Computation and Recognition of Weighted Skeletal Structures in the Plane

Dissertation Defense

Günther Eder

- Min-/Max-Volume Roofs of Polygonal Footprints of Buildings
- Straight Skeleton of an Orthogonal Monotone Polygon
- Positively Weighted Straight Skeletons of Simple Polygons
- Recognizing Geometric Trees as Weighted Straight Skeletons
- Multiplicatively Weighted Voronoi Diagrams in the Maximum Norm

- Min-/Max-Volume Roofs of Polygonal Footprints of Buildings
- Straight Skeleton of an Orthogonal Monotone Polygon
- Positively Weighted Straight Skeletons of Simple Polygons
- Recognizing Geometric Trees as Weighted Straight Skeletons
- Multiplicatively Weighted Voronoi Diagrams in the Maximum Norm

- Min-/Max-Volume Roofs of Polygonal Footprints of Buildings
- Straight Skeleton of an Orthogonal Monotone Polygon
- Positively Weighted Straight Skeletons of Simple Polygons
- Recognizing Geometric Trees as Weighted Straight Skeletons
- Multiplicatively Weighted Voronoi Diagrams in the Maximum Norm

- Min-/Max-Volume Roofs of Polygonal Footprints of Buildings
- Straight Skeleton of an Orthogonal Monotone Polygon
- Positively Weighted Straight Skeletons of Simple Polygons
- Recognizing Geometric Trees as Weighted Straight Skeletons
- Multiplicatively Weighted Voronoi Diagrams in the Maximum Norm

- Min-/Max-Volume Roofs of Polygonal Footprints of Buildings
- Straight Skeleton of an Orthogonal Monotone Polygon
- Positively Weighted Straight Skeletons of Simple Polygons
- Recognizing Geometric Trees as Weighted Straight Skeletons
- Multiplicatively Weighted Voronoi Diagrams in the Maximum Norm

Voronoi Diagram

Straight Skeleton

Voronoi Diagram

• Definition

Voronoi Diagram

- Definition
- Applications

Voronoi Diagram

- Definition
- Applications
- Our Result

Defensio – Günther Eder

2/20

 s_2

Maximum-Empty-Circle

Maximum-Empty-Circle

Maximum-Empty-Circle

1-NN Classification

Maximum-Empty-Circle

1-NN Classification

Maximum-Empty-Circle

1-NN Classification

Maximum-Empty-Circle

1-NN Classification

Cell Tissue Model from Bock et al.[1]

Voronoi Diagram – L_{∞} & Weights

Voronoi Diagram – L_{∞} & Weights

 L_2 -Norm

 L_{∞} -Norm

 L_2 -Norm

 L_{∞} -Norm

- Weighted Voronoi diagram in L_{∞} -norm.
 - Points, line-segments, and rectangles.
- $\Theta(n^2)$ combinatorial complexity bound.
- $\mathcal{O}(n^2 \log n)$ incremental construction algorithm.
 - Compute a single region.
 - Embed region in diagram of previous step.

- Weighted Voronoi diagram in L_{∞} -norm.
 - Points, line-segments, and rectangles.
- $\Theta(n^2)$ combinatorial complexity bound.
- $\mathcal{O}(n^2 \log n)$ incremental construction algorithm.
 - Compute a single region.
 - Embed region in diagram of previous step.

- Weighted Voronoi diagram in L_{∞} -norm.
 - Points, line-segments, and rectangles.
- $\Theta(n^2)$ combinatorial complexity bound.
- $\mathcal{O}(n^2 \log n)$ incremental construction algorithm.
 - Compute a single region.
 - Embed region in diagram of previous step.

- Weighted Voronoi diagram in L_{∞} -norm.
 - Points, line-segments, and rectangles.
- $\Theta(n^2)$ combinatorial complexity bound.
- $\mathcal{O}(n^2 \log n)$ incremental construction algorithm.
 - Compute a single region.
 - Embed region in diagram of previous step.

- Weighted Voronoi diagram in L_{∞} -norm.
 - Points, line-segments, and rectangles.
- $\Theta(n^2)$ combinatorial complexity bound.
- $\mathcal{O}(n^2 \log n)$ incremental construction algorithm.
 - Compute a single region.
 - Embed region in diagram of previous step.

- Weighted Voronoi diagram in L_{∞} -norm.
 - Points, line-segments, and rectangles.
- $\Theta(n^2)$ combinatorial complexity bound.
- $\mathcal{O}(n^2 \log n)$ incremental construction algorithm.
 - Compute a single region.
 - Embed region in diagram of previous step.

(5)

(2)

(5)

Defensio – Günther Eder

Voronoi Diagram – Summary

(5)(3)(3.5)(1)(1)(1)

- Compute single region $\mathcal{O}(n \log n)$
- Embed region in diagram $\mathcal{O}(n \log n)$
- Overall $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

Voronoi Diagram – Summary

- Compute single region $\mathcal{O}(n \log n)$
- Embed region in diagram $\mathcal{O}(n \log n)$
- Overall $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

Voronoi Diagram – Summary

(5)(3)(3.5)(1)(1)(1)

- Compute single region $\mathcal{O}(n \log n)$
- Embed region in diagram $\mathcal{O}(n \log n)$
- Overall $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

Straight Skeleton

Straight Skeleton

Straight Skeleton

- Definition
- Applications
- Our Result

Straight Skeleton – Definition

Defensio – Günther Eder

Defensio – Günther Eder

Straight Skeleton – Application: Automated Roof Construction

[5] Sugihara and Khmelevsky - Roof report from automatically generated 3D building models by straight skeleton computation

Straight Skeleton - Application: Mathematical Origami

[2] Demaine et al. - Folding and One Straight Cut Suffice

- Straight skeleton of an orthogonal monotone polygon.
- Linear time algorithm.
- Best known approaches:
 - Straight skeleton $\mathcal{O}(n^{17/11+\varepsilon})$ [3]
 - Voronoi diagram $L_{\infty} \mathcal{O}(n \log n)$ [4]

- Straight skeleton of an orthogonal *x*-monotone polygon.
- Linear time algorithm.
- Best known approaches:
 - Straight skeleton $\mathcal{O}(n^{17/11+\varepsilon})$ [3]
 - Voronoi diagram $L_{\infty} \mathcal{O}(n \log n)$ [4]

- Straight skeleton of an orthogonal *x*-monotone polygon.
- Linear time algorithm.
- Best known approaches:
 - Straight skeleton $\mathcal{O}(n^{17/11+\varepsilon})$ [3]
 - Voronoi diagram $L_{\infty} \mathcal{O}(n \log n)$ [4]

- Straight skeleton of an orthogonal *x*-monotone polygon.
- Linear time algorithm.
- Best known approaches:
 - Straight skeleton $\mathcal{O}(n^{17/11+\varepsilon})$ [3]
 - Voronoi diagram $L_{\infty} \mathcal{O}(n \log n)$ [4]

- Straight skeleton of an orthogonal *x*-monotone polygon.
- Linear time algorithm.
- Best known approaches:
 - Straight skeleton $\mathcal{O}(n^{17/11+\varepsilon})$ [3]
 - Voronoi diagram $L_{\infty} \mathcal{O}(n \log n)$ [4]

[3] Eppstein and Erickson - Raising Roofs, Crashing Cycles, and Playing Pool

- Straight skeleton of an orthogonal *x*-monotone polygon.
- Linear time algorithm.
- Best known approaches:
 - Straight skeleton $\mathcal{O}(n^{17/11+\varepsilon})$ [3]
 - Voronoi diagram $L_{\infty} \mathcal{O}(n \log n)$ [4]

[3] Eppstein and Erickson - Raising Roofs, Crashing Cycles, and Playing Pool – [4] Papadopoulou et al. - The L 🗩 Voronoi Diagram of Segments

local-minimum

Defensio – Günther Eder

Q & A

Weighted Voronoi Diagram \mathbf{L}_∞

Straight Skeleton

Q & A

Weighted Voronoi Diagram \mathbf{L}_∞

Straight Skeleton

Questions?

References I

- M. Bock, A. K. Tyagi, J.-U. Kreft, and W. Alt. Generalized voronoi tessellation as a model of two-dimensional cell tissue dynamics. *Bulletin of Mathematical Biology*, 72(7):1696–1731, Oct 2010.
- [2] E. D. Demaine, M. L. Demaine, and A. Lubiw. Folding and One Straight Cut Suffice. In Proceedings of the 10th Symposium on Discrete Algorithms (SODA 1999), pages 891–892.
- [3] D. Eppstein and J. Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Applications of a Data Structure for Finding Pairwise Interactions. Discrete & Computational Geometry, 22(4):569–592, 1999.
- [4] E. Papadopoulou and D. Lee. The L_∞ Voronoi Diagram of Segments and VLSI Applications. International Journal of Computational Geometry, 11(05):503–528, 2001.
- [5] K. Sugihara and Y. Khmelevsky. Roof report from automatically generated 3d building models by straight skeleton computation. In 2018 Annual IEEE International Systems Conference (SysCon), pages 1–8, 2018.