On Generating Polygons: Introducing the Salzburg Database

Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer, and Peter Palfrader

EuroCG 2020

Würzburg, March 2020
What is the Salzburg Database?

Keystones
- A repository of polygonal areas
- Can be used freely
- Database: https://sbgdb.cs.sbg.ac.at/
- Generators: https://github.com/cgalab
- Currently contains 11507 instances
What is the Salzburg Database?

Keystones
- A repository of polygonal areas
- Can be used freely
- Database: https://sbgdb.cs.sbg.ac.at/
- Generators: https://github.com/cgalab
- Currently contains 11507 instances
What is the Salzburg Database?

Keystones

- A repository of polygonal areas
- Can be used freely
- Database: https://sbgdb.cs.sbg.ac.at/
 - Generators: https://github.com/cgalab
 - Currently contains 11,507 instances
What is the Salzburg Database?

Keystones

- A repository of polygonal areas
- Can be used freely
- Database: https://sbgdb.cs.sbg.ac.at/
- Generators: https://github.com/cgalab
- Currently contains 11507 instances

![Repository Search](https://sbgdb.cs.sbg.ac.at/)

- **genpoly-spg**
 - Simple Polygon Generator based on a Sweep-Line combined with Two-Opt
 - C++, GPL-3.0
 - Updated Mar 3, 2020

- **wevo**
 - Computes the Multiplicatively Weighted Voronoi Diagram of Points
 - C++, GPL-3.0
 - Updated Feb 24, 2020

- **genpoly-rpg**
 - Random Polygon Generator (RPG)
 - C
 - Updated Feb 21, 2020
What is the Salzburg Database?

Keystones
- A repository of polygonal areas
- Can be used freely
- Database: https://sbgdb.cs.sbg.ac.at/
- Generators: https://github.com/cgalab
- Currently contains 11,507 instances
How to use it?

Browser
Per instance via https://sbgdb.cs.sbg.ac.at/db/
How to use it?

Browser
Per instance via https://sbgdb.cs.sbg.ac.at/db/

Whole Repository

```
  git clone https://sbgdb.cs.sbg.ac.at/db/.git
  git annex get
```
How to use it?

Browser
Per instance via https://sbgdb.cs.sbg.ac.at/db/

Whole Repository

```sh
git clone https://sbgdb.cs.sbg.ac.at/db/.git

git annex get
```
What’s the Format?

Requirements

- Can be parsed and stored easily
- Supports the basic geometric types
- Can be extended to support various properties
- A human should be able to read it?
What’s the Format?

Requirements

- Can be parsed and stored easily
- Supports the basic geometric types
 - Can be extended to support various properties
 - A human should be able to read it?
What’s the Format?

Requirements

- Can be parsed and stored easily
- Supports the basic geometric types
- Can be extended to support various properties
- A human should be able to read it?
What’s the Format?

Requirements

- Can be parsed and stored easily
- Supports the basic geometric types
- Can be extended to support various properties
- A human should be able to read it?
What’s the Format?

Requirements

- Can be parsed and stored easily
- Supports the basic geometric types
- Can be extended to support various properties
- A human should be able to read it?

GraphML to the rescue!
What’s the Format?

Requirements

- Can be parsed and stored easily
- Supports the basic geometric types
- Can be extended to support various properties
- A human should be able to read it?

Properties

- XML – format
 - Supports graphs in general
 - Directed-, undirected-, mixed-, and hyper-graphs
 - Supports edge-weights
What’s the Format?

Requirements
- Can be parsed and stored easily
- Supports the basic geometric types
- Can be extended to support various properties
- A human should be able to read it?

Properties
- XML – format
- Supports graphs in general
 - Directed-, undirected-, mixed-, and hyper-graphs
 - Supports edge-weights
What’s the Format?

Requirements

- Can be parsed and stored easily
- Supports the basic geometric types
- Can be extended to support various properties
- A human should be able to read it?

Properties

- XML – format
- Supports graphs in general
- Directed-, undirected-, mixed-, and hyper-graphs
- Supports edge-weights
What’s the Format?

Requirements
- Can be parsed and stored easily
- Supports the basic geometric types
- Can be extended to support various properties
- A human should be able to read it?

Properties
- XML – format
- Supports graphs in general
- Directed-, undirected-, mixed-, and hyper-graphs
- Supports edge-weights
Format-Converter

- https://github.com/cgalab/format-converter
- MIT license
- Written in Python

- Reading and writing `.graphml`, `.ipe`, `.obj`-files
- Reading `.line`, `.poly`, `.site`-files
- Additional options for edge-weights
- **Adding additional formats is simple.**
Converter

Format-Converter

- https://github.com/cgalab/format-converter
- MIT license
- Written in Python

- Reading and writing .graphml, .ipe, .obj-files
- Reading .line, .poly, .site-files
- Additional options for edge-weights
- Adding additional formats is simple.
Converter

Format-Converter

- https://github.com/cgalab/format-converter
- MIT license
- Written in Python

- Reading and writing `.graphml`, `.ipe`, `.obj-files`
- Reading `.line`, `.poly`, `.site-files`
- Additional options for edge-weights
- Adding additional formats is simple.
Converter

Format-Converter
- https://github.com/cgalab/format-converter
- MIT license
- Written in Python

- Reading and writing `.graphml`, `.ipe`, `.obj-files`
- Reading `.line`, `.poly`, `.site-files`
- Additional options for edge-weights
- Adding additional formats is simple.
Converter

Format-Converter

- https://github.com/cgalab/format-converter
- MIT license
- Written in Python

- Reading and writing .graphml, .ipe, .obj-files
- Reading .line, .poly .site-files
 - Additional options for edge-weights
 - Adding additional formats is simple.
Format-Converter

- https://github.com/cgalab/format-converter
- MIT license
- Written in Python

- Reading and writing .graphml, .ipe, .obj-files
- Reading .line, .poly .site-files
- Additional options for edge-weights
- Adding additional formats is simple.
Format-Converter

- https://github.com/cgalab/format-converter
- MIT license
- Written in Python

- Reading and writing .graphml, .ipe, .obj-files
- Reading .line, .poly .site-files
- Additional options for edge-weights
- **Adding additional formats is simple.**
Instance Classes
Instance Classes
Instance Classes

fpg with holes
Instance Classes
Instance Classes

2-opt
Instance Classes

2-opt
Instance Classes

[Diagram of two geometric shapes]
Instance Classes
Generators

- Rpg — Various heuristics
 - Srgb — On the integer grid
 - Koch, Sierpinski, Hilbert, and Lebesgue
 - Fpg — Triangulation Perturbation
 - Spg — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
 - Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- \textit{Rpg} — Various heuristics
- \textit{Srpg} — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
 - \textit{Fpg} — Triangulation Perturbation
 - \textit{Spg} — Sweep-line & 2-Opt
Generators

- **Rpg** — Various heuristics
- **Srpg** — On the integer grid
- **Koch, Sierpinski, Hilbert, and Lebesgue**
- **Fpg** — Triangulation Perturbation
- **Spg** — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- R_{pg} — Various heuristics
- S_{rpg} — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- F_{pg} — Triangulation Perturbation
- S_{pg} — Sweep-line & 2-Opt
Generators

- **Rpg** — Various heuristics
- **Srpg** — On the integer grid
- **Koch, Sierpinski, Hilbert, and Lebesgue**
- **Fpg** — Triangulation Perturbation
- **Spg** — Sweep-line & 2-Opt
Generators

- \(\text{Rpg} \) — Various heuristics
- \(\text{Srpg} \) — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- \(\text{Fpg} \) — Triangulation Perturbation
 - \(\text{Spg} \) — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- **Rpg** — Various heuristics
- **Srpg** — On the integer grid
- **Koch, Sierpinski, Hilbert, and Lebesgue**
- **Fpg** — Triangulation Perturbation
 - **Spg** — Sweep-line & 2-Opt
Generators

- R_{pg} — Various heuristics
- S_{rpg} — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- F_{pg} — Triangulation Perturbation
- S_{pg} — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- \(\text{Rpg} \) — Various heuristics
- \(\text{Srpg} \) — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- \(\text{Fpg} \) — Triangulation Perturbation
- \(\text{Spg} \) — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- \(\text{Rpg} \) — Various heuristics
- \(\text{Srpg} \) — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- \(\text{Fpg} \) — Triangulation Perturbation
- \(\text{Spg} \) — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- $\text{Rpg} \quad$ Various heuristics
- $\text{Srpg} \quad$ On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- $\text{Fpg} \quad$ Triangulation Perturbation
- $\text{Spg} \quad$ Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- R_{pg} — Various heuristics
- S_{rpg} — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- F_{pg} — Triangulation Perturbation
- S_{pg} — Sweep-line & 2-Opt
Generators

- Rpg — Various heuristics
- Srpg — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- Fpg — Triangulation Perturbation
- Spg — Sweep-line & 2-Opt
Generators

- R_{pg} — Various heuristics
- S_{rpg} — On the integer grid
- Koch, Sierpinski, Hilbert, and Lebesgue
- F_{pg} — Triangulation Perturbation
- S_{pg} — Sweep-line & 2-Opt
Summary

Database https://sbgdb.cs.sbg.ac.at/

Format-Converter https://github.com/cgalab/format-converter

Call for Participation

Do you have interesting polygons?

What is missing?
(specific class, property, file format)

Contact
{geder, held, palfrader}@cs.sbg.ac.at