
Computing the Straight Skeleton of an
Orthogonal Monotone Polygon in Linear Time∗

Günther Eder1, Martin Held1, and Peter Palfrader1

1 Universität Salzburg, FB Computerwissenschaften, 5020 Salzburg, Austria
{geder,held,palfrader}@cs.sbg.ac.at

Abstract
We introduce a simple algorithm to construct the straight skeleton of an n-vertex orthogonal
monotone polygon in optimal O(n) time and space.

1 Introduction

The straight skeleton S(P) of a simple polygon P was introduced by Aichholzer et al. [2]. It
is the result of a wavefront-propagation process where the edges of P move inwards at unit
speed in a self-parallel manner, forming one or more wavefront polygons whose combinatorics
change when wavefront edges collapse or wavefront vertices move into other parts of the
wavefront. The straight skeleton is the trace of the vertices of these wavefront polygons over
their propagation, cf. Figure 1.

Figure 1 A polygon (black) with its straight skeleton (blue) and some wavefronts (dotted).

The currently best known algorithm for constructing the straight skeleton of unrestricted
input is by Eppstein and Erickson [5] and runs in O(n17/11+ε) time and space for an n-vertex
polygon and any ε > 0. In the case of a convex input polygon, the straight skeleton coincides
with the medial axis and can be computed in linear time [1]. For monotone polygons, Biedl
et al. [3] present an algorithm to compute the straight skeleton in O(n logn) time.

In this work we show that an approach which is similar to that of Biedl et al. [3] makes
it possible to construct S(P) in optimal linear time if P is monotone and orthogonal: We
also construct the straight skeleton for each of the two monotone chains of P separately and
then merge them to obtain S(P). Since P is orthogonal, S(P) coincides with the Voronoi
diagram of P in the L∞-norm [2]. Papadopoulou shows how to compute the L∞-norm
Voronoi diagram of orthogonal planar straight-line graphs in O(n logn) time [6].

∗ Work supported by Austrian Science Fund (FWF): Grant ORD 53-VO.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



16:2 Computing the Straight Skeleton of an Orthogonal Monotone Polygon

1.1 Preliminaries
Let P be an x-monotone, axis-aligned orthogonal polygon. For the sake of descriptive
simplicity we assume that P has no vertex with interior angle equal to π. (Our algorithm can
be extended to handle such input at no additional computational cost.) Let Cl and Cu denote
the lower and upper monotone chain of P , respectively. As the leftmost and rightmost edges
of P are vertical, we arbitrarily assign the leftmost edge to Cl and the rightmost edge to Cu.

For an edge e of P , denote by I(e) the half-plane induced by the supporting line `(e) of e
which locally (close to e) overlaps with the interior of P. For two non-parallel edges ei and
ej of the polygon, the bisector bi,j is the ray lying on the angular bisector of the supporting
lines of ei and ej within the common interior region I(ei) ∩ I(ej). If the edges ei, ej are
parallel then we use their wavefront edges ei(t) and ej(t) to build bi,j . (But we will still refer
to bi,j as the bisector of ei and ej .) If the wavefront edges overlap at a specific time t′ then
bi,j is the segment formed by the non-empty intersection ei(t′) ∩ ej(t′). Otherwise, if ei(t′)
and ej(t′) share a common end-point p then bi,j is the ray perpendicular to them that starts
at p and lies in the common interior I(ei)∩ I(ej). A wavefront vertex that moves along such
a bisector is called a ghost vertex [4], and we call the resulting straight-skeleton arc a ghost
arc. It is unfinished if its extent is not yet known.

Let C be an x-monotone polygonal chain. For ei ∈ C, let Πi denote the portion of I(ei)
that is incident at ei and limited by the two bisectors through the endpoints of ei. We call
Πi the half-plane slab of ei.

I Lemma 1.1. Every face of S(C) is monotone with respect to its defining edge and is also
monotone with respect to a line perpendicular to its defining edge.

I Corollary 1.2. Every face of S(C) is x-monotone.

I Lemma 1.3. For every edge ei of C the straight-skeleton face f(ei) incident at ei lies
inside of the half-plane slab Πi.

2 Computing the Straight Skeleton of a Single Chain

In order to compute the straight skeleton of a polygon, we first construct the straight skeletons
of its lower and upper chains individually, and then we merge them; cf. Section 3. We start
with describing the construction of the skeleton S(Cl) of the lower chain Cl := e1, . . . , en′ .
(The upper chain Cu is processed in an identical fashion.) If we extend the leftmost edge
e1 and rightmost edge en′ of Cl to infinity then the plane is split into two areas. The area
which contains P is tessellated by S(Cl) into straight-skeleton faces, with one face f(ei)
being incident at each input edge ei. As f(ei) is monotone with respect to the normal of ei

(Lemma 1.1), we can meaningfully split the arcs bounding f(ei) into a left and a right chain.
Each chain is a list of arcs (edges and potentially one ray) that starts in a vertex of ei and
either ends in a ray for unbounded faces or ends when it meets the other chain. If the final
arc of a chain is parallel to ei then it can be assigned arbitrarily to the left or the right chain.

We construct the straight skeleton of Cl incrementally. As we insert edges of Cl from left
to right, we maintain a partial straight skeleton S∗. We store in S∗ for each input edge ei

the left chain of f(ei) as a list of arcs. Additionally, S∗ maintains a stack R of edges whose
faces have a left chain that terminates in a ray and another stack G of edges which have
faces whose left chain terminates in an unfinished ghost arc, a vertical edge where the second
endpoint is not yet known. Figure 2 (left) shows blue and purple rays of R and G, respectively.
Initially, R contains e1, which does not have a left chain as it extends to infinity itself.



G. Eder, M. Held, and P. Palfrader 16:3

Once an edge ei has been inserted into S∗, the left chain of f(ei) in S∗ can be modified
only in two specific ways: If the left chain of f(ei) ends in a ray, this ray may be replaced by
a bounded segment. If the left chain of f(ei) ends in an unfinished ghost arc, this arc may
be replaced by a bounded, finished ghost arc, or it may be replaced by a bounded, finished
ghost arc followed by another bounded segment. In Figure 2, the ray b2,3 is replaced by a
bounded segment and the ghost arc a′ is terminated at the intersection with arc a. As we

ei

vi

aa′

e1
e2

e3

ei

vi

aa′

e1
e2

e3

eivi

a
e1
e2

e3

Figure 2 (Left, Center) Inserting edge ei; (Right) Incrementing i and adding the next edge ei;
S∗, including rays, in blue; (Unfinished) Ghost arcs in purple, and arcs added due to ei in orange.

insert edge ei, we have to build the left chain of its face. We do this iteratively, starting
at the left vertex of ei. This chain starts with an arc that lies on a bisector with direction
vector either

(−1
1

)
or

(1
1
)
. We continue to append arc segments, starting each arc where the

previous segment terminated. We stop when we append a ghost arc (which we will complete
later), when we append a ray, or in some cases when we appended a bounded (vertical) arc
segment. Note that all arcs lie on bisectors with direction vectors

(−1
1

)
,

(0
1
)
, or

(1
1
)
. The

direction of the initial arc segment is given by the bisector of ei and its predecessor ei−1. For
all subsequent arcs, the direction depends on ei and the edge on top of the stack R.

I Lemma 2.1. No arc inserted into S∗ with direction
(1

1
)
can intersect any arc of S∗ and,

thus, is a ray which escapes to infinity.

Arcs with Direction
(1

1
)

Therefore, if the left chain of f(ei) ever includes an arc on a(1
1
)
-bisector, this arc will be a

(1
1
)
-ray because nothing in the current S∗ can intersect it.

Thus, this arc terminates the left chain. We add ei with this chain to S∗ and also put ei on
the corresponding stack R.

Arcs with Direction
(−1

1
)

If the arc a to be added to the left chain of f(ei) lies on a(−1
1

)
-bisector, then this arc may be a ray but it may also be bounded and interact with faces

previously inserted. If this is the first arc of the left chain of f(ei) then we check whether
the previous face, f(ei−1), has its left chain already completed, terminating in a bounded
segment. If this is true then a is an arc from the left vertex of ei along the bisector to the
end of the previous face’s chain. Otherwise, or if this is not the first arc of the left chain, we
look at the top of our stack R. Let et be the edge on top of R. If the left chain of f(et) does
not terminate in a

(1
1
)
-ray, then there is no

(1
1
)
-ray in S∗, and a therefore is a

(−1
1

)
-ray which

finishes the left chain of this face. An argument similar to the one used in Lemma 2.1, now
applied to

(−1
1

)
-direction, shows that a cannot be intersected by any new arc. If G is not

empty then all unfinished ghost arcs on that stack get turned into finished ghost-arcs which
terminate at their intersection points with a. If, however, the left chain of f(et) terminates
in a

(1
1
)
-ray r then a will intersect r in a point p. We modify f(et) by replacing r with a line

EuroCG’19



16:4 Computing the Straight Skeleton of an Orthogonal Monotone Polygon

segment r′ terminating at p, and we remove et from R. Furthermore a is a line segment that
terminates at p. Lastly, we have to process any elements on G that had been inserted after et

was processed, as these ghost arcs lie below r′ and a. These get popped from G and their
unfinished ghost arcs are replaced with arcs terminating where they intersect a or r′.

Arcs with Direction
(0

1
)

The last possible direction that an arc a of the left chain of ei may
have is

(0
1
)
. Let p be the point where the previous arc ended. Then a is either a ghost arc or

a standard vertical arc. In the first case we push ei onto G. We also store a reference to the
edge on top of R at this time, and thereby complete the processing of f(ei). The latter case
is the result of two vertical input segments whose wavefront segments meet. Let et be the
edge at the top of R. Then a is the line segment from p that is contained in both Πt and Πi.
If the extent of a is limited by Πi only, then this finishes the construction of the left chain of
f(ei). Otherwise, the ray of the left chain of f(et) touches the end-point of a. We replace
that ray with a bounded segment terminating at this intersection and pop et from R. If the
extent of a was limited by Πt only, we continue with constructing the next arc of the left
chain of f(ei) whose direction is determined by ei and the edge now on top of R. Otherwise,
if a was limited by both Πt and Πi, the construction of the left chain of f(ei) is also finished.

I Lemma 2.2. All arcs created by inserting ei intersect only rays or ghost arcs of S∗.

Finalizing S(Cl) Once all input edges have been inserted into S∗, we may still have elements
on the stack G. For every element on G, we replace the unfinished ghost arc with a segment of
finite length that terminates at the

(1
1
)
-ray which it intersects first. We know where to look

since we stored a reference to the correct face when we pushed an element onto G. If there is
no

(1
1
)
-ray (because the reference was to e1), then these ghost arcs are finalized as vertical

rays that go to infinity. The resulting structure S∗ is now the straight skeleton S(Cl).

I Theorem 2.3. Our incremental construction computes the straight skeleton of a monotone
orthogonal chain of n vertices in O(n) time and space.

3 Merging S(Cl) and S(Cu) into S(P)

While merging the two skeletons we create a polygonal merge chainM := a1, . . . , am. This
chain connects the first (western) vertex vW of Cl and Cu to their last (eastern) vertex vE .
This merge is similar to the algorithm used for merging Voronoi diagrams of point sites [7].

I Lemma 3.1 (Lemmas 4 and 5 in Biedl et al. [4]). The polygonal chainM created by merging
S(Cu) and S(Cl) is x-monotone.

We use the notion of a bisector between two faces and thereby relate to the bisector
between the two edges that define these faces. Let fl(i) and fu(j) denote the i-th and j-th
face of S(Cl) and S(Cu), ordered from left to right along each chain, where 0 < i < n′ and
0 < j < n′′. Clearly, every arc ofM is a portion of a bisector between two such faces, one
from S(Cl) and one from S(Cu); cf. Figure 3 (Left).

We start at the first vertex p := vW and look at the bisector b between fl(1) and fu(1).
It starts at p. Let p′ denote the intersection closest to p between b and S(Cl) as well as b
and S(Cu). W.l.o.g., we assume that p′ is formed between b and an arc a of S(Cl). Let fl(i)
denote the second face incident at a, with 1 < i ≤ n′. Then p′ forms a node in S(P) that
has the same distance to the edges of fu(1), fl(1), and fl(i). Thus, we let a end at p′ and
add an arc a1 := pp′ toM. This arc also forms an arc in S(P). For the next incremental



G. Eder, M. Held, and P. Palfrader 16:5

vW
eu1

el1
eln′

eun′′

vE

M M

p

p′ p′′

ei ej

ek

Figure 3 (Left) Monotone orthogonal polygon (black) with the upper (orange) and lower (blue)
partial skeleton and the merge line M (purple); (Right) The merge step creates a vertical arc pp′.

step, let p := p′ and let b denote the bisector between fu(1) and fl(i). It starts at p. Again
we find the next intersection p′ closest to p of b with both skeletons that does not lie left of
p. We repeat this process until we arrive at the last vertex vE .

Note that the intersection between b and one of the skeletons can form a vertical line
segment instead of a single point if b coincides with a vertical skeleton arc; cf. Figure 3 (Right).
To find the next node p′ in this case we have to look at the relevant faces of S(Cl) and S(Cu).
Let s denote the vertical segment formed by such an intersection and let a denote the vertical
arc that is intersected. W.l.o.g., we assume that a belongs to S(Cu). Let fu(i) and fu(j)
denote the two faces incident at a. Let fl(k) together with fu(i) define b. Thus, the next
bisector b′ that starts on some point on s is defined by fu(j) and fl(k). We observe that both
ej and ek must be vertical and have the same distance to s, since the bisector between ei, ej

and between ei, ek lies on a common line. Hence, ej and ek lie on a common supporting line
and their faces in the upper and lower skeleton contain s. We can infer that the wavefront
edges ej(t) and ek(t) must become adjacent at some point p′′. At that point a ghost vertex
traces out a horizontal arc. Since we are in the process of merging the two skeletons, this arc
is not yet present in either of the two skeletons. Both faces, fu(j) and fl(k), are x-monotone.
To find p′′ we start at their defining input edge and walk along their boundary until we find
that intersection. A horizontal line through p′′ intersects s and defines the node p′ sought.

Complexity of the Merge At every step a pair of faces fl(i) and fu(j) contributes a single
arc toM. Upon insertion of this arc we increase at least one of the two indices i, j. Thus,
M has size at most n′ + n′′, which is equal to n. It remains to discuss how to find the next
intersection p′ efficiently. A new bisector b, defined by the faces fl(i) and fu(j), starts at the
known point p. Both faces are x-monotone; cf. Corollary 1.2. The monotonicity of a face also
holds after the merge sinceM is x-monotone as well. We use the x-coordinate of the vertex
that traces out b to walk along the boundary of both faces. When an intersection is found
we add a node, cross to the neighboring face, and start a new arc. SinceM is x-monotone
we can simply continue traversing the face whose boundary was not intersected. Therefore,
we traverse every arc of both S(Cl) and S(Cu) at most once.

I Theorem 3.2. The merge process merges S(Cl) and S(Cu) and obtains S(P) for an n-vertex
monotone orthogonal polygon P in O(n) time.

EuroCG’19



16:6 Computing the Straight Skeleton of an Orthogonal Monotone Polygon

References
1 Alok Aggarwal, Leonidas J. Guibas, James Saxe, and Peter W. Shor. A Linear-Time Algo-

rithm for Computing the Voronoi Diagram of a Convex Polygon. Discrete & Computational
Geometry, 4(6):591–604, 1989. doi:10.1007/BF02187749.

2 Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. A Novel Type
of Skeleton for Polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.
doi:10.1007/978-3-642-80350-5_65.

3 Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. A Simple
Algorithm for Computing Positively Weighted Straight Skeletons of Monotone Polygons.
Information Processing Letters, 115(2):243–247, February 2015. doi:10.1016/j.ipl.2014.
09.021.

4 Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. Weighted
Straight Skeletons in the Plane. Computational Geometry: Theory and Applications,
48(2):120–133, 2015. doi:10.1016/j.comgeo.2014.08.006.

5 David Eppstein and Jeff Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Ap-
plications of a Data Structure for Finding Pairwise Interactions. Discrete & Computational
Geometry, 22(4):569–592, 1999. doi:10.1145/276884.276891.

6 Evanthia Papadopoulou. Critical Area Computation for Missing Material Defects in VLSI
Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
20(5):583–597, May 2001. doi:10.1109/43.920683.

7 Michael I. Shamos and Dan Hoey. Closest-Point Problems. In Foundations of Computer
Science, 1975, 16th Annual Symposium on, pages 151–162. IEEE, October 1975. doi:
10.1109/sfcs.1975.8.

http://dx.doi.org/10.1007/BF02187749
http://dx.doi.org/10.1007/978-3-642-80350-5_65
http://dx.doi.org/10.1016/j.ipl.2014.09.021
http://dx.doi.org/10.1016/j.ipl.2014.09.021
http://dx.doi.org/10.1016/j.comgeo.2014.08.006
http://dx.doi.org/10.1145/276884.276891
http://dx.doi.org/10.1109/43.920683
http://dx.doi.org/10.1109/sfcs.1975.8
http://dx.doi.org/10.1109/sfcs.1975.8

	Introduction
	Preliminaries

	Computing the Straight Skeleton of a Single Chain
	Merging S(Cl) and S(Cu) into S(P)

