Fréchet distance to be at most ε, we need a continuous path through the free
space that connects the four boundaries. For the Hausdorff distance it holds that δH ≤ ε if
there is a surjective projection of the free space onto both parameter spaces, see Figure 1.

We define further terms regarding the free space diagram below. A component is a
maximal connected subset c ⊆ Fε(P,Q). Figure 2 shows a component ranging over two
cells. A set S of (parts of) components covers a set I ⊆ [0, 1]P of the parameter space
(corresponding to the curve P) if I is a subset of the projection of S onto the above defined
parameter space, i.e., ∀x ∈ I : ∃c ∈ S, y ∈ [0, 1]Q : (x, y) ∈ c. Covering on the second
parameter space is defined analogously.

I Definition 2.1. For polygonal curves P,Q we define the cut version of the k-Fréchet
distance (also called cut distance for short) as

δcut(k, P,Q) = inf
σ,τ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖,

where now σ, τ : [0, 1] → [0, 1] range over all continuous, surjective functions with k′ < k

jump discontinuities, each.

M. Buchin, L. Ryvkin, J. Urhausen 82:3

That is, we cut the curves P and Q into at most k pieces, or subcurves, each, such that two
resembling subcurves have small weak Fréchet distance. In the free space diagram, we insert
the cuts on our curves as horizontal and vertical grid lines. For every row and column of this
“cutting grid”, we select exactly one cell. The cell corresponds to a matched pair of subcurves
and hence needs to contain (a part of) a free space component that projects surjectively onto
the cell’s boundaries. The cover distance δcover(k, P,Q) is defined analogously, but now the
pieces are allowed to overlap [2]. Intuitively, we ask for a selection of at most k components
that cover the parameter spaces when using the cover distance.

For the decision problem we ask whether the weak Fréchet distance between pieces can
be bounded by a given value ε, where the number of subcurves is upper bounded by k. For
fixed ε, we want to minimize k (optimization problem). The value of the cut distance lies in
between Hausdorff and weak Fréchet distance and is lower-bounded by the cover distance:

δH(P,Q) ≤ δcover(k, P,Q) ≤ δcut(k, P,Q) ≤ δwF(P,Q).

Note that it holds that δcover(1, P,Q) = δwF(P,Q) and δcover(n, P,Q) = δH(P,Q). Fig-
ure 1 gives an example where cut and cover distance differ.

P

Q

ε1 ≥ δH(P,Q) ε2 ≥ δcover(2, P,Q) ε3 ≥ δcut(2, P,Q) ε4 ≥ δwF(P,Q)

Figure 1 Comparison of distance measures. In the second diagram, two components are sufficient
to cover the parameter spaces, but cutting does not work, because by choosing the bottom left and
top right cell the red section on the bottom parameter space would not be covered.

3 Polyonomial Time Algorithm for k=2

As we already know that deciding the cut distance problem is NP- and optimizing k is
APX-hard [7], we do not expect to solve it or approximate the number of cuts in polynomial
time. Instead, we give a polynomial-time algorithm for k = 2. As we observe below, already
for k > 2 placing cuts becomes more difficult and we leave this as an open problem. In the
following we always assume that both curves have complexity n.

Cut placements The first difficulty is that there are infinitely many possibilities of placing
a cut. For k = 2, we can reduce this amount to a finite set of discrete positions. We define
interesting points to be local extrema of a component’s boundary. We call a horizontal or
vertical cut line through an interesting point an interesting line. We want cut lines ` and h
such that there are two components covering opposing quadrants formed by ` and h. Such
a placement of cut lines is called valid.

I Theorem 3.1. If there exists a valid placement of cut lines in Fε(P,Q) for k = 2, it is
possible to move these cut lines such that at least one of them becomes an interesting line.

EuroCG’20

82:4 Computing the cut distance of two curves

Case 3Case 2Case 1

h

`′`

p1 p2

h

`′`

p1 p2

h

`′`

p1 p2

Figure 2 Given valid cut lines, moving one cut line beyond (new) interesting points may alter
coverage of a quadrant. New interesting points ni re marked with blue disks.

Proof. We are given a valid placement of cut lines and assume none of them features an
interesting point. The cut lines subdivide the free space diagram into four quadrants of
which two opposing ones are covered by components c1 and c2.

We fix the horizontal cut line h. It intersects c1 and c2 at new interesting points n1, . . . nk.
Note that moving the vertical cut line to the right from ` through p1 to `′ through p2 can
change the coverage in general, see Figure 2:
1. The left component might not cover a subinterval of [p1, p2] on the curve P .
2. The right component might no longer cover an interval on the curve Q.
3. The right component might become disconnected.
These cases can only occur when there is a (new) interesting point between p1 and p2.
Symmetrically, this holds for moving ` to the left, or moving the horizontal line h. Thus, as
long as we do not move cut lines past (new) interesting points, the cut lines stay valid.

Let I = [ni, ni+1] be the interval of adjacent new interesting points containing the given
vertical cut line `. If there is an interesting point p ∈ I, we move ` to the closest interesting
point in I. Else we move ` to ni. The intersection z of ` and h now lies on the boundary of
a component. Next, we can move ` and h simultaneously such that z moves along the cell’s
boundary until one of the cut lines features an interesting point. J

Note that for k > 2, moving one cut line can make it necessary to move a second cut
line, see Figure 3. This second cut line can cause the necessity to move a third, and so on.

P

Q

ε

Figure 3 The dotted blue lines are validly placed cuts. The dashed parts enclose the cut cell we
focus on: moving the top cut line downwards onto the dash dotted line (such that it coincides with
the bottommost point of the upper left component) leaves part of the cut cell uncovered, thus its
vertical cut line would need to be moved to the right. This process may repeat.

M. Buchin, L. Ryvkin, J. Urhausen 82:5

Algorithm First, we observe the following: The cuts induce a 2× 2 grid on the free space
diagram, and the cells featuring opposing corners are selected. Those selected cells each
need to contain (a part of) one component that surjectively projects onto the cell’s bound-
aries, and thus needs to touch two consecutive boundaries of the free space diagram. We
call a component with this property a candidate component. As each of the n × n cells
corresponding to a pair of segments contains no more than one cell, we can upper bound
the number of candidate components by n. Note that for any pair of cut lines there exists
at most one component per cell touching its cell’s boundaries.

We give a brief overview of the algorithmic steps before going into detail. Note that
we first run the algorithm assuming we select components in the bottom left and top right
quadrant of Fε and repeat steps 2-5 for the other option if the first run yields no solution.
If there is still no solution, we repeat the whole process for horizontal interesting lines h
instead of vertical interesting lines `.
1. Compute the free space diagram Fε(P,Q) and its representative graph G;
2. Identify candidate components A = {a1, a2, . . . , a|A|}, that touch the bottom and the

left boundaries of the free space, and B = {b1, b2, . . . , b|B|}, that touch the upper and
the right boundaries. Sort A from left to right by their first intersection point with the
bottom boundary and B from right to left by first intersection with the top boundary;

3. Compute all vertical interesting lines `, i.e., vertical lines that are either tangent to a
candidate component’s boundary or run through an intersection of the component and
the bottom or top boundary of the free space diagram. Store them in a sorted list;

4. For any line ` and components ai, bj we identify the parts of ai and bj that touch ` as
well as the bottom and left or top and right boundaries, respectively. We call the parts
of ai and bj fulfilling these requirements a`i and b`j . If there is no such a`i and/or b`j ,
delete ` from its list;

5. For each ` we recall a`i and b`j and do:
a. Determine the topmost (bottommost) horizontal line h↑

a (h↓
b) that intersects a`i (b`j);

b. Determine the bottommost (topmost) horizontal line h↓
a (h↑

b) such that the part of a`i
(b`j) below (above) that line is still connected and touches `;

c. Any horizontal line through [h↓
a, h

↑
a] ∩ [h↓

b , h
↑
b] is a valid horizontal cut h.

6. In case no solution is found, repeat from step 2 for candidate components touching
bottom and right or top and left boundary of the free space diagram, respectively;

7. In case no solution is found, repeat from step 3 for interesting horizontal lines h, compute
left- and rightmost vertical lines in step 5.

8. If there is a solution, return ` and h, as well as the matching of the subcurves.

We first compute the free space diagram and the combinatorial graph G representing
it in time O(n2). A vertex of G corresponds to a cell or boundary of the diagram and an
edge is drawn between vertices of neighboring cells iff the cells share a connected free space
component, or between a boundary vertex and a cell vertex iff a component touches the
boundary within that cell.

A depth first search (DFS) on G returns all candidate components and a vertical sweep of
Fε yields the interesting lines `. We need O(n2 logn) time to find the candidate components
since G has size O(n2), and O(n2) time to compute and sort all `.

For each interesting line ` we then compute the correct pair of candidate components a`i
and b`j as follows: By means of a breadth first search (BFS), where we limit the breadth to
the current position of `, we check whether a component touches the neighboring boundaries
and `. Most importantly, we ensure that the component is connected to the left (right) of `

EuroCG’20

82:6 Computing the cut distance of two curves

(in Figure 2, the dashed vertical cut line disconnects the component to the right of it). We
need to check at most two candidates for each `: considering them from left to right, the
first interesting line has only one possible candidate, the first component. In the following,
this candidate component either still intersects the next `, or the next component in the
sorted list has to be checked. We stop and continue the same BFS for all ` and all candidate
components of a quadrant, and visiting each candidate once we only take quadratic time.

For each valid ` we perform a sweep to identify the interval in which the correct candidate
components overlap vertically, and delete ` if they do not overlap. Within the overlap, any
horizontal line is a valid cut placement, w.l.o.g. we choose the lower bound. There are O(n)
extrema of a component’s boundary curve to consider, so we take linear time here.

Overall, the runtime of the algorithm is bounded by O(n2 logn). Hence we conclude:

I Theorem 3.2. The cut distance for k = 2 of two polygonal curves of complexity n can be
decided in O(n2 logn) time.

4 Conclusion

We presented a polynomial time algorithm for deciding the cut distance in case k = 2.
For general k, we know that deciding the cut distance is NP-hard, and approximating the
number of cuts k is APX-hard. For k ≥ 3, we conjecture that cuts may have to be placed
at non-interesting points, see Figure 4.

0
-1

1

0

1

-1

C1

C2

C3

C4

Figure 4 We are given four components C1, . . . , C4 and apply four valid cut lines (dashed blue).
The solution is unique and does not involve interesting points. The purple dotted lines feature the
tip of C2, but, as indicated by the red segment, C2 does not cover its (purple) cell’s boundaries.

References
1 Hugo Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen. The k-Fréchet dis-

tance revisited and extended. In 35th European Workshop on Computational Geometry
(EuroCG), page 7, 2019. URL: http://www.eurocg2019.uu.nl/papers/41.pdf.

2 Hugo Alves Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen. The k-Fréchet
distance: How to walk your dog while teleporting. In ISAAC, volume 149 of LIPIcs, pages
50:1–50:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5(1-2):75–91, 1995.

4 Helmut Alt and Leonidas Guibas. Discrete geometric shapes: Matching, interpolation, and
approximation: A survey. Handbook of Computational Geometry, 1997.

M. Buchin, L. Ryvkin, J. Urhausen 82:7

5 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for
planar curves. Algorithmica, 38(1):45–58, 2004.

6 Kevin Buchin, Maike Buchin, Christian Knauer, Günther Rote, and Carola Wenk. How
difficult is it to walk the dog? In Proc. 23rd Europ. Workshop on Comp. Geom., pages
170–173, 2007.

7 Maike Buchin and Leonie Ryvkin. The k-Fréchet distance of polygonal curves. In 34th
European Workshop on Computational Geometry (EuroCG), Book of Abstracts, page 4,
2018. URL: conference.imp.fu-berlin.de/eurocg18/.

8 Jacob E. Goodman, János Pach, and Chee-K. Yap. Mountain climbing, ladder moving,
and the ring-width of a polygon. Amer. Math. Monthly, 96(6):494–510, 1989.

EuroCG’20

Tight Rectilinear Hulls of Simple Polygons
Annika Bonerath1, Jan-Henrik Haunert1, and Benjamin
Niedermann1

1 University of Bonn
lastname@igg.uni-bonn.de

Abstract
A polygon is called C-oriented if the orientations of all its edges stem from a pre-defined set C.
The schematization of a polygon is then a C-oriented polygon that describes and simplifies the
shape of the input polygon with respect to given hard and soft constraints. We study the case
that the C-oriented polygon needs to contain the input polygon such that it is tight in the sense
that it cannot be shrunk without starting to overlap with the input polygon; we call this a tight C-
hull of the polygon. We restrict the tight C-hull to be a simple polygon. We aim at a tight C-hull
that optimally balances the number of bends, the total edge length and the enclosed area. For
the case that both polygons are rectilinear, we present a dynamic-programming approach that
yields such a tight hull in polynomial time. For arbitrary simple polygons we can use the same
approach to obtain approximate tight rectilinear hulls.

1 Introduction

Schematization has become a common tool for creating simplified visualizations of geometric
objects such as paths, networks and regions. The purpose of this technique is to reduce the
visual complexity of an object by describing its geometry based on a restricted and pre-defined
set C of orientations. Most prominently, it is used for drawing maps of metro systems [10, 12],
in which each edge is drawn either vertically, horizontally or diagonally; those maps became
known as octilinear maps. An important core problem is the simplification of a polyline
such that the result is C-oriented, i.e., each edge of the resulting polyline has an orientation
that stems from C. Finding C-oriented paths between two points in a polygon [1, 6, 9] or
homotopic C-oriented paths between obstacles [11] is closely related.

In this paper, we study the schematization of simple polygons, i.e., for a given simple
polygon P we aim for a C-oriented simple polygon Q that describes the shape of P with
respect to pre-defined hard and soft constraints. For constructing C-oriented polygons several
approaches have been presented, e.g., [2, 3, 4, 5, 7, 8].

We present a novel approach for schematizing a given simple polygon P by a C-oriented
simple polygon Q. In contrast to previous work, we construct Q such that it encloses P .
Further, Q should mimic the shape of P without having too many bends and without using
unnecessarily much space; see Fig. 1. As application we have the schematization of plane
graph drawings in mind whose outer faces we want to roughly sketch. We plan to use our
approach for travel-time maps visualizing the reachable part within a road network (see
Fig. 2) as well as for schematic representations of point sets. In the latter case the idea
is to compute a planar graph representing a geometric spanner of the points and then to
schematize the graph drawing.

We formalize the constraint that the original polygon P must be contained in the
schematized polygon Q and mimics the shape of P in such a way that Q cannot be shrunk
without intersecting P . More specifically, let Q and Q′ be two simple polygons with edges
e1, . . . , en and e′

1, . . . , e
′
n, respectively. Further, let ~v1, . . . , ~vn and ~v′

1, . . . , ~v
′
n be the vectors

that describe the directions and lengths of e1, . . . , en and e′
1, . . . , e

′
n, respectively. The

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

83:2 Tight Rectilinear Hulls of Simple Polygons

Figure 1 A rectilinear polygon P (blue) and a tight rectilinear hull of P (lilac).

s

(a) rectilinear tight hull

s

(b) octilinear tight hull

Figure 2 A sketch of tight hulls enclosing the road network reachable from s within a given time.
The input polygon is the outer face of the reachable sub-graph. We note that we can adapt the
definition of tight hulls to also respect the non-reachable part.

polygon Q′ is a linear distortion of Q if there are positive constants c1, . . . , cn such that
~v′

1 = c1 · ~v1, . . . , ~v
′
n = cn · ~vn, i.e., each edge of Q can be scaled and translated such that the

polygon Q′ results; see Fig. 3a. A simple polygon Q is a tight hull of another polygon P if Q
contains P and there is no linear distortion of Q that lies in Q and contains P . We emphasize
that a tight hull has no self-intersections. In case that edges of Q only use orientations from
C we call Q a tight C-hull of P . Altogether, we formalize the schematization problem as
finding a tight C-hull of P . In the special case that C only contains diagonal, vertical and
horizontal orientations, we call Q a tight octilinear hull of P ; see Fig. 3b. If it only contains
vertical and horizontal orientations, we call Q a tight rectilinear hull of P ; see Fig. 3c.

We aim at a tight C-hull Q of P that is a good compromise between its edge length,
its area and its number of bends, where a vertex is counted as bend if its incident edges
have different orientations. More formally, for α = (α1, α2, α3) with αi ≥ 0 we define the
cost of Q as cost(Q) = α1 · length(Q) + α2 · area(Q) + α3 · bends(Q), where length(Q) is
the total edge length of Q, area(Q) is the area of Q and bends(Q) is the number of bends
of Q. We call a tight C-hull Q of P α-optimal if for any other tight C-hull Q′ of P we have
cost(Q′) ≥ cost(Q). Throughout the rest of this paper we study the special case in which
we aim for a tight rectilinear hull Q of a rectilinear polygon P ; see Fig. 3c. We use this
fairly strong restriction to conduct a proof of concept for schematized tight hulls of polygons.
Finally, we sketch how to use the approach for approximate tight hulls of not necessarily
rectilinear polygons. We are currently extending our approach to more general settings, e.g.,
octilinear orientations as well as arbitrary polygons that are schematized.

A. Bonerath, J.-H. Haunert, and B. Niedermann 83:3

1.4

2

1.
2

1.0

2 1.0
0.5

2.
2

1.0
1.
2

Q
P

Q

(a)

P

Q

R

(b)

P

Q

(c)

Figure 3 (a) The polygon Q is a linear distortion of the polygon P . For each edge of Q the
according scaling factor is shown. (b) Q is a tight octilinear hull of P . The polygon R is not a tight
hull of P , as Q is a linear distortion of R contained in R. (c) Q is a tight rectilinear hull of P .

P

Figure 4 Example of a maximally subdivided polygon.

2 Structural Properties of Tight Rectilinear Hulls

Let P be a rectilinear polygon with n vertices and let Q be a tight rectilinear hull of P .
We call a rectilinear polygon maximally subdivided if for each vertical and horizontal ray
emanating from any vertex of P into its exterior the first contact point with P is again a
vertex; see Fig. 4. In the remainder, we assume the input polygon P is maximally subdivided.

I Lemma 2.1. Every vertex of Q on P is also a vertex of P .

In the proof of Lemma 2.1 we assume that there is a vertex v of Q on P that is not a
vertex of P ; see Fig. 5. We show that this contradicts the assumptions that P is maximally
subdivided (Fig. 5a) and Q is tight (see Fig. 5b–5c). Thus, Lemma 2.1 shows that we can
build the solution based on the vertices of P . The next lemma shows that Q lies in the
bounding box of P . The proof uses similar arguments as the proof of Lemma 2.1.

I Lemma 2.2. The bounding box B of P is a tight rectilinear hull and any other tight
rectilinear hull of P is contained in B.

In the following we describe how any tight rectilinear hull Q can be successively derived
from the bounding box B. Figuratively, this process can be understood as carving Q out of B.
More precisely, we obtain Q from B by successively refining the edges of B by replacing them
with more and more complex polylines. As basic building block for this replacement procedure
we use L-shaped polylines, which we call bridges. More specifically, a rectilinear polyline B
is a bridge of P if B starts and ends at vertices of P and B can be partitioned into a prefix
and a (possibly empty) suffix such that the edges of the prefix have the same orientation and
the edges of the suffix have the same orientation. Hence, each bridge corresponds to a line
segment or two incident line segments forming an “L”; see Fig. 6. The region enclosed by B
and the polyline of P connecting the same vertices as B is the bag of B. We observe that B
may consist of multiple regions and have multiple edges with P in common; see Fig. 6c.

EuroCG’20

83:4 Tight Rectilinear Hulls of Simple Polygons

e1

e2

wQ

P

v

(a)

e1

e2

e3

Q

P

v

(b)

e1

e2

e3
Q

P

v

(c)

Figure 5 Illustration of the proof of Lemma 2.1. (a) At the end point of e1 the polygon P has a
vertex. (b)–(c) The edges e1 and e3 can be scaled such that Q shrinks but contains P .

B

Pbag

(a)

B

bag

(b)

B

bag

bag

(c)

Figure 6 Examples of rectlinear polylines (green) forming bridges of P (blue).

I Lemma 2.3. Every tight rectilinear hull of P can be partitioned into a sequence of bridges.

The bounding box B of P can be partitioned into four bridges B1, B2, B3 and B4 such that
they contain the top-left, top-right, bottom-right and bottom-left vertices of B, respectively;
see Fig. 7. The starting and end points of the four bridges lie on Q such that they split Q
into four polylines Q1, Q2, Q3 and Q4 that are contained in the bags of B1, B2, B3 and B4,
respectively. Our approach is based on the idea that each bridge Bi defines a sub-instance Ii

that is solved independently from the others. The sub-instance Ii is defined by Bi and its
bag; see Fig. 7c.

We now sketch a recursive procedure that creates Qi from Bi. In general we can describe
this setting by a bridge B that contains a subpath H of Qi; when the recursion starts we
have B = Bi and H = Qi. In the base case of the recursion the bridge B equals H. In the
general case we recursively describe H by bridges; see Fig. 8. More specifically for B we can
find up to three connected bridges C1, C2, and C3 in the bag of B such that the polyline
that is defined by these bridges connects the start and end point of B. Each bridge Cj forms
a geometrically independent instance, i.e., the bridges C1, C2, and C3 have pairwise disjoint
bags. Further, the end points of C1, C2, and C3 partition H into three subpaths H1, H2 and
H3 that lie in the bags of C1, C2, and C3, respectively. Hence, the three bridges C1, C2, and
C3 partition the bag of B into smaller sub-instances defined by C1, C2, and C3 containing
the paths H1, H2 und H3, respectively.

This provides us with the possibility of recursively describing Qi; Figure 9 shows the
recursion tree T for B1 and Q1 of the polygon presented in Fig. 7. We call T the derivation
tree of B1 and Q1 the derivative path of B1. In general we show the following theorem.

I Theorem 2.4. For every bridge B and every path H of bridges that is contained in the
bag of B and connects the start and end point of B, there is a derivation tree TB such that
H is the derivative path of TB.

A. Bonerath, J.-H. Haunert, and B. Niedermann 83:5

p1

p3

p4

p2

(a)

B1 B2

B3B4

p1

p2

p3

p4

(b)

p1

p2 p2

p3

p3

p4p4

p1

B1 B2

B3B4

I1 I2

I3I4

(c)

Figure 7 (a) A rectilinear polygon P (blue) and a tight rectilinear hull of P (lilac). (b) The
bounding box of P is partitioned into the four bridges B1, B2, B3 and B4. (c) Each bridge defines
an instance that is considered independently from the other instances.

B

C1

H1

(a)

B

C1 C2H1
H2

(b)

B

C1 C2

C3

H1

H2

H3

(c)

Figure 8 The bag of the bridge B defines an sub-instance. Further, there is a sub-path H

(lilac) of Q that goes through the bag of B. If B is not part of Q, we can construct up to three
bridges C1, C2 and C3 whose bag form three geometrically independent instances that partition H.

To prove Theorem 2.4 we distinguish nineteen geometrical settings of the bridge B and the
path H. We use six different methods for the construction of the child nodes C1, . . . , Ck

with 1 ≤ k ≤ 3; see Fig. 10. We can show for each construction that the path H can be split
into subpaths H1, . . . ,Hk so that each Hj with 1 ≤ j ≤ k is contained in the bag of Cj . For
example, we use Construction M in the case that B and P share more than two vertices; see
Fig. 10. In that case, we insert two child nodes for B in TB containing the bridges C1 and C2,
where C1 is the path of B from the beginning to the first shared vertex u with P and C2
contains the remaining part. We show that if we split H at u into subpaths H1 and H2,
the path H1 is contained in the bag of C1 and the path H2 is contained in the bag of C2.
The Constructions A-E assume that B shares exactly two vertices with P , and yield bridges
C1, . . . , Ck that not only lie on B but also in the interior of the bag of B without crossing H.

The constructions are more general than necessary such that they also work for any
rectilinear polygon Q that consists of bridges of P . We conjecture that when exploiting the
tightness only two children per node is sufficient, which later on would lead to an improvement
of the running time by a linear factor. However, at latest when generalizing the result to the
case that P is not rectilinear, we can show that three children are necessary.

Altogether, due to the construction of the decomposition tree its derivative path H does
not intersect itself. In particular, two bridges B1 and B3 that intersect as shown in Fig. 11
can not belong to the same decomposition tree as neither one bag contains the other nor
their bags are disjoint.

EuroCG’20

83:6 Tight Rectilinear Hulls of Simple Polygons

p1

p2
p2

p1

B1

a b

a

c

j

k

c
d e

f

g

h

i
j
k

b

d e

f

g

h

i

Figure 9 A recursion tree for the top-left part of the polygon shown in Fig. 7. On each level
the bags of the bridges (orange) form geometrically independent sub-instances that are solved
independently. Composing the bridges of the child nodes yields a path that connects the starting
with the end point of the bridge of the parent node. Collecting the bridges of the leaves in pre-order
yields the path Q1 (lilac), which is part of Q.

A. Bonerath, J.-H. Haunert, and B. Niedermann 83:7

Constrution B

Construction DConstruction C Construction E

Construction A

C1

C2
C1

C2

C3

C1 C1
C2

C2
C1

B

B B B

Construction M

B
C1

C2u B

Figure 10 Construction types for the proof of Theorem 2.4.

3 Algorithm for Tight Rectilinear Hulls

We present an algorithm that consists of three steps. In the first step, we build an orthogonal
grid G based on the vertices of P such that G lies in the interior of B and the exterior of P ;
see Fig. 12a. In the second step, we create the set B of all valid bridges based on G using
depth-first searches; see Fig. 12b. In the third step, we compute an α-optimal tight rectilinear
hull Q of P as follows. We split the bounding box B into the four bridges B1, B2, B3 and B4
as described in Section 2. These bridges split Q into four paths Qi contained in the bags
of Bi (with 1 ≤ i ≤ n), respectively. We compute each Qi by constructing its derivation
tree Ti over B using dynamic programming. We finally assemble Qi to Q. From a technical
point of view we need to take special care about correctly accounting for the bends at the
vertices connecting two sub-instances. We prove that the dynamic programming approach,
which is the most time consuming part of the algorithm, needs O(n4) time and O(n2) space.

I Theorem 3.1. The α-optimal tight rectilinear hull of a rectilinear polygon P can be
computed in O(n4) time and O(n2) space.

We observe that our approach is only based on the bridges that we compute using the
grid G. On that account a simple approach to support arbitrary simple polygons is discretizing
P by subdividing each edge of P with additional vertices; see Fig. 13. We then build G based
on the new and old vertices of P . As one can show, the result is a (not necessarily α-optimal)
tight hull of P . Depending on the desired quality, we choose the degree of discretization.

4 Conclusion

We have introduced the concept of tight hulls of polygons. In contrast to previous schemati-
zation techniques, we require that the input polygon is contained in the schematization. We

EuroCG’20

83:8 Tight Rectilinear Hulls of Simple Polygons

p1
p2

B

(a)

p1
p2

B1

B3
B2

(b)

(c)

Figure 11 Decompositions of a bridge B. (a) The bridge B. (b) A decomposition of B into three
bridges B1, B2 and B3 such that B1 and B3 intersect. Such decompositions are excluded from the
decomposition tree by construction. (c) A valid decomposition tree for B.

(a) (b)

Figure 12 Step 1 and Step 2 of the algorithm. (a) The grid G in the exterior of P is created
based on the vertices of P . (b) For each vertex of P all possible bridges to its successors are created.

have undertaken a proof of concept for rectilinear polygons and tight rectilinear hulls sketch-
ing a generic algorithm based on a dynamic programming approach. For simple polygons
our approach yields approximate tight hulls. We are currently extending the algorithm to
tight octilinear hulls as well as to α-optimal tight hulls of general simple polygons.

A. Bonerath, J.-H. Haunert, and B. Niedermann 83:9

P

(a)

P

(b)

Figure 13 Tight rectilinear hulls of a simple maximal subdivided polygon P (vertices of P are
black points). (a) Lemma 2.1 is not true any more as Q has fixed vertices (lilac squares) that are
not vertices of P . (b) The tight hull of P is based on the vertices of P and additional vertices (lilac
squares) subdividing the edges of P .

Acknowledgments. This work was partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2070 –
390732324.

References
1 John Adegeest, Mark Overmars, and Jack Snoeyink. Minimum-link c-oriented paths:

Single-source queries. International Journal of Computational Geometry & Applications,
04(01):39–51, 1994. doi:10.1142/S0218195994000045.

2 Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retrieving alpha-
Shapes and Schematic Polygonal Approximations for Sets of Points within Queried Tem-
poral Ranges. In Proc. 27th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (ACM SIGSPATIAL ’19), pages 249–258, 2019. doi:
10.1145/3347146.3359087.

3 Quirijn W. Bouts, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Willem Sonke,
and Kevin Verbeek. Mapping Polygons to the Grid with Small Hausdorff and Fréchet
Distance. In Piotr Sankowski and Christos Zaroliagis, editors, 24th Annual European Sym-
posium on Algorithms (ESA 2016), volume 57 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 22:1–22:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.ESA.2016.22.

4 Kevin Buchin, Wouter Meulemans, André Van Renssen, and Bettina Speckmann. Area-
preserving simplification and schematization of polygonal subdivisions. ACM Transactions
on Spatial Algorithms and Systems, 2(1):1–36, 2016. doi:10.1145/2818373.

5 Jan-Henrik Haunert and Alexander Wolff. Optimal and topologically safe simplification
of building footprints. In Proc. 18th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (ACM SIGSPATIAL GIS ’10), pages 192–
201, 2010. doi:10.1145/1869790.1869819.

6 Der-Tasi Lee, Chungdo Yang, and Chak KuenWong. Rectilinear paths among rectilinear ob-
stacles. Discrete Applied Mathematics, 70(3):185 – 215, 1996. doi:10.1016/0166-218X(96)
80467-7.

7 Maarten Löffler and Wouter Meulemans. Discretized approaches to schematization. In 29th
Canadian Conference on Computational Geometry (CCCG), pages 220–225, 2017.

8 Wouter Meulemans, André van Renssen, and Bettina Speckmann. Area-preserving subdi-
vision schematization. In Sara Irina Fabrikant, Tumasch Reichenbacher, Marc van Kreveld,

EuroCG’20

83:10 Tight Rectilinear Hulls of Simple Polygons

and Christoph Schlieder, editors, Geographic Information Science, pages 160–174. Springer
Berlin Heidelberg, 2010.

9 Joseph S.B. Mitchell, Valentin Polishchuk, and Mikko Sysikaski. Minimum-link paths
revisited. Computational Geometry, 47(6):651 – 667, 2014. doi:10.1016/j.comgeo.2013.
12.005.

10 Martin Nöllenburg. A survey on automated metro map layout methods. In Schematic
Mapping Workshop 2014, 2014.

11 Bettina Speckmann and Kevin Verbeek. Homotopic c-oriented routing with few links and
thick edges. Computational Geometry, 67:11–28, 2018. doi:10.1016/j.comgeo.2017.10.
005.

12 Hsiang-Yun Wu, Benjamin Niedermann, Shigeo Takahashi, and Martin Nöllenburg. A
survey on computing schematic network maps: The challenge to interactivity. In Schematic
Mapping Workshop 2019, 2019.

Approximating the Packing of Unit Disks into
Simple Containers∗

Helmut Alt and Nadja Seiferth

Institute for Computer Science, Freie Universität Berlin
lastname@mi.fu-berlin.de

Abstract
We study the following problems: Given a triangle or parallelogram, how many unit-disks can be
packed without overlap into it? It is not known whether these problems are NP-hard or in NP.
We give the first results on their approximability and therefore a better understanding of their
complexity. In the case that all inner angles are bounded from below by a constant, we give a
PTAS for each problem. For the case of arbitrarily small inner angles, we give an algorithm with
constant-factor approximation and polynomial running time for triangles.

1 Introduction

Efficient disjoint packing of disks and spheres has been considered a natural and challenging
problem in geometry for centuries. Kepler’s famous conjecture about the most dense packing
of spheres in three-dimensional space has been proven after nearly three hundred years by
Hales and his group [5]. The densest packing of unit radius disks in the plane being the
hexagonal grid has been known before. Earliest attempts for a proof go back to Lagrange
although a rigorous proof was eventually given by Fejes-Tóth [4].

Algorithmic questions arise if instead of the whole space certain finite containers and
sets of spheres or disks are considered. In the web, data bases can be found of the smallest
containers (circles, squares etc.) which are known to hold n unit disks for n from 1 to several
thousands [1].

We consider the converse problem of packing a maximal number of unit disks into a
given finite size container. Even for the simplest container shapes such as disks or squares
the problem is neither known to be solvable in polynomial time nor to be NP-hard. One
major problem is that the number of disks to be computed can be exponential in the input
size.

In a previous article, we developed PTAS for circular and square containers [2]. A natural
representation for more general shapes would be simple or convex polygons. This paper is
a small first step in this direction, showing a constant factor approximation algorithm for
triangles. We can find PTAS for triangles and parallelograms if the containers are fat, i.e.,
their smallest angle is bounded from below by a constant.

2 First Order Theory of the Reals

We first observe that the decision problem, whether n unit circles can be packed into some
container C is decidable if the shape of C can be described by finitely many polynomial
inequalities. In fact, in this case the problem can be described by a formula in the first
order theory of the reals. This formula contains 2n variables s1, t1, ..., sn, tn which represent

∗ Supported by the German Science Foundation within the collaborative DACH project Arrangements
and Drawings as DFG Project MU3501/3-1.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

84:2 Packing Unit Disks into Simple Containers

the coordinates where to place the centers of the unit circles. Moreover, the following
conditions have to be stated in the formula:
1. all unit circles lie completely inside C
2. no two unit circles may intersect
Clearly, if C has a constant size description, condition 1 is the conjunction of O(n) and
condition 2 the conjunction of O(n2) formulas of constant size. The final formula is obtained
by putting ∃s1, t1, ..., sn, tn in front of these conditions.

The truth of first order formulas of the reals was shown to be decidable by Tarski in the
1950s. The fastest algorithm for this task is given by Basu et al. [3], Theorem 1.3.2. Plugging
in the parameters of our problem, we obtain that the number of arithmetic operations to
solve the problem is nO(n).

In order to determine the maximum number nmax of unit disks that can be packed into
C we can make an exponential and binary search for nmax involving the decision algorithm
in each of the log(nmax) steps. If nmax is bounded by a constant we obtain:

I Lemma 2.1. Suppose a container C described by constantly many polynomial inequalities
is given by the coefficients of these polynomials, which are are rational numbers in binary
notation. Then, if the maximum number nmax of unit circles that can be packed into C is
bounded by a constant, it can be computed in polynomial time.

It should be mentioned that the runtime of the algorithm is exponential in nmax, however.

3 Fat Containers

3.1 Parallelograms
We first consider the construction of a PTAS for determining the number of unit disks that
can be packed into a fat parallelogram P . “Fat” means that the smaller angle γ of P is
bounded from below by some constant γ0. We will assume without loss of generality that
two sides of P are parallel to the x-axis. Let a be the length of these sides. The input to the
algorithm is a and (bx, by) which are the coordinates of the left upper vertex of P , assuming
that the left lower vertex of P is at the origin. These values are represented by rational
numbers, where enumerator and denominator are given as binary integers.

Our algorithm has some similarity to the general technique by Hochbaum and Maass
[6]. It subdivides P by lines parallel to its sides into congruent rhombi whose side length is
some constant w to be determined later, see Figure 1. Since the rhombi will be truncated at
the upper and right boundaries of P we get (up to) four different shapes of cells into which
P is subdivided. For each of the shapes 1,..,4 we can determine the maximum number of
unit disks it can hold in polynomial time using the algorithm given in Section 2.

Finally, we multiply the numbers obtained with the number of occurrences of the cor-
responding shapes (which can be computed by standard arithmetic), sum up, and return
the obtained value as an approximation for the maximum number of unit disks that can be
packed into P .

It remains to be shown that this algorithm is a PTAS for our problem if the input
parallelogram P is fat. More precisely, for each ε > 0 it is possible to find a value for the
parameter w such that the number napp returned is at least (1− ε)nmax where nmax is the
maximum number of unit disks that can be packed into P .

To see this we consider an optimal solution OPT and assign its disks to the cells of the
decomposition as follows: If a disk is contained in a cell, assign it to that cell. If it intersects
only the horizontal boundary of cells, assign it to the lower cell that it intersects. If it

H. Alt and N. Seiferth 84:3

γ

a

(bx, by)

(0, 0) w

w

1

3

4

2

Figure 1 Parallelogram divided into cells defined by rhombus-grid with side length w.

Figure 2 Disks assigned to a cell.

intersects only the vertical boundary of cells, assign it to the leftmost cell that it intersects.
If it intersects a horizontal and a vertical grid-line, assign it to the cell at the lower left of
the intersection of these two grid-lines, see Figure 2. In other words, all disks completely
lying inside a cell q extended by a strip of width 2 to the top and to the right are assigned
to q. For a cell q let nq

i be the number of disks completely contained in q and nq
b the disks

assigned to it but not completely contained in it.
All nq

i disks that are put completely inside a decomposition cell q by OPT are accounted
for in napp since there the maximum number nm fitting into q is taken. However, the nq

b

disks assigned to but not completely contained in q are disregarded. Each of these disks
must completely lie in a strip of width 4 around q. Since this strip has area O(w) if the
parallelogram P is fat we have nq

b = O(w).
On the other hand, Figure 3 shows that if w ≥ 2 then nm ≥ b(w sin γ)/2c2 = Ω(w2 sin2 γ)

which is Ω(w2) if P is fat. So we have nq
b/n

q
i ≤ c/w for some constant c and for each cell q.

Summing over all cells q we have

nmax =
∑

q

(nq
b + nq

i) ≤ (1 + c/w)
∑

q

nq
i ≤ (1 + c/w)napp

Choosing w ≥ d/ε for a suitable constant d yields:

I Theorem 3.1. The algorithm described is a PTAS for the problem of finding the maximum
number of unit disks that can be packed into a fat parallelogram P .

w

2/ sin γw

Figure 3 Lower Bound on the number of unit disks that can be packed into q

EuroCG’20

84:4 Packing Unit Disks into Simple Containers

3.2 Triangles
Next, we will develop a PTAS for fat triangles, i.e., all of their angles are bounded from
below by some constant α0. Suppose that a triangle T is given by the lengths of its sides
a, b, c with a ≥ b ≥ c. Side a is, without loss of generality, parallel to the x-axis and has
its left vertex at the origin. Similarly to the case of parallelograms we decompose T into
constant size cells by sets of lines which are parallel to one of two chosen sides a, b of T , see
Figure 4. The distance of these lines is chosen such that both sides are divided into an equal

21

a

b c

Figure 4 Dividing a triangle into cells with a parallelogram-grid with side lengths a
g

, b
g
yields

only two cell-types. Here g = 8.

number g of parts. As a consequence, there are only two types of congruent cells, which
are parallelograms and triangles. As before, our algorithm computes the exact maximum
number of disks fitting into each cell type by the technique of Section 2, multiplies it with
the number of occurrences of the cell type and returns the sum of these numbers.

Analogousy to the corresponding proof for parallelograms, assigning disks of the optimal
solution to the cells, it can be shown that for a given ε > 0 there is a choice of g, namely
proportional to b · ε such that our algorithm computes a number napp which is at least
(1− ε)nmax, i.e., we have:

I Theorem 3.2. The algorithm described is a PTAS for the problem of finding the maximum
number of unit disks that can be packed into a fat triangle T .

4 Arbitrary Triangular Containers

For arbitrary triangular containers T , we can still construct in polynomial time a constant
factor approximation for the maximum number nmax of unit disks that can be packed into T .

As before, let a be the longest side of T (we will also use a for the length of a), suppose
again that it is parallel to the x-axis with its left vertex being the origin. Let h be the height
of T perpendicular to a.

The idea of the algorithm is as follows: We first check whether nmax = 0 or nmax = 1. If
not we imagine decomposing T into slabs of height 2 by lines parallel to a. Then the widths
of the slabs are s1, ..., sk where si = a− 2i · a/h for i = 0, · · · k, see Figure 5.

Let k be the largest integer for which sk ≥ 2, namely k = b(a− 2)h/(2a)c. In each slab
the rectangle where the height of the slab is equal to 2 is filled contiguously with unit disks
starting from the left end. Observe, that we cannot do this construction explicitely since
the number of disks involved is exponential in the (bit-)size of the input.

However, the total number of disks packed can be computed, which is

k∑

i=1
bsi/2c >

k∑

i=1
(si/2− 1) > bka/2− ak(k + 1)/(2h)− kc

H. Alt and N. Seiferth 84:5

s3
s2

s1

Figure 5 Disks packed in layers of height 2 into a general triangle.

The algorithm therefore returns napp = max(k, bka/2− ak(k + 1)/(2h)− kc) as an approx-
imation of nmax. As can be easily seen, this is at least half of the true number of disks
packed.

It remains to be shown that napp is only by a constant factor smaller than nmax.
Let us call a placement of a set of unit disks maximal (with respect to T) if no unit disk

inside T can be added to the placement without intersecting others. Therefore, any disk of
an optimal packing must be intersected (properly) by a disk of a maximal placement. On
the other hand, since the kissing number of disks is 6, any disk of the maximal placement can
intersect at most 5 disks of the optimal packing. Therefore, if there is a maximal placement
of size n than the maximum packing has size at most 5n.

As can be seen, the packing in Figure 5 is not yet maximal. We achieve this by an
enlarged placement (which is not a packing any more) as shown in Figure 6: all layers

Figure 6 Disks placed in layers of height 2 onto a general triangle.

i = 1, · · · , k are moved up one level and an additional disk is added at their right end. Only
the new layer 1 is the old one with the added disk. As can be easily seen, this placement is
maximal and has at most three times as many disks as the previous packing.

Combining these ideas and summarizing we obtain:

I Theorem 4.1. Given an arbitrary triangle T as input, the algorithm described returns a
value napp which is a constant factor approximation of the maximum number nmax of unit
disks that can be packed into T .

5 Conclusion

As was mentioned before, this contribution is only a small step towards determining com-
plexity aspects of packing unit disks into given containers. Work in progress is the problem
for arbitrary skinny parallelograms. In general, it would be interesting to gain more insight
in the case of polygonal containers, even under the restriction that they are convex.

Acknowledgments. We thank Sándor Fekete for valuable hints concerning this reseach.

EuroCG’20

84:6 Packing Unit Disks into Simple Containers

References
1 Packomania. URL: http://www.packomania.com/.
2 Helmut Alt and Nadja Scharf. Polynomial Time Approximation Schemes for Circle Pack-

ing Problems. In Proceedings of the 33th European Workshop on Computational Geome-
try (EuroCG), pages 101–104, 2017. URL: http://csconferences.mah.se/eurocg2017/
proceedings.pdf.

3 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the Combinatorial and
Algebraic Complexity of Quantifier Elimination. J. ACM, 43(6):1002–1045, 1996.

4 L. Fejes Tóth. Lagerungen in der Ebene auf der Kugel und im Raum. Springer Berlin
Heidelberg, 2nd edition, 1972.

5 Thomas Hales, Mark Adams, Gertrud Bauer, Dat Dang, John Harrison, Truong Hoang,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Nguyen, Truong Nguyen, Tobias
Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Ta, Trân Trung,
Diep Trieu, and Roland Zumkeller. A formal proof of the Kepler conjecture. Forum of
Mathematics, Pi, 5, 2015.

6 Dorit S. Hochbaum andWolfgang Maass. Approximation Schemes for Covering and Packing
Problems in Image Processing and VLSI. J. ACM, 32(1):130–136, 1985.

Improved constant factor for the unit distance
problem
Péter Ágoston1 and Dömötör Pálvölgyi2

1 MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of
Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
agostonp@cs.elte.hu

2 MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of
Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
dom@cs.elte.hu

Abstract
We prove that the number of unit distances among n planar points is at most 2.09⋅n4/3, improving
on the previous best bound of 8n4/3. We also improve the best known extremal values for n ≥ 22.

1 Introduction

Call a simple graph a unit distance graph (UDG) if its vertices can be represented by distinct
points in the plane so that the pairs of vertices connected with an edge correspond to pairs
of points at unit distance apart. Denote the maximal number of edges in a unit distance
graph with n vertices by u(n). Erdős [4] raised the problem to determine u(n) and this
question became known as the Erdős Unit Distance Problem. Erdős established the bounds
n1+c/ log log n ≤ u(n) ≤ O(n3/2). The lower bound remained unchanged, but the upper bound
has been improved several times, the current best has been O(n4/3) [8] for more than 35
years. For a detailed survey, see [10].

It turned out during the Polymath16 project1 that improved bounds even for small values
of n might give better bounds for questions related to the chromatic number of the plane.
Our goal is to give an explicit upper bound, thus a constant factor improvement of the
O(n4/3) bound. Prior to our work, the best explicit constant (we know of) is the one derived
from an argument of Székely [9], which gives u(n) ≤ 8n4/3 for all n. Our main result is the
following constant factor improvement.

▸ Theorem 1.1. u(n) ≤ 3
√

2
3 (2+√3)⋅29

2 ⋅ n4/3 = 2.08... ⋅ n4/3.

Our proof is based on a careful examination of Székely’s argument to get rid of a few
extra factors, an improved crossing lemma and some simple observations about UDG.

1.1 The crossing lemma
Draw a (not necessarily simple) graph in the plane so that vertices are mapped to points
and edges to simple curves that do not go through the images of the vertices other than
their endpoints’. The crossing number of a graph G, denoted by cr(G), is defined as the
minimum number of intersection points among the edges of G in such drawings, counted
with multiplicity. The crossing lemma, which was first proved by Ajtai, Chvátal, Newborn,
Szemerédi [2] and, independently, by Leighton [5] is that for any simple graph cr(G) ≥ Ω(e3

n2)
1 https://dustingmixon.wordpress.com/2018/04/14/polymath16

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

85:2 Improved constant factor for the unit distance problem

if e ≥ 4n, where n is the number of vertices and e is the number of edges. The hidden constant
has been improved several times; we will need the following variant.

▸ Lemma 1.2 (Ackerman [1]). If a simple graph has n vertices and e edges, then cr(G) ≥
e3

29n2 − 35n
29 . Moreover, if e ≥ 6.95n, then cr(G) ≥ e3

29n2 .

2 Proof of the improved bound

Fix a UDG on n vertices with u(n) edges and the images of the vertices of one of its planar
realizations; denote these n points by P and the UDG by G. In the following, we do not
differentiate between vertices and their images. Note that due to the maximality of G, any
two points at unit distance form an edge.

▸ Lemma 2.1. If n ≥ 3, then all vertices of G have degree at least 2, and if n ≥ 7, then there
is at least one UDG with the same vertex and edge number as G, for which there is at most
one vertex with degree 2.

Proof. Suppose that a vertex Z has degree one. Take a Euclidean coordinate system so
that no two points have the same x coordinate: if for some coordinate system there were
two such points, rotate with a sufficiently small angle. Delete Z and order the unit edges of
the remaining graph G ∖Z such that AB < CD if for the x-coordinates of these four points
we have min(Ax, Bx) < min(Cx, Dx) or (min(Ax, Bx) = min(Cx, Dx)) ∧ (max(Ax, Bx) <
max(Cx, Dx)). The above is a total ordering as for any pair of different edges, either the left
or the right endpoints are different from each other and so are their x coordinates. Take the
smallest unit edge AB according to this ordering. For (at least) one of the points forming a
unit equilateral triangle with AB, say, C, we would have AC < AB or BC < AB if C ∈ P ∖Z.
This would contradict the minimality of AB, thus C ∉ P ∖Z. Moreover, C ≠ Z, as then its
degree would have been at least two. But replacing Z with C gives a UDG with more edges,
contradicting the maximality of G.

For the second statement, first delete all the vertices with degree at most 2, recursively,
until no vertices with degree at most 2 are left. It is not possible that all vertices were deleted
as that would mean that there were at most 2n− 3 edges (along with the last two vertices we
have deleted at most 1 and 0 edges, respectively, while along with the other ones, we have
deleted at most 2), but for n ≥ 7, there exist UDGs with more than 2n− 3 edges, for example
the ones constructed similarly to the graph in Figure 1.

Figure 1

So after the deletions, we have a graph with a positive number of vertices all having
degree at least 3. Thus, we can insert a new vertex connected to the two endpoints of a
minimal edge in the current graph according to the ordering in the first part. We repeat this
for each deleted vertex. In each step at least one of the new edges will be smaller (according
to the ordering) than all the previously existing ones, so we always add the new vertex such
that it is neighbouring the previously added one, guaranteeing that the previous one now

P. Ágoston and D. Pálvölgyi 85:3

has degree at least 3. So in the end at most one vertex with degree 2 will remain (the one
added last) and the graph will have the same number of vertices and edges as G had. ◂

Now we proceed with the proof of Theorem 1.1. The statement is true for n ≤ 6, so from
now on we assume n ≥ 7. From Lemma 2.1, we can assume that P was chosen in a way that
G has no vertex with degree at most 1 and has at most one vertex with degree 2.

Following Székely [9], define another graph on P , denoted by H, whose edges are those
arcs on the unit circles around the points of P , which end in points from P and do not
contain points of P in their interior. As any unit circle around a point of P has at least two
points from P on it, H has no loops, but it might have multiple edges. Also, ∣E(H)∣ = 2u(n),
since for every point of P , there are exactly as many arcs on the unit circle around it as the
degree of the corresponding point in G, so each edge is counted twice.

The second part of Lemma 2.1 implies that there is at most one pair of points which are
connected on the same circle with two arcs. If this happens, we delete one of these two edges,
to get a graph H− with ∣E(H−)∣ = 2u(n) − 1. Otherwise, to simplify presentation, delete an
arbitrary edge to obtain H−. The crossing number of H− is bounded as cr(H−) ≤ 2⋅(n

2) = n2−n,
since all pairs of circles intersect each other in at most 2 points.

First of all, to deal with the case n ≤ 500, we lower bound the intersections among these
unit circles in the following way. For a vertex v with degree deg(v), there are exactly (deg(v)

2)
pairs of circles that intersect in v. Therefore, we have n2−n ≥ ∑v (deg(v)

2) ≥ n ⋅(∑v deg(v)/n
2) =

u(n) (2u(n)
n

− 1) from Jensen’s inequality. This is roughly u(n) ≤ √
n3/2 and the RHS is less

than 2n4/3 if n < 512 – a more precise calculation confirms the statement in this range.2
Moreover, quite surprisingly, this simple bound (combined with a linear lower bound for the
number of crossings in H) beats the best previous bound for small n starting from n = 25.
(These values can be found in Table 1.)

The only possibility left of having multiple edges in H− is that there can be more unit
circles centered at some points of P passing through a pair of points from P . Since there are
at most two unit circles through any pair of points, all edges occur with multiplicity at most
2 in H−. Denote the simple graph formed by the edges of H− by H1 and the simple graph
formed by the edges that have multiplicity 2 by H2, and the number of their edges by e1
and e2, respectively, so e1 + e2 = 2u(n) − 1 and e1 ≥ e2.

Now we prove cr(H1) + 3 ⋅ cr(H2) ≤ cr(H−). From a drawing of H− we can obtain a
drawing of H1 or H2 by picking one of the two embeddings of each edge of H2 randomly,
independently from each other, with probability 1

2 . In this drawing of H1 any crossing of two
edges of H1 ∖H2 is preserved, while a crossing of an edge of H1 ∖H2 and an edge of H2 is
preserved with probability 1

2 , and a crossing of two edges of H2 is preserved with probability
1
4 . In the drawing of H2 only crossings of two edges of H2 are preserved, each with probability
1
4 . Summing these up, the expected value of crossings in the random drawing of H1 plus
three times the crossings in the random drawing of H2 obtained this way is at most cr(H−).

First, suppose that e2 ≥ 6.95n. By applying Lemma 1.2 to H1 and H2, respectively,
we get e1 ≤ 3

√
29n2 ⋅ cr(H1) and e2 ≤ 3

√
29n2 ⋅ cr(H2). From these, 2u(n) − 1 = e1 + e2 ≤

3
√

29n2 ⋅ cr(H1) + 3
√

29n2 ⋅ cr(H2). If we write x = cr(H1)
cr(H−) , then 3

√
cr(H1) + 3

√
cr(H2) ≤

3
√

x ⋅ cr(H−) + 3
√

1−x
3 ⋅ cr(H−) = (3

√
x + 3

√
1−x

3) ⋅ 3
√

cr(H−) for 0 ≤ x ≤ 1, so it is enough to

2 Note that in the later parts of our proof we could also reduce cr(H−) with u(n)(2u(n)
n
− 1) using this

argument, but it would not change its order of magnitude or effect the constant we obtain.

EuroCG’20

85:4 Improved constant factor for the unit distance problem

maximize 3
√

x + 3
√

1−x
3 . And since its derivative is 1

3 ⋅ (x)− 2
3 − 1

9 ⋅ (1−x
3)− 2

3 , it has a zero value

exactly if x− 2
3 = 1

3 ⋅ (1−x
3)− 2

3 , i.e., if x = √
3(1 − x), which gives x = √

3
1+√3 (we could do these

as both x and 1−x
3 are positive in the interior of the [0, 1] interval). Also, both of the

summands in the derivative are monotonously decreasing, thus so is the derivative, so the
maximum is attained at the above x, and equals to 3

√
2
3 (2 +√

3). From here the maximum

of 2u(n)− 1 = e1 + e2 is 3
√

2
3 (2 +√

3) ⋅ 3
√

29n2 ⋅ cr(H−) ≤ 3
√

2
3 (2 +√

3) ⋅ 3
√

29 ⋅ (n4 − n3). This
implies u(n) ≤ 3

√
2
3 ⋅(2+√3)⋅29

2 ⋅ n 4
3 ≈ 2.082 ⋅ n 4

3 .
The second case is when e2 < 6.95n and e1 < 6.95n. Then 2u(n)−1 = e1 + e2 < 13.9n, from

which u(n) < 6.95n + 0.5, which is less than
3
√

2
3 ⋅(2+√3)⋅29

2 ⋅ n 4
3 for n > 37.

Finally, if e2 < 6.95n and e1 ≥ 6.95n, then cr(H1) ≤ n2 − n, which implies e1 ≤
3
√

29 ⋅ (n4 − n3). So 2 ⋅ u(n) − 1 = e1 + e2 ≤ 3
√

29 ⋅ (n4 − n3) + 6.95n meaning that u(n) ≤
3√29⋅(n4−n3)

2 + 3.475n + 0.5, which is less than
3
√

2
3 ⋅(2+√3)⋅29

2 ⋅ n 4
3 for n > 256.

This finishes the proof of Theorem 1.1.

3 Best bounds for n ≤ 30

In Table 1 we list the best known bounds, along with constructions.
For n ≤ 14, the exact values of u(n) are known, established in the thesis of Schade [7].

For n ≤ 13, the drawn ones are known to be the only maximal UDGs.3 In general, the upper
bounds can be obtained using the inequality u(n) ≤ ⌊ n

n−2 ⋅ u(n − 1)⌋ (for n ≥ 3), which is true
because the edge density of the maximal UDGs with n vertices is monotonously decreasing in
n as all subgraphs of a UDG are also UDGs. This was observed by Schade, who sometimes
also applied additional tricks – the values where such tricks are needed are denoted by a star.

For n ≥ 15, the lower bounding graphs are also by Schade, with the exception of the
ones for n = 29, n = 30 and the second graph for n = 28, which are our improvements
based on the graph for n = 27 by Schade. The upper bounding values from n ≥ 22 are also
our improvements, derived from a refinement of the inequality n2 − n ≥ ∑v (deg(v)

2). (The
improved values are marked in bold.) For the refined inequality, we need the following lemma.

▸ Lemma 3.1. For a graph H with n vertices in which all edges have multiplicity at most 2
and the number of edges (counted with multiplicity) is denoted by e, cr(H) ≥ 2⋅(e−2⋅(3n−6)) =
2e − 12n + 24.

Proof. Let H be a graph with n vertices and e edges satisfying the conditions for which
cr(H) is minimal. Take a drawing of H with the minimal possible number of crossings. We
can suppose that the two copies of an edge that occurs with multiplicity run close to each
other, otherwise we could redraw any one of them sufficiently close to the other one (to
whichever has fewer crossings). We can also suppose that H contains at most one single
edge as otherwise we could take any two single edges and replace the one with the more
crossings with another one close to (and parallel with) the one with the fewer crossings
without increasing the number of crossings (note that this step also changes H, not only the
drawing).

3 Note that in [3] it is incorrectly stated also for n = 14 that the constructions were proved to be unique.

P. Ágoston and D. Pálvölgyi 85:5

Take a maximal plane subgraph H ′ of H that has the maximal number of edges with
multiplicity two in it. This has at most 2 ⋅ (3n − 6) edges and all the other edges cross at
least one of the double edges of H ′, thus adding at least 2 ⋅ (e − 2 ⋅ (3n − 6)) crossings. ◂

Recall that n2 − n ≥ cr(H) +∑v (degG(v)
2) where G is a unit distance graph and H is

the graph obtained from G, as described previously, with edges of multiplicity at most two,
except one, that could have multiplicity three. This, however, could only occur if G had
a vertex of degree two, which is impossible if u(n) ≥ u(n − 1) + 3, which we can assume.
Thus, applying Lemma 3.1 to H gives n2 − n ≥ 4 ⋅ ∣E(G)∣ − 12n + 24 +∑v∈V (G) (deg(v)

2) ≥
4 ⋅ u(n) − 12n + 24 + n ⋅ (1 − { 2u(n)

n
}) ⋅ (⌊ 2u(n)

n ⌋
2) + n ⋅ { 2u(n)

n
} ⋅ (⌈ 2u(n)

n ⌉
2) (where {x} denotes

the fractional part of x), which gives our improved upper bounds for u(n).
As can be seen, the upper bounds diverge quite fast from the lower bounds. From around

n = 600, Theorem 1.1 gives the best upper bound.

Acknowledgement

The main result was obtained while working on the currently ongoing Polymath16 project
about the Hadwiger–Nelson problem and is related, but not directly connected to it.

References

1 E. Ackerman: On topological graphs with at most four crossings per edge Computational
Geometry 85, December 2019, 101574, 35 pages.

2 M. Ajtai, V. Chvátal, M. M. Newborn, E. Szemerédi (1982), Crossing-free sub-
graphs, Theory and practice of combinatorics, North-Holland Mathematics Studies, 60,
North-Holland, Amsterdam, 9–12.

3 P. Brass, W. O. J. Moser, J. Pach: Research Problems in Discrete Geometry (2005).

4 P. Erdős: On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-–250.

5 T. Leighton, Complexity Issues in VLSI, Foundations of Computing Series, Cambridge,
MA: MIT Press. (1983).

6 J. Pach, R. Radoičić, G. Tardos, G. Tóth: Improving the crossing lemma by finding
more crossings in sparse graphs, Discrete and Computational Geometry (2006), 36 (4): 527–
552.

7 C. Schade: Exakte maximale Anzahlen gleicher Abstände (1993).

8 J. Spencer, E. Szemerédi, W. Trotter Jr.: Unit Distances in the Euclidean Plane,
Graph Theory and Combinatorics (1984), 293–303.

9 L. Székely: Crossing numbers and hard Erdős problems in discrete geometry, Combina-
torics, Probability and Computing 6 (1997), 353–358.

10 E. Szemerédi: Erdős’s Unit Distance Problem, Open Problems in Mathematics (2016),
459–477.

EuroCG’20

85:6 Improved constant factor for the unit distance problem

n u(n) Lower bounding graph(s)
1 0
2 1

3 3

4 5∗

5 7∗

6 9∗

7 12

8 14∗

9 18

10 20∗

11 23∗

12 27

13 30∗

14 33∗

15 37 or 38

P. Ágoston and D. Pálvölgyi 85:7

n u(n) Lower bounding graph(s)

16 41 or 42∗

17 43–47

18 46–52

19 50–57∗

20 54–63

21 57–68∗

22 60–72

23 64–77

EuroCG’20

85:8 Improved constant factor for the unit distance problem

n u(n) Lower bounding graph(s)

24 68–82

25 72–87

26 76–92

27 81–97

28 85-102

29 89–108

30 93–113

Table 1 Best bounds for the maximal number of unit distances u(n) among n planar points.

	Preface
	Program Committee
	Table of Contents
	(Invited Talk) Triangulations in CGAL: To Non-Euclidean Spaces... and Beyond!
	(Invited Talk) The Saga of the Skyline Points
	(Invited Talk) Quantifying Shape Using the Medial Axis
	Expected Complexity of Routing in Theta6 and Half-Theta6 Graphs
	Fréchet Distance Between Uncertain Trajectories: Computing Expected Value and Upper Bound
	Packing Squares into a Disk with Optimal Worst-Case Density
	Worst-Case Optimal Covering of Rectangles by Disks
	Connected Coordinated Motion Planning with Bounded Stretch
	Recognition and Reconfiguration of Lattice-Based Cellular Structures by Simple Robots
	Targeted Drug Delivery: Algorithmic Methods for Collecting a Swarm of Particles with Uniform, External Forces
	Coordinated Particle Relocation Using Finite Static Friction with Boundary Walls
	Probing a Set of Trajectories to Maximize Captured Movement
	On the Average Complexity of the k-Level
	Topological Drawings meet Classical Theorems from Convex Geometry
	On the width of the monotone-visibility kernel of a simple polygon
	On Implementing Multiplicatively Weighted Voronoi Diagrams
	Sometimes Reliable Spanners of Almost Linear Size
	A polynomial-time partitioning algorithm for weighted cactus graphs
	Topologically correct PL-approximations of isomanifolds
	Holes and islands in random point sets
	Computing Area-Optimal Simple Polygonalizations
	Weighted Epsilon-Nets
	Homotopic Curve Shortening and the Affine Curve-Shortening Flow
	Applications of Concatenation Arguments to Polyominoes and Polycubes
	Scheduling drones to cover outdoor events
	Edge Guarding Plane Graphs
	Geometric bistellar moves relate triangulations of Euclidean, hyperbolic and spherical manifolds
	Efficiently stabbing convex polygons and variants of the Hadwiger-Debrunner (p, q)-theorem
	Weak Unit Disk Contact Representations for Graphs without Embedding
	On Hard Instances of the Minimum-Weight Triangulation Problem
	Flips in higher order Delaunay triangulations
	Distance Measures for Embedded Graphs - Optimal Graph Mappings
	Reconfiguring sliding squares in-place by flooding
	Complexity of the Generalized Ham-Sandwich Problem
	Graph Planarity Testing with Hierarchical Embedding Constraints
	On the edge-length ratio of 2-trees
	Simple Drawings of K_{m,n} Contain Shooting Stars
	On the Number of Delaunay Triangles occurring in all Contiguous Subsequences
	Empty Rainbow Triangles in k-colored Point Sets
	Bitonicity of Euclidean TSP in Narrow Strips
	Experimental Evaluation of Straight Skeleton Implementations Based on Exact Arithmetic
	Finding an Induced Subtree in an Intersection Graph is often hard
	Scaling and compressing melodies using geometric similarity measures
	Rotational symmetric flexible placements of graphs
	Augmenting Polygons with Matchings
	Covering a set of line segments with a few squares
	Monotone Arc Diagrams with few Biarcs
	Colouring bottomless rectangles and arborescences
	On Minimal-Perimeter Lattice Animals
	Shape Formation in a Three-dimensional Model for Hybrid Programmable Matter
	Smallest Universal Covers for Families of Triangles
	Between Two Shapes, Using the Hausdorff Distance
	Representing Graphs by Polygons with Edge Contacts in 3D
	Headerless Routing in Unit Disk Graphs
	A (1 + eps)-approximation for the minimum enclosing ball problem in R^d
	Disjoint tree-compatible plane perfect matchings
	Minimum Convex Partition of Degenerate Point Sets is NP-Hard
	Computing the Frechet distance of trees and graphs of bounded treewidth
	On the complexity of the middle curve problem
	Spanners for Transmission Graphs Using the Path-Greedy
	Diverse Voronoi Partitions of 1D Colored Points
	Smoothed Analysis of Resource Augmentation
	The Multivariate Schwartz-Zippel Lemma
	Orthogonal Schematization with Minimum Homotopy Area
	Improved space bounds for Fréchet distance queries
	Balanced Independent and Dominating Sets on Colored Interval Graphs
	The Complexity of Finding Tangles
	Sparse Regression via Range Counting
	The Very Best of Perfect Non-crossing Matchings
	One-Bend Drawings of Outerplanar Graphs Inside Simple Polygons
	Labeling Nonograms
	Certified approximation algorithms for the Fermat point and k-ellipses
	Repulsion Region in a Simple Polygon
	The angular blowing-a-kiss problem
	On Generating Polygons: Introducing the Salzburg Database
	Local Routing in a Tree Metric 1-Spanner
	A better approximation for longest noncrossing spanning trees
	The Tree Stabbing Number is not Monotone
	On the maximum number of crossings in star-simple drawings of K_n with no empty lens
	Simple Topological Drawings of k-Planar Graphs
	Enumerating isotopy classes of tilings of triply-periodic minimal surfaces
	Computing the cut distance of two curves
	Tight Rectilinear Hulls of Simple Polygons
	Approximating the Packing of Unit Disks into Simple Containers
	Improved constant factor for the unit distance problem

