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We extend results by Biedl et al. (ISVD’13) on the recognition and reconstruction of
straight skeletons: Given a geometric tree G, can we recognize whether G resembles a

weighted straight skeleton S and, if so, can we reconstruct an appropriate polygonal

input P and an appropriate positive weight function σ such that S(P, σ) = G? We show
that a solution polygon P and a weight function σ can be found in O(n) time and space

for a geometric tree G with n faces if at most one node of G has two incident edges that
span an angle greater than π. In addition, we show that G implicitly encodes enough

information such that all other weighted bisectors of any solution P can be obtained

from G without explicitly computing P .

Keywords: Weighted straight skeleton; bisector graph; recognition.

1. Introduction

A planar straight-line graph (PSLG) is an embedding of a planar graph such that

all its edges are mapped to straight-line segments which only intersect at common

endpoints. As in Ref. 4, we use the term PSLG∞ to denote a “planar straight-

line graph with infinity” by allowing straight-line rays in addition to straight-line

segments as edges. Still, no two edges intersect except at common endpoints. It is

convenient to add a vertex at infinity as second endpoint for rays to ensure that
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every edge is defined by two vertices. All conventional vertices of a PSLG∞ are

called finite vertices. To distinguish the two sides of an edge of a PSLG∞, we assign

a direction to every edge, thus obtaining a left and a right side.

In this paper, we consider a recognition/reconstruction problem, where we seek

a solution H for a given input PSLG∞, G, in the plane R2. In a nutshell, H may

form a simple polygon or even a PSLG∞ itself, and G shall represent its (weighted)

straight skeleton. To distinguish elements of H and G we call edges of G arcs and

vertices of G nodes. As usual, a face induced by G is a maximal open and connected

region in R2 that does not contain an arc or ray of G.

Wavefront propagation is a standard means for defining and computing straight

skeletons1,5, 11 of polygons and PSLGs. It models an offsetting process where, for

a given simple polygon P , all edges move inwards in a self-parallel manner and at

unit speed. The wavefront edges of two adjacent polygon edges e1, e2 are joined by

a wavefront vertex that moves along the angular bisector of e1 and e2 such that

the resulting polygon remains simple. At time t of the wavefront propagation this

polygon is called the wavefront, Pt, at time t. We have P0 := P . For sufficiently small

t > 0 the wavefront Pt will remain combinatorially equivalent to P . Otherwise events

need to be handled in order to maintain the simplicity of Pt: We get an edge event if

an edge shrinks to zero length and vanishes, a split event if an edge is split into two,

or a multi event if multiple such events occur simultaneously at the same position.

(A vertex event9 is an example of a multi event.) The wavefront propagation stops

once all components of Pt have vanished. Then the straight skeleton S(P ) of P is

given by the traces of all vertices of Pt over the time of the propagation. It is easy

to see that all arcs of S(P ) lie on angular bisectors of edges of P and, thus, are

formed by straight-line segments. The same wavefront propagation can be applied

to the exterior of P , thus obtaining the exterior straight skeleton of P . A further

extension allows to define straight skeletons of PSLGs. Note, though, that both

straight skeletons will contain (straight-line) rays as arcs. We use the term P+
t to

explicitly denote an inwards wavefront propagation of a polygon P , and P−t for an

outwards propagation.

Weighted straight skeletons are obtained by relaxing the requirement that all

input edges move at unit speed. Now the input edges move with speeds induced

by edge weights, with one (multiplicative) weight per edge. (In theory, we could

also use two different weights for the two sides of an input edge.) Unweighted and

weighted straight skeleton have many applications; see, e.g.,5,10 and the references

contained therein. In recent years a variety of algorithms were introduced for com-

puting (weighted) straight skeletons of simple polygons with and without holes as

well as of PSLGs.2,5–9,11

2. Our Contribution

The question “Given a geometric graph G, can we reconstruct an appropriate

polygonal input H such that S(H) = G?”, was asked by Biedl et al.4 Aichholzer
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1/3

1/3

(a) (b)

Fig. 1. (Color online) For a given input G (blue) we see two solution polygons (black and gray).

et al.3 discuss under which conditions a directed tree is a combinatorial repre-

sentation of a straight skeleton as well as how to construct an input polygon.

We extend the work by Biedl et al.4 to weighted straight skeletons by allowing

(multiplicative) edge weights in H. For instance, for the blue PSLG∞ shown in

Fig. 1(a), the convex black polygon with uniform edge weights except for two edges

that have weight 1/3 constitutes a feasible solution for our problem. (That is, the

weighted straight skeleton of the black convex polygon is the blue graph.) A sec-

ond solution with different weights is illustrated by the black polygon shown in

Fig. 1(b).

While our primary focus lies on reconstructing a simple polygon H as input,

we will also allow H to be a PSLG∞ where all finite vertices are of degree at least

two. Let σ be a weight function which provides a strictly positive edge weight σ(e)

for every edge e of H. We denote by S(H,σ) the weighted straight skeleton of H

relative to the weight function σ.

After reviewing a characterization of weighted straight skeletons, we study dif-

ferent classes of input graphs and solve Problems 1 and 2.

Problem 1. Let G be a PSLG∞ which is a geometric tree G. Can we find a PSLG∞

H and a weight function σ such that S(H,σ) = G?

Problem 2. Let G be a PSLG∞ which is a geometric tree G. Can we determine

the bisectors between non-adjacent faces of G without actually identifying H?

3. Preliminaries

Consider the supporting lines `i, `j of two distinct edges of a simple polygon P , with

weights and interior sides inherited from their defining edges. Then `i, `j define a

unique bisector line: We propagate both `i and `j to their common interior (exterior)

side with speeds that correspond to their weights. Then their bisector is traced out

by the intersection of these two moving lines. In case two distinct lines `i, `j are

parallel, we follow the procedure of the wavefront propagation and propagate both
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lines only in their interior side: In case they coincide on a line ` after finite time, `

is their bisector.a

Let Ht,σ denote the weighted wavefront of the PSLG∞ H at time t relative to

the weight function σ. Likewise, we denote a wavefront fragment stemming from

an edge e of H by et. Any such fragment will be contained in one of the two offset

supporting lines `(e) ± ne · σ(e) · t, where `(e) is the supporting line of e and ne
is a unit normal vector. (Hence, the larger the weight σ(e) the faster the edge

fragments et move during the wavefront propagation.) Recall that a wavefront vertex

vt of Ht,σ moves on the bisector defined by its two incident wavefront edges. Note

that the n supporting lines, one for each edge of H, form an inducing line set for

the bisector graph and the straight skeleton traced out by Ht,σ.

Biedl et al.5 show that many properties of unweighted straight skeletons are

preserved for positively weighted straight skeletons of simple polygons P . In par-

ticular S(P, σ) is connected, is a tree, and has no crossings. It consists of n+ v − 1

arcs, where v denotes the number of straight skeleton nodes and n the number of

vertices of the simple polygon P . Every face f of S(P, σ) is guaranteed to be a

weakly simple polygon.b Furthermore, cl(Pt+ε,σ) ( cl(Pt,σ) for any ε > 0, where

cl() denotes the closure of the area bounded by the polygon(s). These properties

generalize to a PSLG∞ H and S(H,σ) in a natural way, provided that H does not

have a finite node of degree one.

Biedl et al.4 state three necessary properties for a graph G to match S(P ) which

we adapt for the weighted setting. The following properties are necessary for a

simple polygon P and its weighted straight skeleton S(P, σ): (i) All nodes of S(P, σ)

are of degree at least three. (ii) Each face f of S(P, σ) contains exactly one segment

of P . (iii) Every edge of P begins and ends on an arc of S(P, σ).

4. G is a Star Graph

We start with assuming that our input PSLG∞ G is a star graph. That is, G consists

of a finite node v and n rays, b1, . . . , bn, that originate at v and are numbered in

counter-clockwise order (CCW) around v. In this section we consider different types

of graphs H such that S(H,σ) matches G. For a start we assume that the rays of G

induce a convex partition of the plane: Every pair of consecutive rays of G bounds

a convex wedge.

4.1. H is a star-shaped polygon

We construct a star-shaped polygon P with n vertices in the following way: For

1 ≤ i ≤ n, we choose an arbitrary point pi in the interior of every ray bi. (That is,

aAdditional ambiguities may occur when parallel lines are present; details and best-practice meth-

ods are described by Biedl et al.5
bA polygon is weakly simple if it is the boundary of a region that is topologically equivalent to a

disk; (portions of) edges may overlap and vertices may coincide.
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the point pi may not coincide with v.) Then we connect every consecutive pair (pi,

pi+1) of points by a line segment ei. Of course, we wrap around the indices and let

p0 := pn and pn+1 := p1.

How can we define an appropriate weight function σ such that S(P, σ) equals

G? Let d⊥(v, ei) denote the normal distance between v and the supporting line `(ei)

of ei. Note that ei will have moved a distance of σ(ei) · t from ei towards v after

time t. Hence, setting

σ(ei) := d⊥(v, ei) (1)

ensures that all wavefront edges of Ptv,σ within the interior of P will reach v at

time tv := 1.

It remains to argue that the vertices of Pt,σ do indeed move along G. We know

that a weighted straight skeleton has straight-line edges. That is, all vertices of

Pt,σ move along straight lines. Recall that the vertices of P0,σ coincide with the

vertices of P . Furthermore, due to the setting of Eq. (1), the offset supporting line

of edge ei reaches v at time t = 1. This implies that the offset supporting lines of

two neighboring edges ei and ei+1 of P intersect at v at time t = 1, thus fixing

the second point of the line that contains the weighted bisector between ei and

ei+1. We conclude that the vertex of Pt,σ that corresponds to pi moves along the

line through pi and v, that is, along bi. When propagating Pt,σ to its exterior the

vertices stay on the rays of G as the weight of an edge is applied to both sides and

thus the respective bisector for two edges is equivalent for both sides.

Besides the solutions that can be obtained by offsetting P inwards or outwards

we can move the points pi of P along the rays of G arbitrarily, thus creating a

vast family of solutions P which, assuming the weights are computed according to

Eq. (1), satisfy S(P, σ) = G. In particular, P need not be convex. See Fig. 2(a).

Note that the correctness of this approach hinges upon the fact that v lies within

the kernel of P , which is implied by our construction. This observation leads to the

following additional result: Suppose that we are given a star-shaped polygon P . We

can choose an arbitrary point within (the interior of) the kernel of P and declare it

to be our node v. If we set the weights of the edges of P as defined in Eq. (1) then

the resulting weighted straight skeleton S(P, σ) will always be a star graph rooted

at v.

4.2. H is a star graph

We continue with investigating other types of solutions. If one vertex of H coincides

with v and, thus, two (or more) edges meet at v, then all edges of H have to meet

at v. (An edge whose supporting line does not contain v would have to have an

infinite weight.) Hence, in this scenario H has to be a PSLG∞ that forms a star

graph. Since every face of G has to contain one edge of H, we conclude that H

consists of n rays which originate at v and which need to be placed such that the

rays of G and H alternate in the cyclic order around v.
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Fig. 2. (Color online) In (a) we show a polygon H (black) such that S(H,σ) matches the star

graph (blue). In (b) we see a solution that is itself a star graph; distinct wavefront offsets (gray).
In (c)–(e) further solutions are drawn where H is a disconnected PSLG∞.

Suppose that the rays {r1, . . . , rn} of H are numbered in CCW order around v,

with ray ri being placed between bi and bi+1. The first n − 1 rays {r1, . . . , rn−1}
may be placed arbitrarily within the respective faces of G. Let the weight of the first

ray be fixed: σ(r1) := 1. We construct the wavefront offsets on both sides of r1 for

time t := 1. Let p1 and p2 be the intersections of these offsets with b1 and b2. Then

σ(r2) := d⊥(p2, r2). We apply this approach consecutively around v until we know

σ(rn−1) and pn. To obtain rn we look at the midpoint q of the line segment p1pn.

Now let the ray rn go through q. The intercept theorem implies that the normal

distances d⊥(pn, rn) and d⊥(p1, rn) of pn and p1 to rn are identical, and we can set

σ(rn) := d⊥(pn, rn).

A sample star graph can be seen in Fig. 2(b). Note that this approach works

also if one of the angles ∠(bi, bi+1) is greater than or equal to π, provided that the

ray ri, that lies in the non-convex face fi, partitions fi into two convex faces.

4.3. H is a disconnected PSLG∞

Additional solutions H can be determined if we allow H to form a disconnected

PSLG∞. If the number of rays n in G is even then we may form a multi event at

v such that n/2 reflex wavefront vertices of Pt meet at v at the same time tv. As

illustrated in Fig. 2(c), we place a reflex vertex pi arbitrarily at every other ray bi
of G. Every such vertex pi forms the start of a v-shaped component of H whose

geometry is determined as follows: Starting with i := 1, we place a ray ri (with
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start point pi) arbitrarily within the wedge formed by bi and bi+1, where ri is not

parallel to bi+1. The supporting line of ri intersects the supporting line of bi+1 in a

point qi+1 outside of bi+1. The ray ri+1 starts at pi+2 and is contained in the line

through pi+2 and qi+1. Our construction ensures that ri+1 lies within the wedge

defined by bi+1 and bi+2. We then increment i by 2 and repeat this process until

all n rays of our n/2 v-shaped components have been constructed.

The weight of ri is obtained as σ(ri) := d⊥(v, ri). This setting ensures that

all wavefronts which propagate towards v will reach v at time tv := 1. Thus, the

wavefront vertices that stem from pi travel along bi towards v or towards infinity.

Since, for every odd i, the rays ri and ri+1 intersect on the supporting line of bi+1, it

is guaranteed that the convex wavefront vertex formed by weighted offsets of ri and

ri+1 will travel along bi+1 for time t > 1. This set-up can be modified by replacing

a pair of rays ri and ri+1, for some odd i, by two finite straight-line segments from

pi to a new vertex ui+1 and from ui+1 to pi+2, cf. Fig. 2(d). The new vertex ui+1

can be chosen arbitrarily along bi+1, provided that the appropriate edge weights

are applied to piui+1 and ui+1pi+2.

If n is odd then we pursue a similar approach: Starting with b1 we place reflex

vertices pi on every other ray of G. We construct rays r1, r2, . . . , rn−1 as outlined

above. Finally, we add the line segment p1pn to H. The weights of all rays and of

the finite line segment are chosen as above.

Both scenarios can be adapted if a non-convex partition of the plane is induced

by the rays of G. In the sample setting shown in Fig. 2(e), the infinite line passes

through the intersection of the supporting line of r1 with the supporting line of

b1, and through the intersection of the supporting line of rn−1 with the supporting

line of bn.

5. G is a Tree

Let G form a geometric tree whose arcs do not intersect except at common nodes

and whose finite nodes all have degree at least three. We regard it as a PSLG∞

which partitions the plane into n unbounded faces. The leaves of G form rays

that we assume to meet in a node at infinity. Ofcourse, these leaf rays may not

intersect except at common nodes. The following lemma is easily derived from

Euler’s polyhedron formula.

Lemma 1. Let G be a geometric tree that partitions the plane into n ≥ 3 unbounded

faces. Then G contains at most 2n− 3 arcs and at most n− 2 finite nodes.

We start with assuming that every finite node v of G is of degree three. Note

that the bounds given in Lemma 1 are sharp in this case. Clearly, every node v

is the result of an event during a propagation of Pt. Since v is of degree three, it

can have been formed only by an edge event or by a split event. Now consider a

sufficiently small disk D centered at v. If the three arcs incident at v induce a sector
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of D that is not convex then a reflex vertex of P was involved in this event. This

observation motivates Lemma 2.

Lemma 2. Let every finite node v of G be of degree three and let the three edges

incident at every v induce a convex partition of the plane around v. Then S(P, σ) =

G can hold for a polygon P and a strictly positive weight function σ only if P is

convex.

Proof. Let σ be a strictly positive weight function. Since every node v in G is of

degree three, it is created by an edge or split event. We start by showing that every

node v of S(P, σ) induces a local convex partition if P is convex: The results of5

tell us that S(P, σ) is connected, is a tree, and has no crossings. The convexity of P

implies that only edge events can occur during the interior wavefront propagation.

Due to the strictly positive edge weights every edge event produces locally a convex

partition on the respective node. A solution polygon P has one vertex on every ray

of G. (Otherwise P cannot have an edge in every face of G as G is a tree.) Thus,

the exterior wavefront propagation of Pt,σ contains no finite event and all vertices

of G induce locally a convex partition.

We continue with the second direction. Assume that S(P, σ) = G holds for a

polygon P . If every node v of G is of degree three and induces locally a convex

partition then P is convex: Assume to the contrary that P has at least one reflex

vertex vr: Then, a vertex of Pt,σ starts at vr and traces at least one reflex arc of G.

Let every arc a of G inherit the direction defined by its respective moving wavefront

vertex of Pt,σ. We define a directed path p that contains all reflex arcs that can be

reached with one directed walk from vr. Let a′ form the last arc in p. We look at

the node v where a′ ends.

If a split event took place at v then we arrive at a contradiction as every split

event induces a non-convex partition locally around the respective node: The split

event is formed at v where the wavefront edges e′t and e′′t that trace out a′ meet an

opposing wavefront edge et. Then, due to the split event, et is split into elt and ert .

As illustrated in Fig. 3(a), the wavefront around v defines two wedge-like untraced

areas ∧1 and ∧2, one bordered by elt and e′t, and the second one bordered by ert and

e′′t . The two arcs that start at v each lie in one of ∧1 and ∧2. Hence, the respective

new bisectors form a non-convex wedge at v, cf. Fig. 3(a).

If v was formed by an edge event then let el, em, and er denote the three

wavefront edges at v where em is the edge that vanishes. Two arcs are incoming at

v and span a convex wedge ∧, illustrated as green area in Fig. 3(b). The vertex v

can only induce a convex partition if the supporting line `(b) of the outgoing arc b

at v lies in ∧. By definition, `(b) goes through the intersection v′ of the supporting

lines of el and er as well as through v. If the vertex between el and em is reflex

(convex, resp.), then the vertex between em and er is convex (reflex, resp.). In

either case, v′ cannot lie in ∧ and, thus, v cannot induce locally a convex partition.
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elt

a′

v ert

e′t
e′′t ∧2

∧1

v

v′

b

el

er∧

a′

em

(a) (b)

Fig. 3. In (a) we see a split event and in (b) we see an edge event at v. In both (a), (b) a

non-convex partition is induced by the edges incident at v.

Thus, we arrive at a contradiction to our assumption and conclude that P has to be

convex.

5.1. G Induces a convex partition

Assume that the edges at every node of G induces a convex partition of the plane.

We seek a polygon P such that S(P, σ) = G. Lemma 2 implies that every solution

P is necessarily convex. To construct P , we start by selecting an arbitrary finite

node vr of G and choose it as the root of G, thus turning G into a rooted tree. We

form a triangle ∆ by choosing one point arbitrarily within the relative interior of

each of the three arcs incident at vr. As in Sec. 4, the weights of the edges of ∆ are

fixed such that vr is reached at time t := 1.

Next, we use ∆ as our initial convex polygon and apply a reverse wavefront

propagation: We start with Q−0,σ := ∆ and propagate the wavefront Q−t,σ outwards

as time increases. A reverse edge event occurs when Q−t,σ reaches a finite node v of

G at time tv. Let the edges e′t and e′′t of Q−t,σ be incident at v at this time, and let

al, ar, am (left, right, middle) be the arcs of G incident at v. The common endpoint

of e′t and e′′t has moved along am during time tv − ε, for some small ε > 0. As

illustrated in Fig. 5(a), we create a new edge et between e′t and e′′t . (At time t = tv
this new edge will have length zero.) At time t := tv + ε, for some small ε > 0,

one endpoint of e′t will move along al and one endpoint of e′′t will move along ar,

cf. Fig. 5(b). Hence, also the movement of et, and thus its direction and weight, is

uniquely determined.

Since the arcs of G induce a convex partition of the plane around each node,

a reverse edge event replaces one convex vertex of Q−t,σ with two convex vertices:

Let vt be the intersection of e′t and e′′t over time, and let Q∗t be the polygon Q−t,σ
but without the changes affected by the reverse edge event. The vertex vt of Q∗t
has moved along am prior to tv and continues into the wedge spanned by al and ar
after tv. Furthermore, after the event time, the edge et (which has as its endpoints

the intersections of e′t and e′′t with al and ar) is contained in Q∗t , connecting two

(adjacent) edges of Q∗t , thus creating a shortcut in its boundary. Hence, Q−t,σ is

the intersection of Q∗t with a half-plane bounded by the supporting line of et, and

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

19
.2

9:
25

1-
26

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

A
L

Z
B

U
R

G
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/2
8/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 23, 2019 9:17 110-IJCGA 1950008

260 G. Eder, M. Held & P. Palfrader

Q−t,σ remains convex under reverse edge events. We apply this reverse wavefront

propagation until the last finite node of G has been processed at time te. After

this time, Q−t,σ will not encounter any further event. We now let P := Q−t?,σ, where

t? := te + ε for some arbitrary ε > 0, and let P inherit the weight function σ. From

this construction the following lemma follows directly:

Lemma 3. The polygon P obtained from a reverse wavefront propagation starting

at an arbitrary finite node of G is convex. The (standard) wavefront propagation of

P under the weight function obtained from the reverse propagation will yield G as

the weighted straight skeleton of P, i.e., S(P, σ) = G.

Let H be the family of all convex polygons P (and weight functions σ), with

S(P, σ) = G, such that the interior wavefront propagation of P finally results in

a single wavefront triangle that collapses. We can obtain every member of H by

choosing some finite node v of G as root node vr and by choosing the vertices of

the initial triangle ∆ within the relative interiors of the arcs of G incident to v.

All remaining solutions P where the final collapsing wavefront P+
t is formed by a

quadrilateral can be obtained by a similar process.

It is easy to see that we can abolish our assumption that all finite nodes are of

degree exactly three and still obtain solutions: If the initial root node vr has degree

d > 3, then we generate an arbitrary convex d-gon as our initial polygon Q. If Q−t,σ
encounters a node of degree d of G, then we add d− 2 new edges, where d− 3 new

vertices have some additional freedom. All we need to do in either case is to select

the new vertices such that Q−t,σ remains convex at all times.

We note, however, that our approach need not find all solutions if nodes of

higher degree are present. Let the node v of G be of degree four and the incident

arcs at v locally induce a convex partition around v. Clearly, v can be formed by

an event where two incoming arcs are traced by reflex wavefront vertices. That

is, a degree-four node of G may result in non-convex polygons becoming feasible

solutions.

5.2. G Does not induce a convex partition

We now allow one node v0 of G such that the three edges around v0 do not locally

induce a convex partition of the plane. How can we find a solution polygon P such

that S(P, σ) = G?

Every solution P has to have one vertex on every ray of G. (Otherwise P cannot

fulfill the necessary condition to have exactly one edge in every face of G, since

G is a tree.) This observation implies Lemma 4, otherwise a solution P could not

form a simple polygon. It also tells us that v0 cannot be the only finite node of G.

(Otherwise, P cannot be a simple polygon since the rays at v0 would not induce a

convex partition.) The proof of Lemma 5 follows from Lemma 2.

Lemma 4. Let P be a simple polygon and G be a PSLG∞ which forms a geometric

tree. Consider a translation of every ray of G such that its finite node coincides with
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some fixed point p. If S(P, σ) = G holds for some strictly positive weight function σ

then the rays incident at p induce a convex partition of the plane, i.e., every wedge

hinged at p has an angle strictly less than π. Furthermore, the cyclic order of the

rays around p is the same as the order in which they are intersected by any solution

polygon P .

Lemma 5. Let al, am, ar (left, middle, and right) be the three arcs incident at v0
in CCW order such that al and ar define a non-convex sector. Then at least one

arc has to be traced out by a reflex wavefront vertex.

During the wavefront propagation v0 was produced due to a split event or an

edge event. We analyze the directions in which the vertices of the wavefront move in

a neighborhood of v0: Due to Lemma 5 at least one reflex vertex ends at v0: Three

incoming wavefront vertices where one is reflex are not possible since a wavefront

triangle cannot have a reflex vertex. An outgoing reflex wavefront vertex would

result in a second node of G whose arcs do not induce a convex partition; see

Fig. 4(c). Hence, three scenarios remain: (i) both al and ar are outgoing and convex,

Fig. 4(a); (ii) al is incoming and ar is outgoing where both are convex Fig. 4(b);

and (iii) ar is incoming and al is outgoing where both are convex.

Hence, am is formed by a ray of G that has to contain a reflex vertex of P . If an

edge event occurred at v0 then a convex wavefront vertex moved along al towards

v0 and then continued along ar, or the other way around ar, v0, and al. If a split

event occurred then a (reflex) wavefront vertex moved along am towards v0, and

then two (convex) wavefront vertices continued along al and ar.

We are now ready to construct a suitable polygon P . Let f be the face of G

that has al and ar on its boundary and, thus, an angle greater than π at v0. Due to

Lemma 4 we can choose a line ` that intersects both rays contained in the boundary

of f such that v0 and all other finite nodes of G lie on the same side of `. (The line `

can be chosen arbitrarily except for these two conditions.) Our final polygon P will

have an edge which is parallel to ` and whose two endpoints lie on these two rays.

The node v0 splits the boundary of f into two branches, a left branch that contains

al and a right branch that contains ar. Within the left branch we determine the

finite node vl whose normal distance from ` is maximal among all finite nodes of

the left branch. Same for vr within the right branch. Since G is guaranteed to have

at least two finite nodes, at least one of vl or vr has to exist. W.l.o.g., at least the

left branch has finite nodes and vl exists.

We construct a small triangle ∆ around vl by placing three vertices on the three

arcs of G that are incident at vl. The placement is arbitrary except for the condition

v0

r
c c

v0

r
c c

v0
r

c
r

(a) (b) (c)

Fig. 4. Arrangements of directed edges such that a non-convex partition is induced at v0.
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∆
vrv

e′

e′′

e e′t

e′′t

v

et

am

al

ar
v0et0

ar
am

al

> π

(a) (b) (c)

v0

ar

am

al

> π

vo

vl
vr

`

∆

e′t1

e′t0

∆′

e′′t0

e′′′t1

al

am

ar

et0

(d) (e)

Fig. 5. (Color online) (a) A tree G (blue) with an initial polygon ∆. An edge (green) is added
in a reverse edge event. (b) Details of a reverse edge event. (c)–(e) Incoming and outgoing arcs at

a non-convex node vr; the vertical arc depicts am. (c), (e) A reverse split event, showing how the

second wavefront is formed using ∆′ in (e).

that the edge e of ∆ that lies within f has to be parallel to `. Again we choose the

weights of the edges of ∆ such that vl is reached at time t := 1. We use ∆ as our

initial polygon Q and apply a reverse wavefront propagation Q−t,σ, with Q−0,σ := ∆.

This wavefront propagation proceeds by applying reverse edge events until v0 is

reached for some specific time t0. Let et0 be the edge of Q−t0,σ that is parallel to e

and therefore also parallel to `. If the CCW angle between ar and et0 is smaller than

π then we treat v0 as a reverse edge event, cf. Fig. 5(d). All remaining finite nodes

of G correspond also to reverse edge events, and we proceed with our wavefront

propagation until all finite nodes have been processed. Otherwise v0 resembles a

reverse split event, cf. Fig. 5(c). Note that in this case the right branch of the

boundary of f has at least one finite vertex vr. Otherwise, ` could not intersect an

arc in the right branch of the boundary of f . We explain how to establish a triangle

∆′ around vr, cf. Fig. 5(e). As in the case of ∆, all three vertices of ∆′ will lie on

the three arcs of G that are incident at vr, and the edge of ∆′ that lies within f

has to be parallel to `, thus imposing a constraint on two vertices of ∆. However,

we do not have the freedom to choose the third vertex of ∆′ arbitrarily. Note that

the wavefront of our yet unknown polygon P will consist of one non-convex polygon

if v0 has not yet been reached, and will split up into two convex polygons at the

time when v0 is reached. One of these polygons, Q−t0,σ, contains et0 while the second

polygon contains e′t0 and a second edge e′′t0 which also has v0 as endpoint. This edge
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e′′t0 lies in the face of G which is bounded by am and ar; its geometry and weight

is uniquely determined. (Recall that et0 and e′t0 are derived from the same edge of

P , whose weight is given by the weight of e defined when setting up ∆.)

Let us construct this second polygon. We know only the geometry and weight of

two of its edges, e′t0 and e′′t0 . But let us pretend that we would know all its edges and

their weights. A wavefront propagation will eventually lead to ∆′ and then reach

vr. If this wavefront propagation allows offsets of e′t0 and e′′t0 to reach v0 then two

edges of ∆′ are known, thus fixing ∆′. (The weight of the third edge of ∆′ is chosen

such that all three edges of ∆′ reach v0 at the same time.) Otherwise, the only

second possible case is that e′′t0 vanishes in an edge event at some time t1. In this

case a new edge e′′′t1 will become the CCW neighbor of e′t1 in the current wavefront

at time t1. As for e′′t0 , the geometry and weight of e′′′t1 is uniquely determined. We

now focus on e′t1 and e′′′t1 and proceed with the wavefront propagation. Eventually

we are guaranteed to know two edges of ∆′, thus fixing ∆′ also in this case.

As soon as both the geometry and the edge weights for ∆ and ∆′ are known

we can start reverse wavefront propagations from both triangles. Suppose that an

offset edge of e′t0 reaches ∆′ at time t?. If t0 ≥ t? then we start an reverse wavefront

propagation at ∆ at time 0 and at ∆′ at time t0 − t?. Otherwise we start at ∆′ at

time 0 and at ∆ at time t? − t0. During both wavefront propagations we process

reverse edge events until both wavefronts will reach v0 at time max{t0, t?}. To

handle the reverse split event we unite the two wavefronts. Then we proceed with

processing reverse edge events until all finite vertices of G have been encountered.

This construction gives us a family of polygons P and weights σ such that

S(P, σ) = G holds. Again, we can waive the constraint on the degrees of the finite

nodes and allow arbitrary degrees greater than three for all nodes except for v0.

In Theorem 1 we summarize the time and space complexity required to form a

solution polygon for Problem 1.

Theorem 1. Let G be a PSLG∞ which forms a geometric tree whose arcs and rays

do not intersect except at common nodes. Let n be the number of unbounded faces

induced by G. If G has at most one node such that the edges around that node do

not locally induce a convex partition then we can find a solution polygon P with

S(P, σ) = G in O(n) time and space.

Proof. Selecting an arbitrary finite vertex v of G and forming the initial triangle

∆ around v takes O(1) time. Processing one reverse edge event during the reverse

wavefront propagation takes constant time. In total there are O(n) many nodes

and, thus, also O(n) many events. These nodes can be traversed in, e.g., depth-first

order without the need for a priority queue because subtrees and their events are

independent from each other.

A reverse split event at vertex vr stops one reverse wavefront propagation, finds

an appropriate new root vertex, and starts another reverse wavefront propagation.

In our scenarios, we choose the new root v′ in O(1) time, as it is a neighbor of vr.
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Clearly the second reverse wavefront propagation processes different vertices of G

than the first one, except for vr. Therefore P can be obtained in O(n) time and

space.

5.3. Implicit bisectors of G

Let G be a geometric tree such that every node of G is of degree three, and assume

that there exists a solution polygon P and weight function σ such that S(P, σ) = G.

(We do not require these to be known, though.) Recall that a solution polygon P

and a weight function σ define
(
n
2

)
bisectors, one for each pair of edges of P . In

this section we introduce a method to construct all bisectors that are not part of

G, but are implicitly defined by P and σ. Our approach is guaranteed to work if all

(implicitly defined or explicitly given) bisectors are pairwise non-parallel. Therefore,

assume that P is without parallel bisectors.

An arc aij of G is on the boundary of exactly two faces, fi and fj , traced out

in a propagation process by polygon edges ei and ej , and this arc is contained

in the weighted bisector bi,j between these polygon edges. As this bisector line

bi,j is the same for all solutions (P , σ), we may consider it independent of any

specific solution and refer to it as the bisector between faces fi and fj . Similarly,

we say that a node of G is equidistant to three faces (relative to the edge weights

of P ). For technical reasons we assume that any triple of bisectors intersects in a

unique point. In particular we do not allow four bisectors to intersect in a common

point.

Let us analyze a small tree G with only two finite vertices. Then G has one finite

arc, four rays, and thus defines four faces, as illustrated in Fig. 6. Let f1 and f3 form

faces of G that share no common arc in G. We can construct (the supporting line

of) the bisector b1,3 between f1 and f3, i.e., the bisector of the non-adjacent edges

of P that traced out f1 and f3, by extending existing arcs of G: The intersection

p1,3,4 is formed by intersecting b1,4 and b3,4, and p1,2,3 is formed by intersecting b1,2
and b2,3.

By construction, p1,3,4 is equidistant to the faces f1, f3, and f4, relative to the

edge weights of P implied by the arcs of G, and p1,2,3 is equidistant to the faces f1,

f2, and f3. Thus, b1,3 can be formed by the line through p1,3,4 and p1,2,3.

p1,2,3

p1,3,4

f1

f2

f3

f4

b1,3

Fig. 6. Computing the bisector between two faces that share neighbors.
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In this canonical setting, f1 and f3 border the common faces f2 and f4 such

that it was obvious which arcs to intersect to obtain b1,3. To construct bisectors for

two faces fi, fm in a larger tree G where they do not share common neighbors, we

first have to compute one or more intermediate bisectors between other faces. We

now show how to identify and obtain those bisectors.

We define the dual graph D of G such that every vertex f ′ of D corresponds to

a face f of G, and two vertices of D are connected by an edge if the respective faces

in G share a common arc and, thus, we know the bisector between them. Since G

consists only of unbounded faces, D is an outerplanar graph. The edges that bound

the outer face of D correspond to the unbounded rays of G, and all other edges

(“diagonals”) map to arcs between finite nodes of G. Furthermore, since all nodes of

G are of degree three, all interior faces of D are triangles. Hence, D is a biconnected

maximal outerplanar graph, and we can regard (the planar embedding of) D as

a convex n-vertex polygon which is triangulated, where n is the number of faces

of G.

Every triangle ∆ in D corresponds to a node in G, i.e., the location where three

bisectors intersect. We can modify D and G by carrying out edge flips in D and

mirroring the corresponding changes in G, cf. Fig. 7.

f1

f2f3

f4

f5
f6

f ′
1

f ′
2

f ′
3

f ′
4

f ′
5 f ′

6

f ′
1

f ′
2

f ′
3

f ′
4

f ′
5 f ′

6

(a) (b) (c)

f1

f2f3

f4

f5
f6

b2,4

b1,5
f1

f2f3

f4

f5
f6

b2,4

b4,5

b1,2

p1,2,4

p1,4,5

b1,5

b1,4

(d) (e)

Fig. 7. (a) Given a geometric tree G that is the weighted straight skeleton of a polygon, we

want to construct the bisector induced by the polygon edges that traced out faces f1 and f4. This

bisector does not depend on the specific polygon. (b) The dual graph of G lets us learn which
edges to flip to obtain the triangulation edge f ′1f

′
4 and, thus, the bisector b1,4. First we flip f ′3f

′
5

and f ′2f
′
6, resulting in the dual seen in (c) and the primal graph in (d). Lastly, we flip f ′2f

′
5, thereby

constructing b1,4 in the primal (e).
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Lemma 6. Let d be a diagonal in D such that d = f ′jf
′
n and let ∆1(f ′i , f

′
j , f
′
n) and

∆2(f ′m, f
′
n, f
′
j) be the two triangles which share d. Then the edge flip on d in D

produces the new bisector line bi,m in G.

Proof. Recall that all edges of ∆1 and ∆2 correspond to arcs in G, i.e., bisector

portions. Thus, ∆1 gives us the bisectors bi,j and bi,n, and ∆2 gives us bm,n and

bm,j . To construct bi,m, we need two points where fi and fm are equidistant. The

bisector bi,n intersects bm,n at the point pi,m,n. Similarly, bi,j intersects bj,m at

pi,j,m. Then bi,m can be formed by the line through pi,m,n and pi,j,m. Note that these

intersections are guaranteed to exist since we had assumed that no two bisectors

are parallel to each other.

In G, we now remove the arc on bj,n, which is common to ∆1 and ∆2. Then

we extend or shorten the arcs on the four other bisectors of the triangles involved

to be incident at pi,m,n and pi,j,m (in a new pairing), and we introduce a new arc

between pi,m,n and pi,j,m. By flipping d also in the triangulation D to connect f ′i
and f ′m, we complete the edge flip.

Since D forms a triangulation it contains exactly n − 3 diagonals. To obtain a

certain diagonal d = f ′if
′
j that is not in D, we apply repeated edge flipping: We

identify all diagonals that cross d and flip them. The last diagonal which crossed d

will become d when flipped.

A single edge flip in D can be carried out in constant time as described in

Lemma 6. Furthermore, we can identify all edges that need to be flipped in amor-

tized linear time, and each edge is flipped at most once. Thus, we derive Theorem 2,

thereby solving Problem 2.

Theorem 2. Let G be a PSLG∞ which forms a geometric tree such that every node

of G is of degree three, and let n be the number of unbounded faces induced by G.

For any two faces fi and fj of G we can construct the unique bisector bi,j in O(n)

time.

Corollary 1. The 2n− 3 arcs of G implicitly define all
(
n
2

)
bisectors.

Note that these bisectors are independent of any specific polygon P and weight

function σ with S(P, σ) = G. In particular, we can obtain the bisectors from G

without first determining a polygon and weight function.

6. Conclusion and Discussion

In this work, we gain further insight into the structure of weighted straight skele-

tons as well as general bisector graphs. In particular, a PSLG∞ G which forms a

geometric tree such that every node of G is of degree three provides already suffi-

cient information to deduce all bisectors: If we assume that there exists a solution

polygon P and a weight function σ such that S(P, σ) = G then the bisector between
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any pair of edges of P can be obtained from G without a need to know P and σ

themselves. This is surprising because, in general, an infinite number of polygons

P (and corresponding weight functions σ) will serve as solutions. Still, all bisectors

between pairs of edges of P are fixed by G.

If at most one of the faces induced by G contains a node that is not convex

then we can also reconstruct polygonal input H and a weight function σ such that

S(H,σ) = G. Some lengthy technical details would allow to extend this result

slightly to one face having several nodes that are not convex. But allowing two faces

with one non-convex node each seems to derail a successful reconstruction com-

pletely. Similarly, the presence of just one bounded face complicates matters dras-

tically, even if all faces are convex. We hope that our results will sparkle new work

on this problem which will finally lead to a solution for an unrestricted PSLG∞.
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