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Computing the Straight Skeleton
of an Orthogonal Monotone Polygon

in Linear Time

Günther Eder, Martin Held, and Peter Palfrader



Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

2/10

Preliminariesr P is an orthogonal x-monotone polygon with n vertices.

r S(P) denotes the straight skeleton of P.r We split P into its upper and lower monotone chain.r Looking at a single chain C , let S(C) denote its straight skeleton.
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Algorithm Setup

The arcs of S(C) have only three directions:
(1

1

)
,
(−1

1

)
, and

(0
1

)
.
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Algorithm Setup

ei

Πi

f (ei )

A face f (ei ) of S(C) lies inside of the half-plane slab Πi .
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Algorithm Setup
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f (ei )

Also, f (ei ) is monotone in respect its input edge as well as to a line perpendicular to it.
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Algorithm Setup
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f (ei )

Let us separate f (ei ) into its left and right chain.
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Algorithm Setup

ei

We maintain the partial straight skeleton S∗ during our incremental construction.
It contains the left chains of all edges already inserted
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Algorithm Setup
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We maintain the partial straight skeleton S∗ during our incremental construction.
It contains the left chains of all edges already inserted, as well as two stacks R
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Algorithm Setup

ei

R G
eieh

eh

We maintain the partial straight skeleton S∗ during our incremental construction.
It contains the left chains of all edges already inserted, as well as two stacks R and G.
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Constructing S(C )

e1

We start our incremental construction by adding e1.
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Constructing S(C )

a

e1

ei

The first arc a of the left chain of f (ei ) has
(1

1

)
or

(−1
1

)
direction.
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Constructing S(C )
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The first arc a of the left chain of f (ei ) has
(1

1

)
or

(−1
1

)
direction.

It connects to the end of f (ei−1)’s left chain.
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Subsequent arcs between ei and the edge on top of R.
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Subsequent arcs between ei and the edge on top of R. The last arc of a chain ends in a ray,



Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

4/10

Constructing S(C )

R G

e1

ei

a

ei

Subsequent arcs between ei and the edge on top of R. The last arc of a chain ends in a ray,
unfinished ghost arc,
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Constructing S(C )

R G

e1

ei
a

Subsequent arcs between ei and the edge on top of R. The last arc of a chain ends in a ray,
unfinished ghost arc, or bounded vertical arc.
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Arc a has
(1

1

)
Direction

e1

R G

a

ei

ei

et

et

We follow with a case distinction for the next arc a added in the left chain of ei .
Arc a is a ray and we push ei onto R.



Computational Geometry and Applications Lab

UNIVERSITY OF SALZBURG

6/10

Arc a has
(−1
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)
Direction

a

ei

Arc a is either a bounded arc or a ray.
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Arc a has
(−1

1

)
Direction

ei

a

ei−1

If the left chain of ei−1 terminates in a bounded arc, and a is the first arc on the left chain of ei ,
it ends where the left chain of ei−1 ends.
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Arc a has
(−1

1

)
Direction

R G

ei

a

ei

Otherwise, we look at et at the top of R. If et does not terminate in a
(1

1

)
ray, a is a

(−1
1

)
ray,

ei is pushed onto R, and the chain is completed.
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Arc a has
(−1

1
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Direction

R G

a
ei

et

et

es

er

es
er

r

r ′

p

Otherwise, the left chain of et terminates in a
(1

1

)
ray r . At p arc a intersects ray r .

In f (ei−1) we modify r into a bounded arc r ′ that ends at p, where a ends as well.
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Finally we have to process the elements of G below r ′ and a.
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Arc a has
(0

1

)
Direction

R G

a

et ei

et

p

Arc a is either a ghost arc or bounded vertical arc, starting at a point p.
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Arc a has
(0

1

)
Direction

R G

a

et ei

eiet

p

Arc a is either a ghost arc or bounded vertical arc, starting at a point p. In case a is a ghost arc
we push ei onto G.
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Arc a has
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Πt

Πi

a

Otherwise, a is the line segment from p that is contained in both Πt and Πi .
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Πt Πi

a

Otherwise, a is the line segment from p that is contained in both Πt and Πi .
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Finalizing S(C )r We process the elements that remain on G.

r All arcs inserted intersect only rays or ghost arcs.
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Finalizing S(C )r We process the elements that remain on G.r All arcs inserted intersect only rays or ghost arcs.

Theorem
Our incremental construction approach creates S(C) in O(n) time.
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Skeleton Merging
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Q & A

Summaryr Incremental construction of S(C) in linear time.r Merge of both straight skeletons in linear time.

Questions?
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