
PARALLEL

TRIANGULATION

OF

POLYGONS

Masterarbeit

zur Erlangung des akademischen Grades
Diplom-Ingenieur

an der Naturwissenschaftlichen Fakultät
der Paris Lodron Universität Salzburg

Eingereicht von Günther Eder

Gutachter: Ao. Univ.-Prof. Dipl.-Ing. Dr. Martin Held
Fachbereich Computerwissenschaften

Salzburg, Juli 2014

PARALLEL

TRIANGULATION

OF

POLYGONS

Master’s Thesis

Günther Eder

July 2014

Department of Computer Sciences
University of Salzburg
Jakob-Haringer-Straße 2
5020 Salzburg
Austria

Günther Eder

[July 11, 2014]

iv

A B S T R A C T

In this work we review five different triangulation algorithms and
present two of our own. First, two well known algorithms are sur-
veyed: ear-clipping and monotone subdivision. Then, three con-
strained Delaunay triangulation algorithms are discussed in detail:
the first uses a Fortune-like sweep-line approach, the second uses a
randomized incremental construction method, and the third is con-
structing the triangulation in parallel on the GPU.

We also present our two parallel ear-clipping methods. One is a di-
vide and conquer approach where the simple input polygon is di-
vided in linear time. The other is a mark and cut extension which
uses a sequential mark phase and a parallel cut phase. Both are
tested extensively and the results are discussed.

v

D E D I C AT I O N

To my family.

A C K N O W L E D G M E N T S

Thanks to my advisor Martin Held for the support and the lectures in
this interesting field. Also thanks to my colleagues for their time for
discussions on this subject. Thanks to my family for their support.

vii

TA B L E O F C O N T E N T S

1 I N T R O D U C T I O N 1
1.1 Definition . 1
1.2 Application . 5
1.3 History . 6
1.4 Contribution . 7
1.5 Outline . 7

2 A L G O R I T H M S 9
2.1 Ear Clipping . 9
2.2 Triangulation using Monotone Polygons 12
2.3 Sweep-line Algorithm for CDT 20
2.4 Incremental Construction of CDTs 28
2.5 Constrained Delaunay Triangulation using GPU 30

3 F I S T 39
3.1 Orientation . 40
3.2 Regular Grid . 41
3.3 Polygons with Islands . 42
3.4 Quality Triangulation . 43

4 F I S T - PA R A L L E L 47
4.1 Divide and Conquer . 47
4.2 Mark and Cut . 53

5 E X P E R I M E N TA L R E S U LT S 57
6 C O N C L U S I O N 63
A B I B L I O G R A P H Y 65
B L I S T O F F I G U R E S 71

ix

1
I N T R O D U C T I O N

In this chapter we declare definitions and state why polygon trian-
gulation is still an important topic. We discuss who was involved in
the research of this field and also the contribution of this work.

1.1 D E F I N I T I O N

We state some basic definitions and lemmas which are used through-
out this work. Since most of the lemmas are well known, we do not
provide proofs for each one.

D E F I N I T I O N 1 - P O LY G O N

Let v1, v2, ..., vn be vertices in the plane. Let ei := vivi+1, with 1 ≤ i ≤
n and en := vnv1, be consecutive edges which form a closed chain.
Then P is a polygon consisting of the closed contour loop e1, e2, ..., en.

D E F I N I T I O N 2 - S I M P L E P O LY G O N

A polygon is called simple if exactly two edges meet at each vertex
and two edges only intersect at a common endpoint.

In literature the interior region of a polygon P is also called its body
or is referred to by the use of the interior function Int(P).

D E F I N I T I O N 3 - P S L G

A planar straight line graph (PSLG) is the embedding of a planar
graph in the plane where each edge is represented by a straight-line
segment.

D E F I N I T I O N 4 - D I A G O N A L [H E L 0 1]
Let P be a polygon and v1, ..., vn vertices which form the consecutive

1

I N T R O D U C T I O N

contour of P. Then the line segment vivj forms a diagonal of a P if
vivj lies completely in the interior of P, except for vi and vj.

D E F I N I T I O N 5 - T R I A N G U L AT I O N [B C K O 0 8]
A decomposition of a polygon P into triangles by a maximal set of
non-intersecting diagonals is called a triangulation of P.

L E M M A 1 - T R I A N G U L AT I O N A LWAY S E X I S T S

Every polygon can be triangulated.

A proof for Lemma 1 can be found in the famous article Polygons
Have Ears by Meisters from 1975 [Mei75].

v1

v2v3

v4
v5

v6

v7v8

v9

v10

v11

v12 v13

v14

v17

v18

v19

v20

v21

v22v23
v24v25

v26

v15
v16

(a) A polygon. (b) A simple polygon.

(c) A triangulation of (b). (d) The dual graph of (c).

Figure 1: An example of a non-simple polygon (a), a simple polygon (b), a
triangulation of that simple polygon (c) and the dual graph of that
triangulation (d).

2

1.1 D E F I N I T I O N

L E M M A 2 - N U M B E R O F T R I A N G L E S

Any triangulation T of a simple polygon P with n vertices consists
of exactly n− 2 triangles.

L E M M A 3 The dual graph of a triangulation is a tree, with maxi-
mum degree of three.

There is no known tight bound for the maximum or minimum num-
ber of different triangulations of a point set with n vertices in 2D. A
set of 6 vertices in convex position already admits 14 different trian-
gulations. In 2009, Sharir, Sheffer and Welzl showed that there are at
most 30n different triangulations for n vertices in the plane [SSW09].

In Figure 1 we provide visualizations of the above definitions and
lemmas.

1.1.1 Delaunay Triangulation

It is common to consider a "quality" measure for triangles. One qual-
ity of a triangle can be seen as its minimum internal angle. Max-
imizing the minimum internal angle helps to avoid skinny trian-
gles (sliver triangles). In a practical application like the finite ele-
ment method such triangles lead to an increased number of itera-
tions needed for the computation.

The Delaunay triangulation (DT), named after Boris Nikolaevich De-
launay (1890-1980) [Del34], is a triangulation of a point set on the
plane. The DT is an optimal triangulation where the optimality is
given by the maximization of the smallest internal angles over all
triangles among all possible triangulations.

Various definitions for the DT are known. One can define the DT by
the use of the empty circle property. It means that the circumcircle
defined by the vertices of a triangle never contains further vertices.
Another, more precise definition is given below.

D E F I N I T I O N 6 - D E L A U N AY T R I A N G U L AT I O N [C H E 8 9]
Let S be a set of points in the plane. A triangulation T is a Delaunay
triangulation of S if for each edge e of T there exists a disc d with the
following properties:

3

I N T R O D U C T I O N

1. The endpoints of edge e are on the boundary of d.

2. No other vertex of S is in the interior of d.

L E M M A 4 - U N I Q U E N E S S

If no four points of S are co-circular then the Delaunay triangulation
of S is unique.

(a) A Delaunay triangulation. (b) A constrained DT.

(c) A Voronoi diagram.

Figure 2: An example of a Delaunay triangulation of a point set S (a), a
constrained Delaunay triangulation (b), and a Voronoi diagram
of the same point set S (c).

The Delaunay triangulation (DT) is the dual graph of the Voronoi
diagram (VD). Since various approaches to calculate the DT include
first computing the VD, we define it here as well (see Figure 2c for
an example).

4

1.2 A P P L I C AT I O N

D E F I N I T I O N 7 - V O R O N O I D I A G R A M

Let {v1, v2, ..., vn} be a set S of n vertices called sites in the plane
R2. We define the Voronoi region for a site vi ∈ S as VRi := {p ∈
R2 | d(p, vi) ≤ d(p, q), ∀q ∈ S, q 6= vi}, where d(., .) denotes the Eu-
clidean distance metric. And finally the Voronoi Diagram VD(S) :=⋃

i ∂VRi, where ∂VRi means the boundary of VRi (i.e., each vertex
has equal distance to at least two sites).

The Voronoi diagram is named after, and was studied by, Georgy
Feodosevich Voronoi in his work from 1908 [Vor09]. It is also known
as Voronoi tessellation, Voronoi decomposition or Voronoi partition.
In this work we will only use it for the construction of constrained
triangulations, which is why we will not discuss it in more detail.

The constrained Delaunay triangulation (CDT) is a generalized De-
launay triangulation which allows required segments (constraints)
as part of the triangulation.

D E F I N I T I O N 8 - [C H E 8 9] C O N S T R A I N E D D E L A U N AY T R I A N -
G U L AT I O N

Let G be a planar straight-line graph (PSLG). A triangulation T is a
constrained Delaunay triangulation (CDT) of G if each edge of G is
an edge of T and for each remaining edge e of T there exists a disc d
with the following properties:

1. The endpoints of edge e are on the boundary of d.

2. If any vertex v of G is in the interior of d then it cannot be seen
from at least one of the endpoints of e (i.e., if one draws the line
segments from v to each endpoint of e then at least one of the
line segments crosses an edge of G).

1.2 A P P L I C AT I O N

Triangulation is a major topic in computational geometry. It is widely
used in areas of geometric data processing. In geographic informa-
tion systems (GIS) triangulation is used to represent real world data
via vector graphics, e.g., TIN (triangulated irregular network). The
field of robotics uses visibility graphs for motion planning. Polygon
triangulation in R2 is one way to generate such a graph. Triangula-

5

I N T R O D U C T I O N

tion is also used for modeling surfaces e.g. computer aided design
(CAD). Also some hidden surface removal (HSR) algorithms use tri-
angulation to conduct visibility checks.

1.3 H I S T O R Y

In 1975, Shamos and Hoey illustrate the Voronoi diagram in their
work Closest-point problems, where they show an O(n log n) bound
for many closest-point related problems [SH75]. In 1980, a divide
and conquer algorithm was published by Lee and Schachter which
can compute the Delaunay triangulation in O(n log n) time [LS80].
In 1985, Guibas and Stolfi propose two further algorithms, one to
produce the Voronoi diagram in O(n log n) time, and another to in-
sert one site in O(n) time [GS85].

In 1986, Fortune publishes his work A Sweepline Algorithm for Voronoi
Diagrams [For86], where he describes an O(n log n) time and O(n)
space algorithm to generate a VD. The idea for the computation of a
VD by the use of a sweep-line algorithm was thought to be impossi-
ble for a long time. He introduces the notion of a beach-line which is
composed from parabolic arcs defined by the input vertices behind
the sweep-line. Also in 1986, Lee and Lin define the constrained De-
launay triangulation in their work Generalized Delaunay triangulation
for planar graphs [LL86].

The triangulation of a simple polygon faster than O(n log n) was an
unsolved problem until 1988. Tarjan and Van Wyk develop an algo-
rithm that runs inO(n log log n) time [TW88]. In the following years
several algorithms where engineered withO(n log∗ n) time complex-
ity [CTW88] [Sei91] [CCT91]. In 1989, Chew discloses a divide and
conquer approach to construct the constrained Delaunay triangula-
tion in O(n log n) time [Che89].

In 1991 Chazelle published his now famous paper Triangulating a sim-
ple polygon in linear time [Cha91]. It shows, as stated in the title, how
to triangulate a simple polygon in O(n) time. The algorithm is very
complex and too complicated to implement in practice. Chazelle
also states that a test wether or not a polygon is simple can be ac-
complished in O(n) time. In the same year Seidel generalized For-

6

1.4 C O N T R I B U T I O N

tune’s sweepline algorithm to compute constrained Delaunay trian-
gulations [Sei91].

In 1998 Chin and Wang showed that a constrained Delaunay trian-
gulation of a simple polygon can be computed in optimal O(n) time
[CW98].

1.4 C O N T R I B U T I O N

This work summarizes the most common triangulation algorithms.
We will survey a few current publications in the direction of CDT
computation as well as GPU computing approaches. Two parallel
ear-clipping algorithms will be discussed in detail. Both were imple-
mented and tested and the results are visualized.

1.5 O U T L I N E

In this chapter we saw the definitions of the different triangulation
types. Some applications were listed to get an idea why triangula-
tion is an important topic. Also we saw in a short history who was
involved in the research in this field.

Next we will discuss different triangulation algorithms in detail in
Chapter 2. We start with the standard algorithms which are still in
use and end with some parallel variants, which compute by the use
of multicore architecture as well as GPU.

In Chapter 3 we will look at FIST, which is an implementation of one
of those algorithms. We see details of the implementation and also
specific aspects how special input is handled.

Then in Chapter 4 our two parallel extensions of FIST are discussed.

Finally, in Chapter 5 we present our experimental results comparing
our parallel versions to the regular implementation.

7

2
A L G O R I T H M S

In this chapter we discuss different triangulation algorithms which
were published over the last decade. We start with ear-clipping in
Section 2.1, which is a simple O(n2) triangulation algorithm. Then
we will discuss triangulation via subdivision of the polygon into its
monotone parts, which are triangulated separately. This algorithm
runs in O(n log n) time (see Section 2.2).

Since quality triangulations are preferred for most applications, we
will examine a few constrained Delaunay triangulation algorithms
as well. The first one is a sweep-line algorithm for CDT computation.
It creates the CTD with a Fortune-like sweep-line approach (see Sec-
tion 2.3). Then we review an algorithm to compose a CDT using an
incremental construction method in Section 2.4. At last we discuss a
CDT computation via GPU in Section 2.5.

2.1 E A R C L I P P I N G

The ear-clipping algorithm has an O(n2) runtime but is easy to im-
plement and can be very fast in practice. In Chapter 3 we will see
details about our implementation of this algorithm. Ear clipping is
based on Meisters two-ear theorem:

The next definition was given by Meisters [Mei75] and also applied
by Held [Hel01].

D E F I N I T I O N 9 - E A R

Three consecutive vertices vi−1, vi, vi+1 of a simple polygon P form
an ear of P if vi−1 and vi+1 constitutes a diagonal of P.

We defined the diagonal in Definition 4. For the purpose of simplic-
ity, we will sometimes refer to an ear vi, vj, vk of a polygon P, as an
ear of P at vj.

9

A L G O R I T H M S

D E F I N I T I O N 1 0 - N O N - O V E R L A P P I N G [M E I 7 5]
Two ears are non-overlapping if their interior regions are disjoint,
otherwise they are overlapping.

T H E O R E M 1 - T W O - E A R - T H E O R E M [M E I 7 5]
Except for triangles, every simple polygon has at least two non-over-
lapping ears.

D E F I N I T I O N 1 1 - R E M O V I N G A N E A R

Let P be a polygon on a plane and v1, ..., vn its n consecutive vertices.
Let vi−1, vi, vi+1 be an ear of P. If that ear is removed then P defined
by v1, ..., vi−1, vi, vi+1, ..., vn is transformed to P′ = v1, ..., vi−1, vi+1, ...,
vn. The remaining contour consists of n− 1 vertices.

The following proof follows the exposition given by Meisters [Mei75].

P R O O F - T W O - E A R - T H E O R E M

Proof by induction on the number of n vertices of a simple polygon P.
For n = 4 the polygon v1, v2, v3, v4 can have at most one reflex vertex.
If so, let v3 be reflex, the two non-overlapping ears of P are formed
by v1, v2, v3 and v3, v4, v1, as the hypothesis states. If all vertices are
convex the same two ears are still non-overlapping.

Let n > 4 and v be a vertex of P with an internal angle less than π.
Let v−, v, v+ be three consecutive vertices of P.

C A S E 1 v−, v, v+ form an ear of P (see Figure 3a). If this ear is re-
moved from P the resulting polygon P′ is either a triangle and, there-
fore, forms another non-overlapping ear of P. Or otherwise P′ is
a simple polygon with n > 3 and consists of one vertex less than
P. The induction hypothesis states that P′ has again two non-over-
lapping ears E1 and E2. Considering E1 and E2 are non-overlapping
at least one of them is not at v− nor at v+, let it be E1. Since all ears
of P′, except ears at v− or v+, are also ears of P, the two ears E1 and
v−, v, v+ are non-overlapping ears of P.

C A S E 2 P has no ear at v. Then the triangle ∆(v−, v, v+) contains
at least one vertex in its interior or on the diagonal v−v+. From all
those vertices we choose the one closest to v and denote it by vz. Let
vavb be the line segment which is parallel to v−v+ and intersects vz.
This line segment intersects the polygon at va and vb (see Figure 3b).

10

2.1 E A R C L I P P I N G

The triangle ∆(vavvb) contains no further vertex. That means the
diagonal vzv lies entirely in the interior of P and can be used to split
P into two simple polygons P1 = v, vz, ..., v− and P2 = v, v+, ..., vz.
Either of them consist of less vertices then P since P1 does not contain
v+ and P2 does not contain v−.

C A S E 2 A P1 is a triangle and P2 is not a triangle (if P2 would be a
triangle as well then P1 and P2 form the two non-overlapping ears).
Then v, vz, v− form an ear of P. As the hypothesis states P2 must
contain two non-overlapping ears E1 and E2. One of those ears is
not at v nor at vz, lets say E1. Due to the non-overlapping property
E1 and v, vz, v− form two ears of P.

C A S E 2 B P1 is not a triangle. Then again the hypothesis states that
P1 and P2 have each two non-overlapping ears. Since v and vz are
the only vertices contained in both polygons, at least one ear of P1 is
not containing them, the same holds for P2.

v

v− v+

(a) Case 1
v

v− v+

vzva vb

(b) Case 2

Figure 3: Polygon P: In (a) ∆(v, v+, v−) forms an ear of P. In (b) vz lies in
the interior of that triangle.

Naively implemented ear clipping would take O(n3) time: O(n)
ears to complete the triangulation and O(n2) to find an ear. This
is due to the fact that we may need to check O(n) vertex triples
whether they form an ear and for each test we need to test O(n)
vertices.

11

A L G O R I T H M S

The basic idea of the ear-clipping algorithm is to first classify all ears
and store them in some sort of queue. Then we start with the clip-
ping process by taking out ears one by one and store them in a trian-
gle list. For each ear vi, vj, vk which we remove, we have to re-classify
its two outer vertices vi and vk. These vertices might be ears now and
have to be stored in the queue as well.

The classification step has an O(n2) runtime. In total we have to
check n vertex triples vi−1, vi, vi+1. Then, on each triple we have
to check all n vertices whether one of them lies inside the triangle
∆(vi−1, vi, vi+1). If the interior region of the triangle is empty and
also no vertex lies on the line segment vi−1vi+1 then vi−1vivi+1 form
an ear.

The clipping step takes O(n2) time since we need to clip n ears, and
on each ear vi−1, vi, vi+1 we have to re-/classify vi−1 and vi+1. This
re-/classification takes O(n) time like above and gives us an overall
O(n2) runtime.

In practice various mechanisms like grids can be used to speed up
the runtime drastically (see Chapter 3) but since they are heuristic in
nature, they will not reduce the theoretical bound.

2.2 T R I A N G U L AT I O N U S I N G M O N O T O N E P O LY G O N S

A simple O(n log n) time triangulation algorithm exists which uses
monotone subdivision. The idea is that a monotone polygon can
be triangulated easily in O(n) time. To enable the triangulation of
an arbitrary simple polygon, it has to be subdivided into monotone
parts. This monotone subdivision can be done in O(n log n) time.
Since the subdivision only adds a linear amount of diagonals to the
polygon, the triangulation of the monotone subpolygons still only
needs O(n) time, so we get an overall O(n log n) time algorithm.

In this section we follow the description given in the book Compu-
tational Geometry [BCKO08] of the algorithm originally published in
the article Triangulating a Simple Polygon in 1978 [GJPT78].

D E F I N I T I O N 1 2 - M O N O T O N E P O LY G O N

A simple polygon P is monotone with respect to a line ` if for all lines

12

2.2 T R I A N G U L AT I O N U S I N G M O N O T O N E P O LY G O N S

`′ orthogonal to `, the intersection of Int(P) with `′ results in at most
one connected component (see Figure 4).

Another definition of a monotone polygon is that it consists of two
monotone chains (see Figure 4c). In some cases we require a strictly
monotone polygon. Strictly monotone means that on either monotone
chain two vertices do not hold the same coordinates relative to the
monotony axis.

`

Int(P)

`′

(a) x-monotone

Int(P)

`

`′

(b) not y-monotone

v′1

v′2 v′3

v′4

v1
v2

v3

v4
v5

(c) two monotone chains

Figure 4: In (a) an x-monotone polygon, in (b), a not y-monotone polygon,
and in (c), two monotone chains.

2.2.1 Monotone Subdivision

We start at the top-most vertex of our simple polygon P and walk
down on either side of our contour. On a vertex vi where we change
direction and walk up again we know that the y-monotony is not
given (see Figure 5).

vi

v

d

Figure 5: At the vertex vi we can see that this polygon is not y-monotone.

13

A L G O R I T H M S

When both adjacent edges of a vertex v lead downwards and the
interior of the polygon P lies locally above, we should add a diagonal
d going up from v. Adding such a diagonal means we subdivide P
and that the vertex v will be contained in both sub-polygons. After
this subdivision, one adjacent edge of v is going up and the other is
going down. This takes place in either sub-polygon, thus both sub-
polygons are now either y-monotone or at least the part we changed
is no longer changing the direction.

start vertex
stop vertex
split vertex
merge vertex
regular vertex

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15
v16

v17

v18

v19

e1

e2

e3

e4 e5 e6

e7

e8
e9 e10

e11

e12
e13

e14

e15

e16

e17
e18e19

Figure 6: A simple polygon containing all vertex cases.

For this algorithm to avoid special cases with equal y-coordinates
the notion of above and below is defined as follows:

D E F I N I T I O N 1 3 - [B C K O 0 8]
A vertex p is below another vertex q means that py < qy or py =
qy ∧ px > qx. A vertex p is above another vertex q means that py > qy
or py = qy ∧ px < qx.

There are several vertex cases to differentiate: start, stop, merge and
split vertex (see Figure 6). The rest of the vertices are regular, which
means they have one adjacent edge going down and one going up.

14

2.2 T R I A N G U L AT I O N U S I N G M O N O T O N E P O LY G O N S

(a) start vertex (b) stop vertex (c) split vertex (d) merge vertex

Figure 7: All four vertex cases uses for the monotone subdivision.

In a start vertex v (see Figure 7a) both adjacent neighbors lie below
v and the internal angle between the adjacent edges is less than π. If
that angle is greater than π, then v is a split vertex (see Figure 7c).

Next, we have the stop vertex (see Figure 7b). Here, both adjacent
edges go up, meaning both neighbors lie above v and the interior
angle is less than π. If the angle is greater than π, it is a merge vertex
(see Figure 7d); the interior of P lies locally below it.

The correctness of this algorithm depends on the following lemma:

L E M M A 5 A simple polygon is monotone relative to the y-axis if
it does not contain any merge or split vertices.

The following proof follows the exposition given by de Berg et al.
[BCKO08].

P R O O F

Let P be a simple polygon that is not y-monotone. Since P is not
y-monotone there exists by definition a line orthogonal to the y-axis
that intersects Int(P) and creates more than one connected compo-
nent. Let ` be such a line. It follows that ` intersects the contour of
P at least four times. We sort those vertices by their x-coordinate an
denote them v1, ..., vn. Then we walk along the contour from v2 to v3.
On the way we have to find a maximum, which means a split vertex,
or minimum, which would be a merge vertex (see Figure 8).

The idea of the algorithm is to walk through the contour with a
line sweep from top to bottom and create diagonals along the way
from split vertex to merge vertex. This divides the polygon into sub-
polygons which contain neither split nor merge vertex and, therefore,
are monotone due to Lemma 5.

15

A L G O R I T H M S

P

v1 v2 v3
`

split vertex

v4

(a) first case

P

v1 v2 v3
`

merge vertex

v4

(b) second case

Figure 8: Two illustrations to support the proof above.

Let P be a simple polygon and the vertices counterclockwise (CCW)
along the contour be denoted by v1, ..., vn. Let edges e1 = v1v2, ...,
en−1 = vn−1vn and of course en = vnv1 (see Figure 6). First, we sort
the vertices of P by their y-coordinate and store them in a queue Q. If
equal y-coordinates emerge then the left vertex is taken first, accord-
ing to our previous definition of above and below (see Definition 13).

If we encounter a split vertex vi, we have to add a diagonal upwards.
So how does one find a diagonal which lies entirely inside of the
polygon P? The sweep line always saves the next left and right edge
ej, ek from our current vertex vi. Then we connect vi to the lowest
vertex between ej and ek. If there is no such vertex, we connect vi to
the lowest top vertex of the edges ej and ek (see Figure 9a).

D E F I N I T I O N 1 4 - [B C K O 0 8]
Let helper(ej) be the lowest vertex vx above the sweep line ` such
that the horizontal line segment which starts at vx and intersects ej
before any other edge on the side of ej.

Each edge maintains its own helper() which can change during the
sweep.

When we encounter a merge vertex vi, we need to add a diagonal
down, which seems more complex than before since we only have
computed the subdivision until the split line. The idea is to connect
the merge vertex vi to the highest vertex below the sweep line. We
do not know that vertex right now, but when we reach vk and want
to replace helper(ej) with vk we can see that the old helper(ej) is a

16

2.2 T R I A N G U L AT I O N U S I N G M O N O T O N E P O LY G O N S

merge vertex and add the diagonal vivk. This means, every time we
reset a helper() we check if the current helper vertex is a merge vertex.
If so, we first add the diagonal and then reset that helper. If we have
to handle a split vertex and helper() refers to a merge vertex (like in
Figure 9a), we would take care of both at the same time.

vi

ej
ek

sweep line `

helper(ej)

(a) Example for handling a split ver-
tex vi.

viej

eksweep line `

vk

(b) Example for handling a merge
vertex vi.

Figure 9: Examples for both split and merge vertices.

Important as well is how we find the next left or right edge from
each vertex. For this we save the sweep line status in a data structure
containing the edges currently intersecting the sweep line in a left-
to-right order. At each vertex this sweep line status is updated. Only
edges which have the interior of the polygon on the right are stored.

Now we review the algorithm to verify the overall runtime. At the
start we have to sort the vertices according to their y-coordinates
and store them in a queue Q, which is done inO(n log n) time. Next,
we start the line sweep which has to dequeue each of the n vertices.
Since Q is already sorted, it takes O(1) to get a vertex and then
O(log n) time to process it. The processing involves to find the next
left edge, which is inside the data structure containing the sweep
line status. As mentioned above this data structure is already in a
left to right order, thus the search can be conducted inO(log n) time.
If a new edge is to be inserted into the sweep line status, it takes
again O(log n) time, but on each vertex at most one edge has to be

17

A L G O R I T H M S

removed or inserted. At last, the insertion of a diagonal takes O(1)
time. This gives us an overallO(n log n) runtime for the subdivision.

2.2.2 Triangulation of a Monotone Polygon

Let P be a y-monotone polygon with n vertices. To avoid special
cases we let P be strictly y-monotone. That means, if we split up P
into its two monotone chains (left and right), we can walk down
along either contour, by starting at the top and always go down-
wards (decreasing y-coordinate). This makes the triangulation very
easy. The idea is to insert diagonals along the way whenever possi-
ble.

We assume we have all n vertices of our polygon P in a doubly-
linked list L. We also use a stack S as an auxiliary data structure.
The algorithm handles the vertices by decreasing y-coordinate, start-
ing at the top (start) vertex v1. While processing a vertex vi, there
remain only unfinished vertices (those which still need some diago-
nals) on the contour above. The stack S is used to store those vertices
in the following order. The last processed vertex vi−1 will be on top
of S, and the vertex with the highest y value on the bottom. After we
finished with vertex vi, we push it on the stack as well, since it is not
finished.

While processing a vertex vi we distinguish two cases: First case is
that the previous vertex vi−1 is on the same contour chain as vi (see
Figure 10), the second case is that vi−1 is on the opposite side (see
Figure 11).

In the first case (see Figure 10), where vi is on the same side as the
vertex vi−1, we get some kind of reflex curve along the points remain-
ing on the stack S. If vi−1 is also reflex, we just get an even longer
reflex curves by pushing vi onto S. If vi−1 is convex we can add a
diagonal vi−2vi.

This algorithm just pops the last two vertices vi−1, vi−2. If the inter-
nal angle of vi−1 is convex, i.e., less than π, we insert the diagonal
vi−2vi, store the triangle ∆(vi−2, vi−1, vi), and remove the convex ver-
tex vi−1 from the contour loop. Now the next vertex vi−3 is popped
from S and this process is repeated until an angle is reflex. Then

18

2.2 T R I A N G U L AT I O N U S I N G M O N O T O N E P O LY G O N S

popped and pushed

pushed

vivi−1

(a) vi−1 is reflex

popped

popped and pushed

pushed

vi

vi−1

(b) vi−1 is convex

Figure 10: Monotone polygon: first case.

no further diagonal can be added and the last vertex taken from the
stack and vi are pushed onto S.

triangles split off

not yet triangulated

e

vi

popped

popped and pushed

pushed
vi−1 vi−1

vbvb

Figure 11: Monotone polygon: second case.

In the second case (see Figure 11), the processed vertex vi is on the
opposite side of vi−1. This means that all vertices on the stack are
from the opposite chain, except the bottom vertex vb. This means
we can add diagonals to all of them and remove all vertices from
the stack. No diagonal is needed to the bottom vertex vb, since the
contour edge e, from vb to vi, already exists. At last we need to push
vi−1 and then vi back on the stack, since they are not finished.

19

A L G O R I T H M S

The algorithm has the following runtime: The initialization is done
in O(1). The main process to walk through the monotone chains
vertex by vertex takes O(n). It is possible that the effort to process
one vertex takes linear time, but at each step at most two vertices are
pushed onto the stack. Since the number of pops can not exceed the
number of pushes, this whole process runs in O(n) as well as the
final step. This means an y-monotone polygon can be triangulated
in linear time.

What we want is to combine the monotone subdivision, which runs
in O(n log n) time, and the triangulation of a monotone polygon,
which runs, as shown above, inO(n) time. Due to the fact that, while
splitting into monotone sub-polygons, we only add a linear amount
of diagonals, we also add only a linear amount of vertices. This
means that triangulation of those sub-polygons still runs in O(n)
time, resulting in an overallO(n log n) time algorithm to triangulate
a simple polygon.

2.3 A S W E E P - L I N E A L G O R I T H M F O R C O N S T R A I N E D D E L A U -
N AY T R I A N G U L AT I O N

We defined the constrained Delaunay triangulation (CDT) in Chap-
ter 1, Definition 8. In this section, we will discuss the algorithm pub-
lished by Domiter and Žalik in 2008 [Dv08].

This algorithm uses a Fortune-like sweep-line approach to generate
the CDT directly. Below, in Section 2.5, we will see another approach
which generates the Voronoi diagram first, continues with the Delau-
nay triangulation and finally, by adding the constraints, generates
the CDT.

In a sweep-line algorithm, as the sweep-line travels from−∞ to +∞,
the computation below the sweep-line is always complete. Usually,
no guarantee is stated for the state above it.

The counterpart to Fortune’s beach-line is called advancing front. It
consists of the topmost edges below the sweep-line (see the blue
dashed line segments in Figure 12). Necessary data structures are
a doubly-linked list L to store the advancing front (AF) and a queue
Q for the input vertices. A vertex data field vi stores its coordinates

20

2.3 S W E E P - L I N E A L G O R I T H M F O R C D T

as well as references about existing adjacent edges and their state
(starting / ending).

The algorithm is split into three parts: initialization, sweeping and fi-
nalization. They will be discussed in detail in the following sections.

2.3.1 Initialization

First, the input vertices v1, v2, ..., vn are sorted by their y-coordinates.
Then, two artificial vertices v−1, v0 are added to avoid the occurrence
of special cases. In the finalization step (Section 2.3.3), the artificial
vertices will be removed.

v−1 = (xmin − δx, ymin − δy)
v0 = (xmax + δx, ymin − δy)

where δx = α ∗ (xmax − xmin), δy = α ∗ (ymax − ymin) and α > 0.
Special cases occur when not only the advancing front but also the
triangulation below it has to be changed. Adding v−1 and v0 avoids
that problem completely.

xmin xmax

ymax

ymin
vi

v−1 v0

Figure 12: Initialization: the green bounding box to set v−1 and v0, the first
triangle ∆(v−1, v0, vi) and the AF v−1,vi,v0 in blue dashed line.

In the discussed article, α is a constant and set to 0.3. The vertices
v−1 and v0 are used to create the first triangle ∆(v−1, vi, v1). In this
triangle vi is the first vertex from the queue and has the lowest y-

21

A L G O R I T H M S

coordinate. This will initialize the advancing front (AF) by adding
v−1, vi, v0 to the list L.

See Figure 12 for an example of the previously explained initializa-
tion.

2.3.2 Sweeping

During the sweep phase, two types of events can be distinguished
from each other: point events and edge events.

A point event denotes the insertion of a vertex into the triangulation.
Two cases are to be differentiated when inserting a vertex v. The
first one is the middle case. It occurs when v lies strictly between two
vertices of the advancing front (AF). The second one is the left case
which is at hand when v lies exactly above an AF-vertex.

An edge event inserts a vertex and the adjacent edges (constraints).
Every constraint is always associated to its top vertex (the vertex
with the higher y-coordinate). When processing a vertex vi which
references to an edge where vi is not its upper end point, this edge is
not taken into account. The end point of an edge denotes its upper
vertex whereas the start point denotes its lower vertex.

Point Event

When a point event occurs, the appropriate spot of insertion has to
be found in the AF. The geometric search is accelerated by a hash
table. At this point, we can distinguish between the middle case and
the left case which were mentioned in the section above.

M I D D L E C A S E A vertex vi has to be inserted and is projected verti-
cally on the AF. This projected vertex lies strictly between two
consecutive AF-vertices va and vb. In this case, the triangle
∆(va, vb, vi) is formed and vi is inserted between va and vb into
the AF (see Figure 13a).

L E F T C A S E Like in the middle case, a vertex vi has to be inserted.
Now, its projection on the AF coincides exactly with an AF-
vertex vb. In this case, two triangles ∆(va, vb, vi) and ∆(vi, vb, vc)

22

2.3 S W E E P - L I N E A L G O R I T H M F O R C D T

are added where va, vb, vc are consecutive vertices of the AF. At
last, vb is replaced by vi in the AF (see Figure 13d).

va vb

vc

vi

(a) Vertex vi is projected
on the AF.

va vb

vc

vi

(b) AF updated, triangle
∆(vavbvi) added.

va vb

vc

vi

(c) Legalization of edge
vivc.

va

vd
ve

vc

vb

vi

(d) vi is projected on the AF. Projec-
tion coincides with vb.

va

vd
ve

vc

vb

vi

(e) Two triangles are added:
∆(vavbvi) and ∆(vivbvc).

Figure 13: Sweep-line CDT: (a, b, c) middle and (d, e) left case.

After one of the described cases is handled, a legalization process
is carried out. This is a mechanism which was introduced by Law-
son in his work Software for C1 surface interpolation in 1977 [Law77].
He shows that every triangulation can be transformed into a DT by
applying the empty-circle test on each edge which is shared by two
triangles.

A small example of this legalization process is pictured in Figure 14.

Additionally, this algorithm creates triangles to visible points on the
AF. This can lead to an unbalanced triangulation. Therefore two
heuristics are introduced to reduce the workload for the legalization
process.

23

A L G O R I T H M S

v2

v3

v4

v5
v1

(a)

v2

v3

v4

v5
v1

(b)

v2

v3

v4

v5
v1

(c)

Figure 14: Sweep-line CDT: legalization. In (a), the in-circle test is per-
formed on ∆(v2v5v6). Since the circle is not empty, an edge flip
is performed on v2v5. In (b), another in-circle test is applied to
∆(v3v5v6) and another edge flip to v3v5, which can be seen in the
resulting DT in (c).

1. If the angle between the newly inserted triangle and the AF
is smaller than π/2, triangles are added until this property no
longer holds (see Figure 15).

2. To avoid the appearance of basins, the fluctuation of the AF has
to be controlled. A basin is like a sink along the AF where no
triangles were generated yet. Therefore, if the angle between
AF-segments is larger than 3π/4, the basin is filled with trian-
gles (see Figure 16). The notion basin was also defined by Žalik
in 2005 [Ž05].

Edge Event

An edge event takes place whenever an edge end-point (upper ver-
tex) is reached. As explained in Section 2.3.2, each vertex references
its adjacent edges.

First, the current vertex v is inserted like in the subsection Point Event.
The insertion of its constraint c (edge) starts with the search for the
first intersected triangle. The first triangle can be found by evaluat-
ing the direction vector of c and comparing it to the ones, from the
triangles which contain v. Every further triangle is found by travers-
ing through the triangulation, using adjacency links. This process
is explained in full detail in the work of Anglada et al. from 1997
[Ang97].

24

2.3 S W E E P - L I N E A L G O R I T H M F O R C D T

va

vb
vc

vi < π
2

vd

(a)

va

vb
vc

vi < π
2

vd

(b)

va

vb
vc

vi

vd

> π
2

(c)

Figure 15: Heuristic 1: The newly inserted triangle ∆(vavivb) changes the
AF. The angle between the AF-segments vivb and vbvc is < π/2.
In (b), the triangle ∆(vivbvc) is added, and the AF is updated.
Again, the angle between the AF-segments is < π/2 and in (c)
the triangle ∆(vivcvd) is inserted. The angle between the AF-
segments is now > π/2 and the inserting process stops.

vi
> 3π/4

(a) (b)

Figure 16: Heuristic 2: In (a), vi is inserted and due to the second heuristic
a basin is detected, and in (b), that basin is filled with triangles.

The idea is to determine the position of a triangle relative to c. After
all intersecting triangles are found, they are removed from the trian-
gulation. Their vertices are stored in Πu and Πl, where Πu stores the
vertices above the constraint and Πl those below it (see an example
for this process in Figure 17a-c).

Two sub-polygons are formed by using the vertices stored in Πu
and Πl. Then those sub-polygons are re-triangulated. The follow-
ing cases may occur while inserting a constraint c:

• If c coincides with an edge e of a triangle, e is marked as fixed
and must not be changed after this step.

25

A L G O R I T H M S

t1t2

t3
t4

t5

t6
t7

Pi

c

(a)

Pi

Πu

Πl

c

(b)

Pi

c

(c)

Figure 17: Sweep-line CDT triangle traversal: In (a), the triangles t1, ..., t7
intersecting the constraint c are found. In (b), two sub-polygons
are created by using Πu and Πl. In (c), these sub-polygons are
triangulated separately without intersecting c.

• If c is entirely above the AF, no triangle is pierced. In that case
Πu is empty and Πl is created by an AF-traversal. In the AF-
traversal process we walk through the AF one vertex at a time
and insert it in Πl if it is still below c. Then Πl is triangulated.

• If c is partially above and partially below the AF: as long as c
is above the AF, an AF-traversal is conduced. Where c is inter-
secting with the AF the algorithm switches to triangle traversal
(see explanation of the triangle traversal process in full detail in
[Ang97]).

2.3.3 Finalization

Two steps remain to complete this triangulation algorithm. First, the
CDT should have the convex hull as its border. Second, the two
artificial vertices v−1 and v0 and all triangles containing at least one
of them have to be removed.

The upper convex hull is created by walking through the AF from
left to right. The algorithm starts at the beginning, which is v−1. It

26

2.3 S W E E P - L I N E A L G O R I T H M F O R C D T

takes vertex-triples and calculates their signed area. If positive, the
triangle defined by that vertex-triple is added and legalized. When
the end of the AF is reached, which is the second artificial vertex v0,
the upper part of the convex hull is completed (see Figure 18a).

The lower convex hull is created by using the triangles containing
at least one artificial vertex starting at v0. These triangles form the
lower contour Cl between v0 on the right side and v−1 on the left. We
walk through Cl and again use vertex-triples to evaluate if this part
of the convex hull is already correct. If the signed area is negative,
since Cl is traversed from right to left, a triangle has to be added
and legalized. In this part the triangles containing v−1 or v0 are also
removed (see Figure 18b).

v−1 v0

vi

vj

vk

(a) The upper convex hull is created
starting at v−1.

v−1 v0

vl

vm
vn

(b) Computation of the lower con-
vex hull starting at v0.

Figure 18: Sweep-line CDT finalization: in (a) the upper convex hull is cre-
ated by walking through the AF and adding triangle ∆(vi, vj, vk),
in (b) the lower convex hull is computed by removing the gray
dashed triangles and adding triangle ∆(vl, vm, vn).

Domiter and Žalik do not provide a runtime complexity. Yet they
present runtime results which show a comparison of their algorithm
with three others provided through Shewchuk’s Triangle package
[She96]. The benchmarking results show, that their algorithm allows
a speedup of about 2 for an input of 5 million vertices and 7 million
edges.

27

A L G O R I T H M S

2.4 I N C R E M E N TA L C O N S T R U C T I O N O F C O N S T R A I N E D D E -
L A U N AY T R I A N G U L AT I O N S

In this section we will discuss the algorithm presented by Shewchuk
and Brown in 2013 [SB13]. This algorithm computes the constrained
Delaunay triangulation by incremental insertion.

The worst-case runtime complexity is Θ(kn2), where n is the number
of input vertices and k is the number of input segments. Further
results were published which state that this randomized approach
has a expected O(n log n + n log2 k) runtime.

Paul Chew proposed an algorithm to construct a Voronoi diagram
for a convex polygon in linear expected time in 1990 [Che90].

In the discussed article, a variation of Chew’s algorithm is used for
inserting vertices as well as segments. In the following paragraph,
Chew’s algorithm, yielding a Delaunay triangulation, is described
in further detail.

Let L be the listing of the consecutive vertices of a polygon P. Let
R be a listing containing a randomized permutation of L. Chew’s
algorithm works as follows: In the first step the vertices from R are
removed one by one from the contour, until only three remain. When
a vertex v is removed its adjacent vertices u and w are stored as well.
The last three vertices form the first triangle of the DT (see Figure 19a-
d). In the second step the removed vertices are inserted in reverse
order. This means the last removed vertex is inserted first. When in-
serting a vertex v its adjacent vertices u and w are already part of the
DT. The empty circle property of the circle defined by u, v, w is veri-
fied. If it fails all triangles containing the edge uw are removed. Then
the union of the removed triangles and ∆(u, v, w) is re-triangulated
by inserting edges starting at v (see Figure 19e-g). This part is also
known as Bowyer-Watson algorithm, introduced by Bowyer and Wat-
son in 1981. All details about that algorithm can be found in their
work [Bow81] [Wat81].

Chew’s algorithm runs in O(n) expected time for a convex polygon
with n vertices. A proof for this runtime can be found in Shewchuk
and Brown’s work [SB13]. Essentially, the point location step is done
in O(n) time. In average, the triangle deletion is only deleting less

28

2.4 I N C R E M E N TA L C O N S T R U C T I O N O F C D T S

than four edges per inserted vertex. This leads to a expected linear
runtime using Seidel’s backward analysis technique [Sei92].

v1
v2

v3

v4
v5

v6

(a)

v1
v2

v3

v4
v5

v6

(b)

v1
v2

v3

v4
v5

v6

(c)

v1
v2

v3

v4
v5

v6

(d)

v1
v2

v3

v4
v5

v6

(e)

v1
v2

v3

v4
v5

v6

(f)

v1
v2

v3

v4
v5

v6

(g)

Figure 19: Incremental CDT of a Convex Poylgon: In (a), we see the input
polygon. A random order V = v2, v3, v5, ... of the consecutive
vertices is generated. The vertices of V are removed from the
contour and their adjacent edges stored (b-d). In (d), only three
vertices remain, which already form a triangle ∆(v1v4v6). In (e),
the insertion process starts, inserting the vertices of V in reverse
order, by starting with v5. In (g) the insertion process is finished
yielding a CDT from the convex input polygon.

The algorithm presented by Shewchuk and Brown deviates from
Chew’s algorithm since it can handle non-convex polygons. Further-
more, the discussed algorithm is using Chew’s algorithm as part of
their re-triangulation process. The main differences are addressed
next:

• Vertices which define constraints are inserted at the beginning.

• Constraints may have one adjacent vertex dangling inside of
the polygon P. This would lead to a non-simple contour listing,
since vertices would be used more than once. Those vertices are

29

A L G O R I T H M S

simply inserted twice, this workaround also helps to maintain
a simple list structure of the contour (see Figure 20a).

• After each inserted vertex the algorithm has obtained a CDT of
the given input vertices up to this point. If a vertex v is to be in-
serted, the algorithm not only checks the empty-circle property
of v and its adjacent vertices, but also their orientation (see Fig-
ure 20b and Figure 20c). This is essential to regain the correct
contour, even when dealing with reflex vertices.

v1

v2

v3

v4

v5

(a) v2 is inserted a second
time, as v4.

v1

v2

v3

v4 vk

(b) The polygon’s con-
tour is v1, v2, v3, v4,

v1

v2

v3

v4 vk

(c) To insert v2, triangles
have to be removed.

Figure 20: Incremental CDT: Cases occurring in Shewchuk and Brown’s al-
gorithm.

Shewchuk and Brown’s algorithm was tested against an implemen-
tation of a gift-wrapping algorithm published by Anglada [Ang97].
Details about this gift-wrapping algorithm can be found in his work
from 1997 [Ang97]. The benchmarking result shows that the dis-
cussed algorithm outperforms the gift-wrapping implementation. As
soon as the number of input vertices exceed 30− 85, depending on
the input, Shewchuk and Brown’s algorithm gets faster rapidly.

2.5 C O N S T R A I N E D D E L A U N AY T R I A N G U L AT I O N U S I N G G P U

Various algorithms are known to compute the constrained Delaunay
triangulation (CDT) of a polygon by the use of the GPU. Some vari-
ants use a hybrid approach which means they to do parts of the com-
putation on the CPU.

30

2.5 C O N S T R A I N E D D E L A U N AY T R I A N G U L AT I O N U S I N G G P U

A hybrid approach to the computation of the Delaunay triangulation
(DT), where the major part of the computation takes place on the
GPU, was published by Rong et al. in 2008 [RTCS08].

Another interesting algorithm to compute the VD on the GPU by
using a sweepcircle approach was published by Xin et al. in 2013
[XWX+13]. Fortune’s sweepline algorithm performs poorly when
applied in parallel, since it has to compute an overhead of approxi-
mately 90% per cell. The parallelization is done by splitting the plane
into cells, applying the algorithm on multiple cells at a time. The idea
of the sweepcircle is that inside the sweepcircle the Voronoi diagram
is computed correctly. With this property the calculated overhead
per cell is minimized and the performance for GPU computation op-
timized at the same time.

Since our goal is to compute the triangulation of polygons, we need
a CDT. Therefore, we will discuss the publication of Qi et al. [QCT12].
Like in other CDT approaches, the first step is to compute a Voronoi
diagram. Out of the VD a DT can be computed. In the end, the
constraints are added and result in a CDT.

The algorithm is structured into different phases. We will discuss
each phase separately in order to show the concept and the proce-
dure.

2.5.1 Digital Voronoi Diagram Construction

In this phase the bounding box of the input vertices is mapped into a
texture of size m×m (see Figure 21b). This texture is a binary image
where each pixel is filled if at least one vertex of the input data lies
in it. If more than one vertex falls into such a pixel, those vertices
are removed and saved as a missing vertex for a later phase. If a
vertex lies exactly between two pixels, the left pixel is chosen (see
Figure 21c). Those filled pixels are the seeds to create the discrete or
digital VD.

The next step is to calculate a digital Voronoi diagram (see Figure 21d;
we also added a normal VD in blue dashed lines). Differing from
a discrete VD, the digital Voronoi diagram does not guarantee the
correctness of its dual graph to be a Delaunay triangulation. The dis-
crete VD can be calculated using the standard flooding algorithm.

31

A L G O R I T H M S

The digital VD is computed by the use of the parallel banding algo-
rithm (PBA), which is also explained in detail in the work of Cao et
al. [CTMT10]. Its idea is to create a distance map from the binary
image. This map contains the minimum Euclidean distance to the
next filled pixel in each cell. The cells that we calculate the distance
from are the seeds from the digital VD. The value for one specific
cell is calculated by using only its eight neighbors. In the discussed
article the proof of correctness of an exact Euclidean distance map is
provided.

The advantage of PBA lies in running entirely in parallel while using
the GPU. Its drawback is the production of so called debris. This
means that the Voronoi regions can be disconnected and lead to an
incorrect Delaunay triangulation. That can be avoided by a specific
repair step which examines if neighboring pixels have the same color.
This step runs in parallel as well and is described in detail in the
discussed article by Qi et al. [QCT12].

2.5.2 Triangulation Construction

In the second phase, the triangles are computed by the use of the
digital Voronoi diagram (DVD). The Voronoi vertices of the DVD
have to be identified. They are the corners between those pixels
which have at least 3 different colored pixels as neighbors (see black
squares in Figure 22a). The triangles are created by walking around
each Voronoi vertex. If three different colors join at such a Voronoi
vertex, one triangle is added. If there are four different colors, two
triangles are added into the triangulation. The seeds of the three, or
at most four, adjacent Voronoi regions are used to create the vertices
for the triangles (see Figure 22b).

This process can be done on the GPU by processing one texture row
per thread. First, the triangles have to be counted. The offset re-
quired by each row in the data structure is calculated by using a par-
allel prefix sum. The triangles are then generated in parallel. This
parallel prefix sum primitive is provided natively by CUDA.

CUDA (Compute Unified Device Architecture) is a C-like language
developed by NVIDIA. It enables the use of the GPU (graphics pro-
cessing unit) for parallel computation.

32

2.5 C O N S T R A I N E D D E L A U N AY T R I A N G U L AT I O N U S I N G G P U

(a) The input polygon P where the
CDT is computed from.

(b) P mapped into the m×m texture
map.

(c) Texture cells and their associated
vertices are marked.

(d) PBA used to compute the digital
VD of P.

Figure 21: CDT computation on the GPU: first phase.

Another process, which is running concurrently on the CPU, is add-
ing the triangles which depend on Voronoi vertices lying outside of
the texture map (see blue squares in Figure 22b). This is done by
using a Graham scan, named after and described by Graham in 1972
[Gra72]. Those triangles are added at the end of the triangle data
structure.

2.5.3 Shifting

In the third phase, the vertices holding the triangulation (seeds of the
DVD) are transformed back to the position of their corresponding
original input vertices (see in Figure 22c and Figure 22d).

33

A L G O R I T H M S

(a) Finding the digital Voronoi ver-
tices in the DVD.

(b) Create triangles around DVV
(digital Voronoi vertices).

(c) Shifting the good cases back to
their original position.

(d) Removing bad case related trian-
gles. Retriangulate hole.

Figure 22: CDT computation on the GPU: second and third phase.

There are two possible cases: the good case, where all neighbor trian-
gles remain on the same side (Figure 22c), and the bad case, which im-
plies that a vertex is crossing over a triangle edge (Figure 22d). Due
to a good resolution in the texture map, the short shifting distance
should ensure a minority of bad cases.

This process should be carried out in parallel as well. To accomplish
that without corrupting the result, no two adjacent vertices are al-
lowed to be shifted at the same time. An algorithm is checking if a
good case is at hand and the vertex can be shifted, or if it has to be
marked as a bad case.

This algorithm is explained in more detail in the referenced article
[QCT12] by Qi et al. The testing for a bad case is done by the use of
Shewchuk’s orientation-test. The procedure is described in his work

34

2.5 C O N S T R A I N E D D E L A U N AY T R I A N G U L AT I O N U S I N G G P U

from 1996 [She96] where he also explains his triangulation algorithm
Triangle.

After every good case is shifted, the remaining bad cases are removed
from the triangulation and, like in the first phase, stored as missing
vertices. When a vertex from the triangulation is removed, all adja-
cent edges have to be removed as well and leave a hole. This hole has
to be triangulated again. Due to the star-shaped property of such a
hole, it can be triangulated in linear time, for example by using Woo
and Shin’s algorithm [WS85]. The number of new triangles is at least
one less than the triangles deleted. That ensures memory safety in
parallel computation, since the slots in the triangle data structure left
by the deleted triangles can be reused to store the new ones.

2.5.4 Missing Points Insertion

As the name suggests, the vertices which have been marked as miss-
ing are added in phase one as well as the vertices which have been
removed as bad cases in the last phase (see Figure 24a).

If a vertex is inserted inside a triangle, it splits that triangle into three
triangles. Adding a vertex on an edge which is shared by two trian-
gles results in four triangles.

To ensure a good parallel search performance, the search for the tri-
angle containing a vertex is done as follows: If we re-insert a vertex
which has been removed in phase one, the search starts with the ver-
tex vi associated with that pixel. Since vi is in the triangulation, only
triangles containing vi have to be tested.

If we re-insert a vertex vj which has been removed in phase three, we
test the triangles containing the vertices which shared an edge with
vj before it had been removed.

Since this is done in parallel, we have to assure that we do not insert
two vertices which manipulate the same triangle. The algorithm for
the point insertion is explained in full detail in the article of Qi et al.
[QCT12]. It uses atomics and passes over the triangulation several
times until all missing points are inserted.

35

A L G O R I T H M S

2.5.5 Adding Constraints

Adding the constraints is carried out between phase four and phase
five. Simply giving one constraint to each thread most likely results
in a poor performance: One constraint could affect O(n) triangles
while others may affect none. An even worse case would be if differ-
ent constraints intersect with the same triangle.

Also in this approach, a mark phase is used. First, all triangles that
intersect one constraint are found and then marked in parallel by
the use of atomics. Then follows a flip phase where intersecting tri-
angles are classified and flipped according to their case. There are
four possible intersection cases: zero, one, double and concave (see
Figure 23).

To solve all cases for a triangle A intersecting a constraint c, the one-
step look-ahead method is described. It uses three triangles: The tri-
angle intersecting c before A, and the triangle after A and of course
A itself. This method converts the case at hand to a less complex
case with each run. E.g. a double intersection is converted into a
single intersection. This means that several runs may be required to
completely solve the intersection for one constraint.

This process has to be repeated for each constraint. This algorithm
and proof of its correctness are discussed in full detail in [QCT12].

(a) zero (b) single (c) double (d) concave

Figure 23: The four cases how a constraint (red dashed), can be intersected
by an edge (blue).

36

2.5 C O N S T R A I N E D D E L A U N AY T R I A N G U L AT I O N U S I N G G P U

2.5.6 Edge Flipping

In phase five, the Delaunay property is constructed, unless there is
a constraint which prevents that. For an edge ab from the triangle
∆(abc), by checking the second adjacent triangle ∆(abd), the in-circle
test is conducted. If d lies inside the in-circle, the edge flip is carried
out (see Figure 24b).

This process is executed in parallel. Again, a mark phase is followed
by a flip phase. In order to mark all triangles which will be modified
in the second phase, atomics are used to assure that there is never
more than one thread which operates on the same triangle.

37

A L G O R I T H M S

(a) Insert the missing vertices (blue)
and the associated triangles.

(b) Adding constraints without flip-
ping edges.

(c) Adding constraints, flip edges
until no intersection remain.

(d) Flip unconstrained edges until
inscribed circle property holds.

Figure 24: CDT computation on the GPU: fourth and fifth phase, and con-
straint integration.

38

3
F I S T

FIST (fast industrial strength triangulation [Hel01]) is an ANSI C im-
plementation of the ear clipping algorithm (described in detail in Sec-
tion 2.1). The goal is to provide a fast and very robust software that
can always provide a viable triangulation output. If the input data
gets more and more corrupt, it should not crash but produce a trian-
gulation which should still be useful in some way. Of course, only to
a certain degree of degenerated input.

Naturally the runtime complexity in theory is O(n2) but geometric
hashing is used which improves the performance drastically in most
practical cases.

For FIST, two sets of conditions called CE1 and CE2 are proposed.
They are applied to determine whether an ear is given at a certain
vertex or not. We employ this conditions defined by Held [Hel01].

L E M M A 6 - C E 1
Three consecutive vertices vi−1, vi, vi+1 of P form an ear of P iff

1 . vi is convex,

2 . the diagonal vi−1vi+1 does not intersect any edge of P except at
vi−1 and vi+1,

3 . vi−1 ∈ C(vi, vi+1, vi+2) and vi+1 ∈ C(vi−2, vi−1, vi), where C(., ., .)
denotes the cone defined by the three given vertices.

L E M M A 7 - C E 2
Three consecutive vertices vi−1, vi, vi+1 of P form an ear of P iff

1 . vi is convex,

2 . the closure of the triangle ∆(vi−1, vi, vi+1) does not contain any
reflex vertex of P (except possibly vi−1, vi+1).

39

F I S T

vi+1

vi

vi−1

vi−1vi+1

(a)

vi+1

vi−1

vi−2

C(vi−2, vi−1, vi)
vi

(b)

vi+1

vi−1

vi+2

C(vi, vi+1, vi+2)vi

(c)

Figure 25: Visualization of the conditions needed for Lemma 6. In (a), the
diagonal vi−1vi+1, in (b), the first cone C(vi−2, vi−1, vi), and in (c),
the second cone C(vi, vi+1, vi+2) is shown.

Both CE1 and CE2 (Lemma 6 and Lemma 7) lead to a correct ear-
clipping algorithm, as proven by Kong et al. in 1991 [KET91]. Yet
the runtime analysis show that CE1 has an O(n2) complexity. In the
worst case, CE2 takes O(r · n) where r denotes the number of reflex
vertices [Tou91]. Both CE1 and CE2 are implemented in FIST and
have been tested. In practice, since the CE2 implementation is faster
than CE1, it is chosen as default.

3.1 O R I E N TAT I O N

This is a trivial problem for a simple polygon, but as we also deal
with polygons which contain islands, the orientation for each con-
tour has to be solved.

As proposed by Balbes and Siegel in [BS91], the sum of all triangle
areas ∆(v0, vi, vi+1) to determine the orientation of the polygon is
used [Hel01]. Since counter-clockwise (CCW) triangles have a posi-
tive value and clockwise (CW) triangles have a negative value, this
gives a stable base for degenerated cases, too.

In order to decide which one is the outmost contour, one compares
the absolute area-value of each contour loop and calculates it with
the approach mentioned above. After the contour with the maxi-
mum absolute area is chosen for the outer loop, its orientation is set
to CCW and all other contour loops are set to CW direction.

40

3.2 R E G U L A R G R I D

3.2 R E G U L A R G R I D

As mentioned above, the standard ear-clipping takes O(n2) time.
Therefore, in practice, it is only applicable for small input data sets.

Since all reflex vertices have to be checked, the process to check
whether or not a convex vertex vj and its adjacent vertices vj−1 and
vj+1 form an ear takes O(n) time.

A vertex vx which would not allow vj−1,vj,vj+1 to form an ear would
have to lie inside the triangle ∆(vj−1, vj, vj+1) (see Figure 26a), or on
the line segment vj−1vj+1 (see Figure 26b).

This can be checked by calculating on which side vx lies, relatively
to the line segment vj−1vj+1. Such a vertex has to be reflex, if oth-
erwise, it can not lie inside of a triangle like ∆(vj−1, vj, vj+1). We
can conclude that every convex polygon can be triangulated only by
checking if the enclosed angle is convex. Therefore, every vertex and
its adjacent vertices have to be an ear.

vj+1

vj

vj−1

vx

(a)

vj+1

vj

vj−1

vx

(b)

vj+1

vj

vj−1

vx

(c)

Figure 26: Intersected triangle: In (a), the triangle ∆(vj−1, vj, vj+1) does not
form an ear as vx lies on the inside of the diagonal vj−1vj+1.
In (b), vx lies on the ear-defining diagonal vj−1vj+1. Later
in the triangulation, this would lead to a degenerate triangle
∆(vj−1, vj+1, vx). In (c), we see a degenerate case where vx and
vj coincide.

The idea of the regular grid is to store all reflex vertices in cells to
improve this query. The dimensions are h ·

√
n× w ·

√
n, where ex-

periments showed the best results with w · h = 1 [Hel01]. Again, in

41

F I S T

the worst case, this gives a O(n) query time. Since most practical
input has a feasible distribution of its input vertices, the query time
tends to converge to an almost constant value.

3.3 P O LY G O N S W I T H I S L A N D S

If the polygon contains islands, more than one contour loop has to
be considered. A simple solution to this problem is to embed the
islands into the outer contour by using bridges. A bridge consists
of two diagonals which coincide but are treated separately. Due to
the overlapping vertices and edges along every added bridge, the
resulting polygon is not simple anymore. In Figure 27c, we see an
example of such an embedding. In order to make it more visible, the
co-aligned bridge edges (diagonals) have been spread apart.

There are n2 possible bridges and each one takes O(n) time to verify
that it is not intersecting the contour. Therefore, a naive implementa-
tion for handling islands within polygons would take O(n3).

This algorithm uses the left-most vertex of an island v (see the green
dots in Figure 27a) and searches for a bridge to the left vi (see Fig-
ure 27b). As there are only n vertices as possible bridges with v, this
enables a bridge finding inO(n2). Again, it takesO(n) time to check
if a vertex pair form a bridge.

P R O O F - S U C H A B R I D G E A LWAY S E X I S T S

Let P be a simple polygon with n + m vertices and let P containing
one island. Let v1, v2, ..., vn denote the vertices of the outer contour
of P and let i1, i2, ..., im denote the vertices of the island of P. Since
the polygon is simple the contour of the island can not intersect the
outer contour, two cases are to consider:

C A S E 1 If a vertex vi would be co-aligned with a vertex ix we would
not need a bridge, the island could already be added to the outer
contour loop (also P would not be strictly simple).

C A S E 2 The island-contour lies completely in Int(P). If we choose
the leftmost vertex of the island contour, let it be ix, we know its
interior angle must be at least π. Since Meisters showed that every
simple polygon can be triangulated, we triangulate the outer contour
of P without the island. Now every island vertex, and also ix, lies on

42

3.4 Q U A L I T Y T R I A N G U L AT I O N

the inside of a triangle or on one of its supporting lines. This means
that ix can be connected to at least one of the vertices forming its
surrounding triangle by a diagonal. This diagonal is used to create
the bridge.

In practice, all contours are already in separate contour loops (as ex-
plained in Section 3.1). A data field is created which contains the left-
most vertex from each island. These are sorted by their x-coordinate.
For each of these bridge vertices, a list of possible bridges is created.
Note that our data points are already sorted by their x-coordinates.
This means that only the ones with a lower index as our current ver-
tex is needed. As the vertices further to the left will not lie inside
of our island-contour and since the left-most vertex is already used,
only the outer contour has to be checked for intersection with a pos-
sible bridge. Those vertices are then sorted by their distance (the
L1-Norm is used). In practice, it is more likely for a closer point to be
a possible bridge. That is why the sorted approach is used.

In order to speed up the search for bridges, the grid is traversed with
an offset search. This means that starting with offset 0, the grid-cell
in which the left-most vertex vi of the island lies is searched. If no
vertex of the outer contour lies in this grid-cell, the offset is increased
to 1. Now, the search is conducted in the grid-cells above, left and
below our initial cell. This process continues until a vertex vj is found
(see Figure 28) which forms a diagonal vjvi. Since the orientation
process is already completed, there has to be a vertex vj somewhere
on the left of vi.

3.4 Q U A L I T Y T R I A N G U L AT I O N

FIST is not producing an optimal triangulation like the Delaunay tri-
angulation. To produce a quality triangulation different heuristics
are implemented. A random, sorted, top and a fancy clipping variant
can be used to improve the triangulation quality.

The random and sorted variant are slightly slower than the sequen-
tial variant but yield already a much "nicer" triangulation. For the
sorted variant, a numerical value is calculated for each ear vi−1, vi,

43

F I S T

1
2

3

(a) polygon containing islands

vi

v

(b) finding a bridge

(c) adding islands to contour

Figure 27: FIST: handling islands in an example polygon.

vi

(a) Bridge finding: offset 0.

vj
vi

(b) Bridge finding: offset 1.

Figure 28: FIST bridge finding: Further speed up due to offset search in
hash grid.

vi+1. This value is defined by a ratio of the diagonal vi−1vi+1 and its
enclosed angle and is scaled by the length value of the diagonal (see
Figure 29b).

The fancy variant goes even further and also considers vertices close
to the diagonal. In case this ear is clipped, a vertex close to the

44

3.4 Q U A L I T Y T R I A N G U L AT I O N

diagonal would produce sliver triangles (see Figure 29c). This ap-
proach produces an computation overhead of about 20 to 30% and
offers only a slightly "better" triangulation quality than the random
or sorted method.

The top variant is an improvement to the fancy approach. Using top,
vertices close to the diagonal of the evaluated ear are considered as
well, but no explicit search is conducted. This leads to a "better"
triangulation quality than the sorted approach but without the com-
putation overhead needed for the fancy method of 20 to 30%.

vk

vj

vi

vl

(a)

vk

vj

vi

vl

(b)

vk

vj

vi

vx

vl

(c)

Figure 29: In (a), two possible ears are shown by their supporting diago-
nal. In (b), a sorted approach would favor the ear vj, vk, vl before
vi, vj, vk. In (c), a fancy approach would also consider the vertex
vx.

45

4
F I S T - PA R A L L E L

4.1 D I V I D E A N D C O N Q U E R

The first approach was to use several threads for the classification
and keep the original setup of FIST. Since the classification step takes
only up to 20% of the total time, we ended up with a weaker perfor-
mance due to the parallelization-overhead.

We decided to search for a divide and conquer solution by splitting
up the polygon into pieces. A naive implementation to find a diag-
onal takes O(n3) time. In Section 3.3 we explained this time com-
plexity. We tried to insert diagonals with a random approach but
the finding and verification process is still too slow to be of practical
relevance.

Even if we ignore the time overhead for finding diagonals we still
have no guarantee that the two resulting pieces have equal amount
of vertices. The vertex count of the pieces is of relevance since every
thread should have the same amount of workload. We tried to avoid
the implementation of a load balancer.

Due to the difficulty in finding a diagonal which lies completely
in the interior of the polygon and divides the polygon into pieces
of equal vertex count, we use the Sutherland-Hodgman algorithm
[SH74]. It can conduct the splitting in O(n) time but adds possibly
O(n) Steiner points.

We have used the Sutherland-Hodgman algorithm to split the input
polygon into several pieces. The number of pieces is set to equal the
number of cores which are available on the CPU in use. After the
splitting, we use FIST in order to triangulate the pieces by starting
each piece on a separate thread. The pieces are independent from
each other which leads to a good scalability.

47

F I S T - PA R A L L E L

After the triangulation is finished we still haveO(n) Steiner points in
the data. They have to be removed, because we would add vertices
which are not in the input data set and as it would also lead to a
wrong triangle count.

4.1.1 Sutherland-Hodgman Algorithm

The algorithm provided by Sutherland and Hodgeman in 1974 can
clip or split a polygon along a given split line ` in linear time [SH74].

The process is quit simple. We have the vertices of the polygon P in a
doubly-linked list and start at a certain vertex vi (see Figure 30a). We
use two helper indices A and B to walk through the contour, starting
with A = vi and B = vi+1. We also have an empty list L where we
build up the clipped polygon.

Let ` be our split line.

• If both A and B are above `: add B to L.

• If A is above and B is below `: add the intersection of AB and `
to L.

• And if A is below and B is above `: add the intersection of AB
and ` as well as B to L.

In Figure 30 that process is illustrated for an example polygon.

4.1.2 Merge and Repair

We use a separate data structure to reference the left and right con-
tour indices of a specific Steiner point. In Figure 31 we see an ex-
ample of such a split. To repair such a part we have to know its
properties.

When splitting a polygon, we always use an x-coordinate which is
not used inside the input data. Since all vertices are already sorted,
we let splitx = v(n/2)x+v((n+1)/2)x

2 , if v(n/2)x 6= v((n + 1)/2)x. Oth-
erwise we have to find an unequal pair. This helps us to get rid of
most special cases with multiple vertices on the split line.

48

4.1 D I V I D E A N D C O N Q U E R

vi

(a) example polygon

A
B

(b) start of algorithm

A

B

B’

(c) add cut vertex

A

B
B’

(d) add cut vertex and B

A
B

(e) add B

A

B
B’

(f) add cut vertex

A B

(g) nothing added

A

B

B’

(h) add cut vertex and B

v1v2

v3v4

v5
v6

v7 v8 v9 v10

(i) resulting polygon

Figure 30: Sutherland-Hodgman: animation of the algorithm-process.

v1
v2

v4
v5

wn−1wn

w1

wk

v3

Steiner point
split line
triangulation

i

i Steiner index

ia ib

ia, ib left, right contour index

Steiner data field

Figure 31: Example of a split and how we refer to the vertices on both sides.
The Steiner data field holds the indices of the vertices of both
sides for each Steiner point.

This unique splitx value will result in pairwise Steiner points (sa, sb)
which are responsible for such a split part. In order to repair such a

49

F I S T - PA R A L L E L

hole we have to find and remove all related triangles on either side
first. To enable this, we added triangle relationships to FIST.

As shown in Figure 32b, we remove all triangles connected to either
sa or sb on the left and on the right side. Now we have to recreate
the contour on the left side and separately on the right side (see Fig-
ure 32c). Due to the different data structures in which they are, we
have no relation between the left and right side except the Steiner
points.

After the contour is recreated, we fit the left and right part together
and get one hole contour (see Figure 32d).

The triangulation of this hole which we create during the repair pro-
cess is simpler then the standard ear-clipping which we did before.
Since we remove all triangles from two Steiner points, these two ver-
tices build the center of a "double star-shaped" polygon. This also
means that each vertex, of the newly formed hole contour can be
connected to at least one of the two Steiner points by a diagonal.

Splitline

(a)

sb

sa

(b)

sb

sa

(c)

sb

sa

(d)

sb

sa

ba

bb

(e) (f)

Figure 32: The repair process step by step.

50

4.1 D I V I D E A N D C O N Q U E R

D E F I N I T I O N 1 5 A vertex vy is directly visible by a vertex vx if it
is possible to insert the diagonal vxvy.

In Figure 33 we picture three scenarios. In Figure 33a we can see a
contour loop of a typical split. On the right side of sa we have several
reflex vertices which are all directly visible by sa. The reflex vertex
vr prohibits sb to see those reflex vertices. In Figure 33b we picture
an impossible situation. The red contour, yielding an unreachable
area labeled B is shown. Any vertex which is contained in B would
not be visible by either sa nor sb. This is not possible since we only
removed triangles containing at least one Steiner point. Figure 33c
shows a special case which we consider below.

sa

sb

Avr

(a)

sa

sb

B

vr

(b)

sa

sbva vb

vcC

(c)

Figure 33: We see the split line as green dashed edge sasb. In (a), we show
an example of reflex vertices contained in a contour loop. In (b),
the gray area labeled A is not reachable by either Steiner point. In
(c), we see an ear sbvbvc using a Steiner point and a line segment
vavc which intersects the contour. This line segment does not
form a diagonal and so vavbvc can not form an ear.

To get a linear complexity for the triangulation of this holes we di-
vide the "double star-shaped" sub-polygon into two star-shaped sub-
polygons. This is done by inserting a bridge into the contour loop
using the following procedure:

51

F I S T - PA R A L L E L

Using one Steiner point as start vertex sa, we walk CCW through
the newly created contour. If we find a vertex which is not directly
visible by sa, we store the last visible vertex as ba. If all vertices are
visible, we stop the test when we reach the second Steiner point sb.
Then we start the same search clockwise, starting again at sa.

The visibility check is done by an orientation test. We test a Steiner
point sa and two successive vertices vi, vi+1. If we walk CCW and the
orientation is positive, then the vertex vi+1 is visible by sa. If we get
a negative value we store vi as the last visible vertex in this direction.

If all vertices are visible by sa in one direction, lets say CCW, ba
would be undefined. If we encounter an vertex which is not visi-
ble by sa in the CW direction bb would be defined. In such a case we
define ba as the last vertex before sb in CCW direction.

While conducting this test in example Figure 32d we would reach
sb in the CCW search. This means that every vertex is visible by sa.
Then, in the CW search we would find bb. As shown in Figure 32e
with the blue dashed line, a bridge is inserted from ba to bb which
splits up the contour into two contour loops, where each contains
one Steiner point.

If we find neither ba nor bb we can triangulate directly. Otherwise we
have to insert the diagonal babb and triangulate both contour parts
separately (see Figure 32f).

Due to the star-shaped property of our contour we can triangulate
it in linear time. We have to check that the vertex at hand is convex.
Then we can classify it as an ear and clip it later.

This ear property does not hold for the two vertices next to the Steiner
point. In Figure 33c we can see that vb is a convex vertex but the three
consecutive vertices va, vb, vc form no ear. This case only appears on
the two vertices va, vb which enclose the contour edge that also holds
the Steiner point. When we triangulate, those two vertices are kept
until the end. The last clipped ear va, vx, vb contains them as adjacent
vertices.

52

4.2 M A R K A N D C U T

Special Case

When we deal with an input contour which contains a long horizon-
tal edge e, we will possibly split e several times. We call such an
event a multi-split (see Figure 34a).

Since we destroy the contour list-structure when clipping ears the
triangle relations are stored in the triangles themselves. After we
run through the repair step, we recreate the contour for each hole
and triangulate the holes again, like explained above. If two of those
contour loops share an edge e, the triangle relation, between the two
triangles adjacent to e, is never created. In any normal case, this
relation is not needed, as the repair step is already completed.

In Figure 34, we can see such a scenario where ∆(vivjvk) is the rea-
son for the multi-split event. Figure 34b shows the already repaired
second split splitx2. The lost triangle relation is marked with the red
squares. The next step would be to repair splitx1, but since we can
not find all triangles just by using their relations, we have to resort
to a special handling.

If such a case arises, we first recreate the contour as usual. Then
we start a search for triangles which belong to this split-hole as well.
These triangles can be found in O(n) as we search only for triangles
which contain one of the two split-vertices that were created by the
split-line.

Due to the fact that such a case rarely occurs, the performance is
hardly influenced.

4.2 M A R K A N D C U T

We implemented a second parallel variant of FIST. Ear-clipping by
the use of a mark and cut algorithm. The idea is very simple. We start
with a non-parallel mark phase followed by a parallel cut phase. For
this algorithm we only need one additional data structure namely an
array A to store the marked vertices.

53

F I S T - PA R A L L E L

splitx1 splitx2

vivj

vk

(a)

splitx1

vj

vk

(b)

Figure 34: FIST multi-split: in (a) the triangle ∆(vivjvk) contains vj which
lies on the split-line splitx1 and vi which lies on the split-line
splitx2, in (b) splitx2 is repaired yielding a triangle relation prob-
lem marked with the red squares.

4.2.1 Mark Phase

In the mark phase we walk through our contour loop once and store
the index of every other vertex in A. Because we only take every
other vertex, e.g. v2, v4, v6, ..., two ears, formed by a stored vertex vi
and its two adjacent vertices vi−1, vi+1, can never overlap.

4.2.2 Cut Phase

The cut phase is conducted in parallel. For each vertex vi in A we
check whether vi−1, vi, vi+1 is an ear. If so, we store the triangle
∆(vi−1, vi, vi+1) in the triangle array at position i. The usual way FIST
is storing triangles is, to add it at the last position and increment the
position counter. Since a polygon of n vertices yields a triangulation
with n− 2 triangles, we would only need a array of size n− 2 for the
triangles. Now we use a preallocated array of size n and a disabled
field which is set to true as a default value for each entry. Because ev-
ery ear can be clipped only once and for every clipped ear only one
vertex is removed from the contour (except for the last three vertices)

54

4.2 M A R K A N D C U T

we can use the index of that removed vertex as index for the stored
triangle and avoid any collisions also in parallel.

When every vertex was checked in A we re-run the mark phase. This
process is repeated until we have less than 500 vertices left in the
contour loop or A contains the same amount of vertices after the
mark phase. A "good" threshold has to be found through further
tests. The value 500 was chosen to see the parallel behavior of this
approach.

After this parallel procedure is completed we finish the last 500 ver-
tices with the sequential variant of FIST.

55

5
E X P E R I M E N TA L R E S U LT S

In this chapter we will provide benchmarking results, comparing
FIST using the two parallel approaches (Divide & Conquer and Mark
& Cut) to the conventional variant. We explained the parallel ver-
sions of FIST in Section 4.1. To simplify the labeling we refer to the
divide and conquer variant of FIST as FIST(DC) and to the mark
and cut variant as FIST(MC). All tests were performed by the use of
the following test system: The cpu is an AMD Opteron(TM) Processor
6376 with 2.3 GHz and 64 cores. It contains 132 GB of Ram and the
operating system is a Red Hat Linux with the kernel 2.6.32.

Our extensive set of over 21 000 test-samples is used to provide prac-
tical results. Samples may contain a few vertices, or up to 3 million
vertices. We also differentiate between four test-sample classes: ran-
dom, smooth, thinned and smoother. In Figure 35 we picture examples
of these classes.

Figure 36 shows the different tasks FIST is executing. Each of the
following tasks is visualized in a box-plot in percentage of total time:

I N P U T Reading the input data from a file.

C L E A N I N G Data cleaning involves a degeneration check, sorting
by x-coordinate, removing of duplicates and a check whether
all the contour loops are closed.

B R I D G E S As explained in Section 3.3, bridges are created.

C L I P P I N G The actual classification and clipping step.

In the following benchmarks we only visualize the timing and speed-
up for the classification and clipping step. That is because in our
parallel variants of FIST we only modified this section.

Next we test FIST(DC) in the different polygon classes. In Figure 37 a,
c and d we can see that FIST(DC) is faster than FIST only if the input

57

E X P E R I M E N TA L R E S U LT S

(a) random. (b) smooth.

(c) thinned. (d) smoother.

Figure 35: Examples of our four polygon classes.

data exceeds about 20,000 vertices. If the input polygon contains
fewer vertices, the splitting is ineffective.

The next test, Figure 38, shows the speedup of FIST(DC) compared
to FIST over all our test-data. We test FIST(DC) with split sizes 2, 4,
8 and 16, which means that the test-polygon is split up into 2, 4, 8 or
16 pieces.

As one can see in Figure 38, the performance for FIST(DC 8) and
FIST(DC 16) outperforms the other variants only by about 0.5. This is
a poor performance as we use 8 or 16 cores to compute this outcome.

The other variants, FIST(DC 2) which has a speedup of about 1.5 and
FIST(DC 4) with a speedup of 2, perform better, from cost-efficient
point of few. In Figure 37b all FIST(DC) variants seem to scale better

58

E X P E R I M E N TA L R E S U LT S

0

25

50

75

100

input cleaning bridges clipping

to
ta

l t
im

e
[%

]

Figure 36: FIST runtime for its different tasks.

than in Figure 38. This could be explained by the character of this
polygon class. The class of smooth polygons tends to be "almost"
x-monotone, this leads to a fast splitting and also a fast repairing
process.

The next benchmark, Figure 39, shows the overall speedup of FIST
compared to FIST(MC). We test with the use of 2, 4, 8, 16, 32 and
64 cores. The result of this test is a speedup of 1.3 up to 1.7 with a
maximum of about 2. This performance is also below expectation as
we use up to 64 cores and get only a speedup of 1.7.

59

E X P E R I M E N TA L R E S U LT S

0.5

1.0

1.5

2.0

2.5

20,000 40,000 60,000
vertices

sp
ee

du
p

FIST(DC 2) FIST(DC 4) FIST(DC 8) FIST(DC 16)

(a) Random (using 81 samples).

2

4

6

8

1,000 10,000 100,000
vertices

sp
ee

du
p

FIST(DC 2) FIST(DC 4) FIST(DC 8) FIST(DC 16)

(b) Smooth (using 98 samples).

0.5

1.0

1.5

2.0

2.5

5,000 10,000 15,000 20,000 25,000
vertices

sp
ee

du
p

FIST(DC 2) FIST(DC 4) FIST(DC 8) FIST(DC 16)

(c) Thinned (using 56 samples).

0.5

1.0

1.5

2.0

2.5

10,000 20,000 30,000
vertices

sp
ee

du
p

FIST(DC 2) FIST(DC 4) FIST(DC 8) FIST(DC 16)

(d) Smoother (using 70 samples).

Figure 37: Benchmark of the four polygon classes using FIST(DC).

60

E X P E R I M E N TA L R E S U LT S

0.5

1.0

1.5

2.0

2.5

1,000,000 2,000,000 3,000,000
vertices

sp
ee

du
p

FIST(DC 2) FIST(DC 4) FIST(DC 8) FIST(DC 16)

Figure 38: Benchmarking the speedup of FIST vs FIST(DC) with 2, 4, 8 and
16 sub-polygon pieces.

61

E X P E R I M E N TA L R E S U LT S

0.5

1.0

1.5

2.0

2.5

1,000,000 2,000,000 3,000,000
vertices

sp
ee

du
p

FIST(MC 2)

FIST(MC 4)

FIST(MC 8)

FIST(MC 16)

FIST(MC 32)

FIST(MC 64)

Figure 39: Benchmarking the speedup of FIST vs FIST(MC) with 2, 4, 8, 16,
32 and 64 cores.

62

6
C O N C L U S I O N

The two parallel implementations of FIST, the divide and conquer
approach and the mark and sweep variant, were tested in Chapter 5.
Both variants of FIST turn out to result in a poor performance.

The divide and conquer approach needed a lot of fine tuning in the
implementation phase and is not as fail-safe as the mark and sweep
variant. Due to splitting, degenerate input or overlapping can not
be handled correctly. If we compare the performance of the two im-
plementations we can see that the speedup of FIST(DC) outperforms
FIST(MC) only by about 0.5 in most cases. Only when we use a split
size of 2 or at most 4 the speedup of 1.5 up to 2 is sufficient to be of
practical relevance.

The idea of the mark and sweep variant is very simple and also the
implementation could be accomplished with little effort. Unfortu-
nately is a speedup of 1.7 not cost-effective as we use up to 64 cores.

63

A
B I B L I O G R A P H Y

[Ang97] Marc Vigo Anglada. An Improved Incremental Algo-
rithm for Constructing Restricted Delaunay Triangula-
tions. Computers & Graphics, 21(2):215–223, 1997.

[BCKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and
Mark Overmars. Computational Geometry: Algorithms and
Applications. Springer-Verlag TELOS, Santa Clara, CA,
USA, 3rd edition, 2008.

[Bow81] Adrian Bowyer. Computing Dirichlet Tessellations. The
Computer Journal, 24(2):162–166, 1981.

[BS91] R. Balbes and J. Siegel. A Robust Method for Calculating
the Simplicity and Orientation of Planar Polygons. Com-
puter Aided Geometric Design, 8(4):327–335, October 1991.

[CCT91] Kenneth L. Clarkson, Richard Cole, and Robert Endre
Tarjan. Randomized Parallel Algorithms for Trapezoidal
Diagrams. In Seventh Annual Symposium on Computational
Geometry, pages 152–161, 1991.

[Cha91] Bernard Chazelle. Triangulating a Simple Polygon in Lin-
ear Time. Discrete and Computational Geometry, 6(5):485–
524, 1991.

[Che89] L. P. Chew. Constrained Delaunay Triangulations. Algo-
rithmica, 4(1-4):97–108, 1989.

[Che90] L. P. Chew. Building Voronoi Diagrams for Convex Poly-
gons in Linear Expected Time. Technical report, Hanover,
NH, USA, 1990.

[CTMT10] Thanh-Tung Cao, Ke Tang, Anis Mohamed, and
Tiow Seng Tan. Parallel Banding Algorithm to Com-
pute Exact Distance Transform with the GPU. In

65

B I B L I O G R A P H Y

Daniel G. Aliaga, Manuel M. Oliveira, Amitabh Varsh-
ney, and Chris Wyman, editors, Symposium on Interactive
3D Graphics, pages 83–90, 2010.

[CTW88] Kenneth L. Clarkson, Robert Endre Tarjan, and Christo-
pher J. Van Wyk. A Fast Las Vegas Algorithm for Triangu-
lating a Simple Polygon. In Symposium on Computational
Geometry, pages 18–22, 1988.

[CW98] Francis Y. L. Chin and Cao An Wang. Finding the
Constrained Delaunay Triangulation and Constrained
Voronoi Diagram of a Simple Polygon in Linear Time.
SIAM Journal on Computing, 28(2):471–486, 1998.

[Del34] Boris N. Delaunay. Sur la sphère vide. Bulletin of Academy
of Sciences of the USSR, (6):793–800, 1934.

[Dv08] V. Domiter and B. Žalik. Sweep-line Algorithm for Con-
strained Delaunay Triangulation. International Journal
of Geographical Information Science, 22(4):449–462, January
2008.

[For86] S. Fortune. A Sweepline Algorithm for Voronoi Dia-
grams. In Proceedings of the Second Annual Symposium
on Computational Geometry, SCG ’86, pages 313–322, New
York, NY, USA, 1986.

[GJPT78] M. R. Garey, David S. Johnson, Franco P. Preparata, and
Robert Endre Tarjan. Triangulating a Simple Polygon. In-
formation Processing Letters, 7(4):175–179, 1978.

[Gra72] Ronald L. Graham. An Efficient Algorithm for Determin-
ing the Convex Hull of a Finite Planar Set. Information
Processing Letters, 1(4):132–133, 1972.

[GS85] Leonidas Guibas and Jorge Stolfi. Primitives for the Ma-
nipulation of General Subdivisions and the Computa-
tion of Voronoi Diagrams. ACM Transactions on Graphics,
4(2):74–123, April 1985.

[Hel01] Martin Held. FIST: Fast Industrial-Strength Triangula-
tion of Polygons. Algorithmica, 30(4):563–596, 2001.

66

B I B L I O G R A P H Y

[KET91] Xianshu Kong, Hazel Everett, and Godfried Toussaint.
The Graham Scan Triangulates Simple Polygons. Pattern
Recognition Letters, 11:11–713, 1991.

[Law77] C. L. Lawson. Software for C1 Surface Interpolation. In
J. R. Rice, editor, Mathematical Software III, pages 161–194.
Academic Press, New York, 1977.

[LL86] D.T. Lee and A.K. Lin. Generalized Delaunay Triangula-
tion for Planar Graphs. Discrete Computational Geometry,
1(1):201–217, 1986.

[LS80] D. T. Lee and Bruce J. Schachter. Two Algorithms for con-
structing a Delaunay Triangulation. International Journal
of Parallel Programming, 9(3):219–242, 1980.

[Mei75] G. H. Meisters. Polygons have Ears. The American Mathe-
matical Monthly, 82(6):648–651, June 1975.

[QCT12] Meng Qi, Thanh-Tung Cao, and Tiow-Seng Tan. Comput-
ing 2D Constrained Delaunay Triangulation using the
GPU. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, I3D ’12, pages 39–
46, Costa Mesa, California, 2012.

[RTCS08] Guodong Rong, Tiow-Seng Tan, Thanh-Tung Cao, and
Stephanus. Computing Two-Dimensional Delaunay Tri-
angulation using Graphics Hardware. In Proceedings of
the 2008 Symposium on Interactive 3D Graphics and Games,
I3D ’08, pages 89–97, Redwood City, California, 2008.

[SB13] Jonathan Richard Shewchuk and Brielin C. Brown. Fast
Segment Insertion and Incremental Construction of Con-
strained Delaunay Triangulations. In Proceedings of the
Twenty-ninth Annual Symposium on Computational Geome-
try, SoCG ’13, pages 299–308, Rio de Janeiro, Brazil, 2013.
ACM.

[Sei91] Raimund Seidel. A Simple and Fast Incremental Ran-
domized Algorithm for Computing Trapezoidal Decom-
positions and for Triangulating Polygons. Computational
Geometry: Theory and Applications, 1:51–64, 1991.

67

B I B L I O G R A P H Y

[Sei92] Raimund Seidel. Backwards Analysis of Randomized
Geometric Algorithms. In Trends in Discrete and Computa-
tional Geometry, volume 10 of Algorithms and Combinatorics,
pages 37–68. Springer-Verlag, 1992.

[SH74] Ivan E. Sutherland and Gary W. Hodgman. Reentrant
Polygon Clipping. Communications of the ACM, 17(1):32–
42, January 1974.

[SH75] Michael I. Shamos and Dan Hoey. Closest-Point Prob-
lems. In Foundations of Computer Science, 1975, 16th An-
nual Symposium on, pages 151–162. IEEE, October 1975.

[She96] Jonathan Richard Shewchuk. Triangle: Engineering a 2D
Quality Mesh Generator and Delaunay Triangulator. In
Ming C. Lin and Dinesh Manocha, editors, WACG, vol-
ume 1148 of Lecture Notes in Computer Science, pages 203–
222. Springer, 1996.

[SSW09] Micha Sharir, Adam Sheffer, and Emo Welzl. Counting
Triangulations of Planar Point Sets. CoRR Computing Re-
search Repository, abs/0911.3352, 2009.

[Tou91] Godfried Toussaint. Efficient Triangulation of Simple
Polygons. The Visual Computer, 7:280–295, 1991.

[TW88] Robert Endre Tarjan and Christopher J. Van Wyk. An
O(n log log n) - Time Algorithm for Triangulating a Sim-
ple Polygon. SIAM Journal on Computing, 17(1):143–178,
1988.

[Vor09] G. Voronoi. Nouvelles Applications des paramètres con-
tinus à théorie des formes Quadratiques. Journal für die
reine und angewandte Mathematik, 1909(136):67–182, Jan-
uary 1909.

[Ž05] Borut Žalik. An Efficient Sweep-line Delaunay Triangula-
tion Algorithm. Computer Aided Design, 37(10):1027–1038,
September 2005.

[Wat81] D. F. Watson. Computing the n-dimensional Delaunay
Tessellation with Application to Voronoi Polytopes. The
Computer Journal, 24(2):167–172, January 1981.

68

B I B L I O G R A P H Y

[WS85] Tony C. Woo and Sung Yong Shin. A Linear Time Al-
gorithm for Triangulating a Point-Visible Polygon. ACM
Transactions on Graphics, 4(1):60–69, 1985.

[XWX+13] Shi-Qing Xin, Xiaoning Wang, Jiazhi Xia, Wolfgang
Mueller-Wittig, Guo-Jin Wang, and Ying He. Paral-
lel Computing 2D Voronoi Diagrams using Untrans-
formed Sweepcircles. Computer-Aided Design, 45(2):483–
493, 2013.

69

B
L I S T O F F I G U R E S

Figure 1 Simple Polygon, Triangulation Example 2

Figure 2 DT and CDT . 4

Figure 3 Proof of Meisters Theorem 11

Figure 4 Monotone Polygon 13

Figure 5 Monotone Subdivision (MS) - Not y-monotone . . . 13

Figure 6 MS - Vertex Cases 1 14

Figure 7 MS - Vertex Cases 2 15

Figure 8 MS - Proof Support 16

Figure 9 MS - Split, Merge Vertex 17

Figure 10 MS - Triangulating a Monotone Polygon - Case 1 . . 19

Figure 11 MS - Triangulating a Monotone Polygon - Case 2 . . 19

Figure 12 Sweep-Line CDT - Initialization 21

Figure 13 Sweep-line CDT - Middle & Left Case 23

Figure 14 Legalization . 24

Figure 15 Sweep-line CDT - First Heuristic 25

Figure 16 Sweep-line CDT - Second Heuristic 25

Figure 17 Sweep-line CDT - Triangle traversal 26

Figure 18 Sweep-line CDT - Finalization 27

Figure 19 CDT Incremental - Convex Poylgon 29

Figure 20 CDT Incremental - Cases 30

Figure 21 CDT on GPU - First Phase 33

Figure 22 CDT on GPU - Second & Third Phase 34

71

L I S T O F F I G U R E S

Figure 23 CDT on GPU - Constraint Intersection 36

Figure 24 CDT on GPU - Fourth & Fifth Phase 38

Figure 25 FIST - CE1 . 40

Figure 26 FIST - Ear . 41

Figure 27 FIST - Bridges . 44

Figure 28 FIST - Bridges Advanced 44

Figure 29 FIST - Ear Quality . 45

Figure 30 Sutherland-Hodgman Algorithm 49

Figure 31 FIST - Polygon split line 49

Figure 32 FIST - Repair Polygon Process 50

Figure 33 FIST - Split Cases . 51

Figure 34 FIST - Special Case 54

Figure 35 Four Polygon Classes 58

Figure 36 Benchmark: FIST Subtimings 59

Figure 37 Benchmark: Polygon Classes 60

Figure 38 Benchmark: FIST vs. FIST Divide & Conquer 61

Figure 39 Benchmark: FIST vs. FIST Mark & Cut 62

72

	1 Introduction
	1.1 Definition
	1.2 Application
	1.3 History
	1.4 Contribution
	1.5 Outline

	2 Algorithms
	2.1 Ear Clipping
	2.2 Triangulation using Monotone Polygons
	2.3 Sweep-line Algorithm for CDT
	2.4 Incremental Construction of CDTs
	2.5 Constrained Delaunay Triangulation using GPU

	3 FIST
	3.1 Orientation
	3.2 Regular Grid
	3.3 Polygons with Islands
	3.4 Quality Triangulation

	4 FIST - Parallel
	4.1 Divide and Conquer
	4.2 Mark and Cut

	5 Experimental Results
	6 Conclusion
	A Bibliography
	B List of Figures

