Computing the Straight Skeleton of an Orthogonal Monotone Polygon in Linear Time

Günther Eder, Martin Held, and Peter Palfrader

Preliminaries

- P is an orthogonal x-monotone polygon with n vertices.

Preliminaries

- P is an orthogonal x-monotone polygon with n vertices.
- $\mathcal{S}(P)$ denotes the straight skeleton of P.

Preliminaries

- P is an orthogonal x-monotone polygon with n vertices.
- $\mathcal{S}(P)$ denotes the straight skeleton of P.
- We split P into its upper and lower monotone chain.

Preliminaries

- P is an orthogonal x-monotone polygon with n vertices.
- $\mathcal{S}(P)$ denotes the straight skeleton of P.
- We split P into its upper and lower monotone chain.
- Looking at a single chain C, let $\mathcal{S}(C)$ denote its straight skeleton.

Algorithm Setup

The arcs of $\mathcal{S}(C)$ have only three directions: $\binom{1}{1},\binom{-1}{1}$, and $\binom{0}{1}$.

Algorithm Setup

A face $f\left(e_{i}\right)$ of $\mathcal{S}(C)$ lies inside of the half-plane slab Π_{i}.

Algorithm Setup

Also, $f\left(e_{i}\right)$ is monotone in respect its input edge as well as to a line perpendicular to it.

Algorithm Setup

Let us separate $f\left(e_{i}\right)$ into its left and right chain.

Algorithm Setup

We maintain the partial straight skeleton \mathcal{S}^{*} during our incremental construction.

It contains the left chains of all edges already inserted

Algorithm Setup

We maintain the partial straight skeleton \mathcal{S}^{*} during our incremental construction. It contains the left chains of all edges already inserted, as well as two stacks R

Algorithm Setup

We maintain the partial straight skeleton \mathcal{S}^{*} during our incremental construction. It contains the left chains of all edges already inserted, as well as two stacks R and G.

Constructing $\mathcal{S}(C)$

We start our incremental construction by adding e_{1}.
e_{1}

Constructing $\mathcal{S}(C)$

The first arc a of the left chain of $f\left(e_{i}\right)$ has $\binom{1}{1}$ or $\binom{-1}{1}$ direction.

Constructing $\mathcal{S}(C)$

The first arc a of the left chain of $f\left(e_{i}\right)$ has $\binom{1}{1}$ or $\binom{-1}{1}$ direction. It connects to the end of $f\left(e_{i-1}\right)$'s left chain.

Constructing $\mathcal{S}(C)$

Subsequent arcs between e_{i} and the edge on top of R.

Constructing $\mathcal{S}(C)$

Subsequent arcs between e_{i} and the edge on top of R. The last arc of a chain ends in a ray,

Constructing $\mathcal{S}(C)$

Subsequent arcs between e_{i} and the edge on top of R. The last arc of a chain ends in a ray, unfinished ghost arc,

Constructing $\mathcal{S}(C)$

Subsequent arcs between e_{i} and the edge on top of R. The last arc of a chain ends in a ray, unfinished ghost arc, or bounded vertical arc.

Arc a has $\binom{1}{1}$ Direction
We follow with a case distinction for the next arc a added in the left chain of e_{i}. Arc a is a ray and we push e_{i} onto R.

Arc a has $\binom{-1}{1}$ Direction

UNIVERSITY OF SALZBURG
Arc a is either a bounded arc or a ray.

Arc a has $\binom{-1}{1}$ Direction

If the left chain of e_{i-1} terminates in a bounded arc, and a is the first arc on the left chain of e_{i}, it ends where the left chain of e_{i-1} ends.

Arc a has $\binom{-1}{1}$ Direction

Otherwise, we look at e_{t} at the top of R. If e_{t} does not terminate in a $\binom{1}{1}$ ray, a is a $\binom{-1}{1}$ ray, e_{i} is pushed onto R , and the chain is completed.

e_{i}	
R	G

Arc a has $\binom{-1}{1}$ Direction

Otherwise, the left chain of e_{t} terminates in a $\binom{1}{1}$ ray r. At p arc a intersects ray r. In $f\left(e_{i-1}\right)$ we modify r into a bounded arc r^{\prime} that ends at p, where a ends as well.

Arc a has $\binom{-1}{1}$ Direction
Finally we have to process the elements of G below r^{\prime} and a.

Arc a has $\binom{-1}{1}$ Direction
Finally we have to process the elements of G below r^{\prime} and a ．

Arc a has $\binom{0}{1}$ Direction
Arc a is either a ghost arc or bounded vertical arc, starting at a point p.

Arc a has $\binom{0}{1}$ Direction
Arc a is either a ghost arc or bounded vertical arc, starting at a point p. In case a is a ghost arc we push e_{i} onto G .

Arc a has $\binom{0}{1}$ Direction
Otherwise, a is the line segment from p that is contained in both Π_{t} and Π_{i}.

Arc a has $\binom{0}{1}$ Direction
Otherwise, a is the line segment from p that is contained in both Π_{t} and Π_{i}.

Finalizing $\mathcal{S}(C)$

- We process the elements that remain on G.

Finalizing $\mathcal{S}(C)$

- We process the elements that remain on G.
- All arcs inserted intersect only rays or ghost arcs.

Finalizing $\mathcal{S}(C)$

- We process the elements that remain on G.
- All arcs inserted intersect only rays or ghost arcs.

Theorem

Our incremental construction approach creates $\mathcal{S}(C)$ in $\mathcal{O}(n)$ time.

Skeleton Merging

Skeleton Merging

Skeleton Merging

Skeleton Merging

Skeleton Merging

Skeleton Merging

Skeleton Merging

Skeleton Merging

Skeleton Merging

Skeleton Merging

Skeleton Merging

Summary

- Incremental construction of $\mathcal{S}(C)$ in linear time.
- Merge of both straight skeletons in linear time.

Questions?

