

Computing the Straight Skeleton of an Orthogonal Monotone Polygon in Linear Time

Günther Eder, Martin Held, and Peter Palfrader

• *P* is an orthogonal *x*-monotone polygon with *n* vertices.

UNIVERSITY OF SALZBURG Computational Geometry and Applications Lab

- *P* is an orthogonal *x*-monotone polygon with *n* vertices.
- S(P) denotes the straight skeleton of P.

- *P* is an orthogonal *x*-monotone polygon with *n* vertices.
- S(P) denotes the straight skeleton of P.
- We split P into its upper and lower monotone chain.

- *P* is an orthogonal *x*-monotone polygon with *n* vertices.
- S(P) denotes the straight skeleton of P.
- We split *P* into its upper and lower monotone chain.
- Looking at a single chain C, let $\mathcal{S}(C)$ denote its straight skeleton.

The arcs of $\mathcal{S}(C)$ have only three directions: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

UNIVERSITY OF SALZBURG Computational Geometry and Applications Lab

A face $f(e_i)$ of S(C) lies inside of the half-plane slab Π_i .

Also, $f(e_i)$ is monotone in respect its input edge as well as to a line perpendicular to it.

Let us separate $f(e_i)$ into its left and right chain.

We maintain the partial straight skeleton \mathcal{S}^* during our incremental construction. It contains the left chains of all edges already inserted

We maintain the partial straight skeleton \mathcal{S}^* during our incremental construction. It contains the left chains of all edges already inserted, as well as two stacks R

We maintain the partial straight skeleton S^* during our incremental construction. It contains the left chains of all edges already inserted, as well as two stacks R and G.

We start our incremental construction by adding e_1 .

 e_1

The first arc *a* of the left chain of $f(e_i)$ has $\binom{1}{1}$ or $\binom{-1}{1}$ direction.

The first arc *a* of the left chain of $f(e_i)$ has $\binom{1}{1}$ or $\binom{-1}{1}$ direction. It connects to the end of $f(e_{i-1})$'s left chain.

Subsequent arcs between e_i and the edge on top of R.

Subsequent arcs between e_i and the edge on top of R. The last arc of a chain ends in a ray,

Subsequent arcs between e_i and the edge on top of R. The last arc of a chain ends in a ray, unfinished ghost arc,

ei

R

Subsequent arcs between e_i and the edge on top of R. The last arc of a chain ends in a ray, unfinished ghost arc, or bounded vertical arc.

We follow with a case distinction for the next arc *a* added in the left chain of e_i . Arc *a* is a ray and we push e_i onto R.

Arc *a* is either a bounded arc or a ray.

If the left chain of e_{i-1} terminates in a bounded arc, and *a* is the first arc on the left chain of e_i , it ends where the left chain of e_{i-1} ends.

e_i R

G

Otherwise, we look at e_t at the top of R. If e_t does not terminate in a $\binom{1}{1}$ ray, a is a $\binom{-1}{1}$ ray, e_i is pushed onto R, and the chain is completed.

Otherwise, the left chain of e_t terminates in a $\binom{1}{1}$ ray r. At p arc a intersects ray r. In $f(e_{i-1})$ we modify r into a bounded arc r' that ends at p, where a ends as well. e_t

e_s e_r R

G

Finally we have to process the elements of G below r' and a.

Finally we have to process the elements of G below r' and a.

Arc a is either a ghost arc or bounded vertical arc, starting at a point p.

Arc *a* is either a ghost arc or bounded vertical arc, starting at a point *p*. In case *a* is a ghost arc we push e_i onto G.

Otherwise, *a* is the line segment from *p* that is contained in both Π_t and Π_i .

Otherwise, *a* is the line segment from *p* that is contained in both Π_t and Π_i .

Finalizing $\mathcal{S}(C)$

• We process the elements that remain on G.

Finalizing $\mathcal{S}(C)$

UNIVERSITY OF SALZBURG Computational Geometry and Applications Lab

- We process the elements that remain on G.
- All arcs inserted intersect only rays or ghost arcs.

Finalizing $\mathcal{S}(C)$

- We process the elements that remain on G.
- All arcs inserted intersect only rays or ghost arcs.

Theorem

Our incremental construction approach creates S(C) in O(n) time.

Summary

- Incremental construction of $\mathcal{S}(C)$ in linear time.
- Merge of both straight skeletons in linear time.

Questions?

